BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thaker SK, Ch'ng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol 2019;17:59. [PMID: 31319842 DOI: 10.1186/s12915-019-0678-9] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 32.3] [Reference Citation Analysis]
Number Citing Articles
1 Shen T, Wang T. Metabolic Reprogramming in COVID-19. Int J Mol Sci 2021;22:11475. [PMID: 34768906 DOI: 10.3390/ijms222111475] [Reference Citation Analysis]
2 Lee SR, Roh JY, Ryu J, Shin H, Hong E. Activation of TCA cycle restrains virus-metabolic hijacking and viral replication in mouse hepatitis virus-infected cells. Cell Biosci 2022;12. [DOI: 10.1186/s13578-021-00740-z] [Reference Citation Analysis]
3 Feng M, Fei S, Xia J, Zhang M, Wu H, Swevers L, Sun J. Global Metabolic Profiling of Baculovirus Infection in Silkworm Hemolymph Shows the Importance of Amino-Acid Metabolism. Viruses 2021;13:841. [PMID: 34066413 DOI: 10.3390/v13050841] [Reference Citation Analysis]
4 Pasternak JA, MacPhee DJ, Lunney JK, Rowland RRR, Dyck MK, Fortin F, Dekkers JCM, Plastow GS, Harding JCS; PigGen Canada. Thyroid hormone suppression in feeder pigs following polymicrobial or porcine reproductive and respiratory syndrome virus-2 challenge. J Anim Sci 2021;99:skab325. [PMID: 34734242 DOI: 10.1093/jas/skab325] [Reference Citation Analysis]
5 Sharma A, Garcia G Jr, Wang Y, Plummer JT, Morizono K, Arumugaswami V, Svendsen CN. Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection. Cell Rep Med 2020;1:100052. [PMID: 32835305 DOI: 10.1016/j.xcrm.2020.100052] [Cited by in Crossref: 89] [Cited by in F6Publishing: 105] [Article Influence: 44.5] [Reference Citation Analysis]
6 Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, Hung DT, Mootha VK, Gewurz BE. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun 2021;12:1676. [PMID: 33723254 DOI: 10.1038/s41467-021-21903-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
7 Michi AN, Yipp BG, Dufour A, Lopes F, Proud D. PGC-1α mediates a metabolic host defense response in human airway epithelium during rhinovirus infections. Nat Commun 2021;12:3669. [PMID: 34135327 DOI: 10.1038/s41467-021-23925-z] [Reference Citation Analysis]
8 Krapić M, Kavazović I, Wensveen FM. Immunological Mechanisms of Sickness Behavior in Viral Infection. Viruses 2021;13:2245. [PMID: 34835051 DOI: 10.3390/v13112245] [Reference Citation Analysis]
9 Islam MA, Haque MA, Rahman MA, Hossen F, Reza M, Barua A, Marzan AA, Das T, Kumar Baral S, He C, Ahmed F, Bhattacharya P, Jakariya M. A Review on Measures to Rejuvenate Immune System: Natural Mode of Protection Against Coronavirus Infection. Front Immunol 2022;13:837290. [PMID: 35371007 DOI: 10.3389/fimmu.2022.837290] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fernandes T, Garrine C, Ferrão J, Bell V, Varzakas T. Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. Applied Sciences 2021;11:4221. [DOI: 10.3390/app11094221] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020;182:685-712.e19. [PMID: 32645325 DOI: 10.1016/j.cell.2020.06.034] [Cited by in Crossref: 289] [Cited by in F6Publishing: 255] [Article Influence: 144.5] [Reference Citation Analysis]
12 Pérez de la Lastra JM, Andrés-juan C, Plou FJ, Pérez-lebeña E. Impact of Zinc, Glutathione, and Polyphenols as Antioxidants in the Immune Response against SARS-CoV-2. Processes 2021;9:506. [DOI: 10.3390/pr9030506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
13 Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021;:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Reference Citation Analysis]
14 Liu J, Su M, Chen X, Li Z, Fang Z, Yi L. Lipid-mediated biosynthetic labeling strategy for in vivo dynamic tracing of avian influenza virus infection. J Biomater Appl 2022;:8853282211063298. [PMID: 34996310 DOI: 10.1177/08853282211063298] [Reference Citation Analysis]
15 Zenke K, Okinaka Y. Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells. Arch Virol 2022. [PMID: 35752988 DOI: 10.1007/s00705-022-05489-5] [Reference Citation Analysis]
16 Yang F, Li S, Xiang J, Zhao X, Li F. Transcriptome analysis reveals the regulation of the shrimp STAT on host chitin-binding domain containing proteins and energy metabolism process during WSSV infection. Fish Shellfish Immunol 2020;100:345-57. [PMID: 32184190 DOI: 10.1016/j.fsi.2020.03.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Pang Z, Zhou G, Chong J, Xia J. Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets. Metabolites 2021;11:44. [PMID: 33435351 DOI: 10.3390/metabo11010044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
18 Zhang Z, Wang T, Liu F, Zhu A, Gu G, Luo J, Xu J, Zhao J, Li Y, Li Y, Liu X, Zhong N, Lu W. The proteomic characteristics of airway mucus from critical ill COVID-19 patients. Life Sci 2021;269:119046. [PMID: 33453245 DOI: 10.1016/j.lfs.2021.119046] [Reference Citation Analysis]
19 Kennedy BE, Sadek M, Gujar SA. Targeted Metabolic Reprogramming to Improve the Efficacy of Oncolytic Virus Therapy. Mol Ther 2020;28:1417-21. [PMID: 32243836 DOI: 10.1016/j.ymthe.2020.03.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
20 Navare AT, Mast FD, Olivier JP, Bertomeu T, Neal M, Carpp LN, Kaushansky A, Coulombe-Huntington J, Tyers M, Aitchison JD. Viral protein engagement of GBF1 induces host cell vulnerability through synthetic lethality. bioRxiv 2020:2020. [PMID: 33173868 DOI: 10.1101/2020.10.12.336487] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Mesri EA, Lampidis TJ. 2-Deoxy-d-glucose exploits increased glucose metabolism in cancer and viral-infected cells: Relevance to its use in India against SARS-CoV-2. IUBMB Life 2021;73:1198-204. [PMID: 34418270 DOI: 10.1002/iub.2546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021;22:8912. [PMID: 34445619 DOI: 10.3390/ijms22168912] [Reference Citation Analysis]
23 Zhao C, Chen J, Cheng L, Xu K, Yang Y, Su X. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg Microbes Infect 2020;9:691-706. [PMID: 32208814 DOI: 10.1080/22221751.2020.1742585] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
24 Ma H, Niu Y. Metabolomic Profiling Reveals New Insight of Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022;12:784745. [DOI: 10.3389/fmicb.2021.784745] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR. Cellular Metabolic Profiling of CrFK Cells Infected with Feline Infectious Peritonitis Virus Using Phenotype Microarrays. Pathogens 2020;9:E412. [PMID: 32466289 DOI: 10.3390/pathogens9050412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
26 Kumar R, Huang J, Ng Y, Chen C, Wang H. The regulation of shrimp metabolism by the white spot syndrome virus (WSSV). Rev Aquac. [DOI: 10.1111/raq.12643] [Reference Citation Analysis]
27 Vasconcellos AF, Melo RM, Mandacaru SC, de Oliveira LS, de Oliveira AS, Moraes ECDS, Trugilho MRDO, Ricart CAO, Báo SN, Resende RO, Charneau S. Aedes aegypti Aag-2 Cell Proteome Modulation in Response to Chikungunya Virus Infection. Front Cell Infect Microbiol 2022;12:920425. [DOI: 10.3389/fcimb.2022.920425] [Reference Citation Analysis]
28 Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020;131:110694. [PMID: 32920511 DOI: 10.1016/j.biopha.2020.110694] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, He J, Xiao S, Xiong J, Lin Y, Wen K, Zhou H, Chen J, Rong Z, Chen X. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 2020;12:; 1-17. [PMID: 33314005 DOI: 10.1007/s13238-020-00811-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
30 Masaud SM, Szasz O, Szasz AM, Ejaz H, Anwar RA, Szasz A. A Potential Bioelectromagnetic Method to Slow Down the Progression and Prevent the Development of Ultimate Pulmonary Fibrosis by COVID-19. Front Immunol 2020;11:556335. [PMID: 33343561 DOI: 10.3389/fimmu.2020.556335] [Reference Citation Analysis]
31 Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022;13:780839. [PMID: 35154105 DOI: 10.3389/fimmu.2022.780839] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021;9:695139. [PMID: 34395368 DOI: 10.3389/fpubh.2021.695139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 [DOI: 10.1101/2020.04.05.20053819] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
34 Barnes SJK, Stefanovska A. Physics of cellular energy metabolism. Contemporary Physics. [DOI: 10.1080/00107514.2022.2073046] [Reference Citation Analysis]
35 Griffante G, Hewelt-Belka W, Albano C, Gugliesi F, Pasquero S, Castillo Pacheco SF, Bajetto G, Porporato PE, Mina E, Vallino M, Krapp C, Jakobsen MR, Purdy J, von Einem J, Landolfo S, Dell'Oste V, Biolatti M. IFI16 Impacts Metabolic Reprogramming during Human Cytomegalovirus Infection. mBio 2022;:e0043522. [PMID: 35420480 DOI: 10.1128/mbio.00435-22] [Reference Citation Analysis]
36 Verma A, Adhikary A, Woloschak G, Dwarakanath BS, Papineni RVL. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int J Radiat Biol 2020;96:1323-8. [PMID: 32910699 DOI: 10.1080/09553002.2020.1818865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
37 Crisci E, Moroldo M, Vu Manh TP, Mohammad A, Jourdren L, Urien C, Bouguyon E, Bordet E, Bevilacqua C, Bourge M, Pezant J, Pléau A, Boulesteix O, Schwartz I, Bertho N, Giuffra E. Distinctive Cellular and Metabolic Reprogramming in Porcine Lung Mononuclear Phagocytes Infected With Type 1 PRRSV Strains. Front Immunol 2020;11:588411. [PMID: 33365028 DOI: 10.3389/fimmu.2020.588411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Shatizadeh Malekshahi S, Yavarian J, Shafiei-Jandaghi NZ. Usage of peptidases by SARS-CoV-2 and several human coronaviruses as receptors: A mysterious story. Biotechnol Appl Biochem 2020. [PMID: 33347649 DOI: 10.1002/bab.2087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Maras JS, Sharma S, Bhat A, Rooge S, Aggrawal R, Gupta E, Sarin SK. Multi-omics analysis of respiratory specimen characterizes baseline molecular determinants associated with SARS-CoV-2 outcome. iScience 2021;24:102823. [PMID: 34308298 DOI: 10.1016/j.isci.2021.102823] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Zhang J, Zhang Y, Xia Y, Sun J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes 2021;13:1957408. [PMID: 34375154 DOI: 10.1080/19490976.2021.1957408] [Reference Citation Analysis]
41 Liu PJ, Balfe P, McKeating JA, Schilling M. Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses 2020;12:E1213. [PMID: 33113858 DOI: 10.3390/v12111213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Huang Z, Chavda VP, Vora LK, Gajjar N, Apostolopoulos V, Shah N, Chen Z. 2-Deoxy-D-Glucose and its Derivatives for the COVID-19 Treatment: An Update. Front Pharmacol 2022;13:899633. [DOI: 10.3389/fphar.2022.899633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Feng Y, Tang K, Lai Q, Liang J, Feng M, Zhou Z, Cui H, Du X, Zhang H, Sun L. The Landscape of Aminoacyl-tRNA Synthetases Involved in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Physiol 2022;12:818297. [DOI: 10.3389/fphys.2021.818297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022;14:811481. [DOI: 10.3389/fnagi.2022.811481] [Reference Citation Analysis]
45 Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol 2021;12:698169. [PMID: 34248921 DOI: 10.3389/fmicb.2021.698169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
46 Chuong C, Bates TA, Akter S, Werre SR, LeRoith T, Weger-Lucarelli J. Nutritional status impacts dengue virus infection in mice. BMC Biol 2020;18:106. [PMID: 32854687 DOI: 10.1186/s12915-020-00828-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022;39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021;11:232. [PMID: 33799853 DOI: 10.3390/life11030232] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Sarkar R, Banerjee S, Mukherjee A, Chawla-Sarkar M. Rotaviral nonstructural protein 5 (NSP5) promotes proteasomal degradation of up-frameshift protein 1 (UPF1), a principal mediator of nonsense-mediated mRNA decay (NMD) pathway, to facilitate infection. Cell Signal 2022;89:110180. [PMID: 34718106 DOI: 10.1016/j.cellsig.2021.110180] [Reference Citation Analysis]
50 Li JJ. Mitigating Coronavirus-Induced Acute Respiratory Distress Syndrome by Radiotherapy. iScience 2020;23:101215. [PMID: 32512383 DOI: 10.1016/j.isci.2020.101215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
51 Jaree P, Boonchuen P, Thawonsuwan J, Kondo H, Hirono I, Somboonwiwat K. Transcriptome profiling reveals the novel immunometabolism-related genes against WSSV infection from Fenneropenaeus merguiensis. Fish Shellfish Immunol 2021;120:31-44. [PMID: 34758397 DOI: 10.1016/j.fsi.2021.11.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Rao Y, Wang TY, Qin C, Espinosa B, Liu Q, Ekanayake A, Zhao J, Savas AC, Zhang S, Zarinfar M, Liu Y, Zhu W, Graham NA, Jiang T, Zhang C, Feng P. Targeting CTP Synthetase 1 to Restore Interferon Induction and Impede Nucleotide Synthesis in SARS-CoV-2 Infection. bioRxiv 2021:2021. [PMID: 33564769 DOI: 10.1101/2021.02.05.429959] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Miller L, Berber E, Sumbria D, Rouse BT. Controlling the Burden of COVID-19 by Manipulating Host Metabolism. Viral Immunol 2021. [PMID: 34905407 DOI: 10.1089/vim.2021.0150] [Reference Citation Analysis]
54 Allen CNS, Santerre M, Arjona SP, Ghaleb LJ, Herzi M, Llewellyn MD, Shcherbik N, Sawaya BE. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022;14:983. [DOI: 10.3390/v14050983] [Reference Citation Analysis]
55 Wu Z, Jia J, Xu X, Xu M, Peng G, Ma J, Jiang X, Yao J, Yao K, Li L, Tang H. Human herpesvirus 6A promotes glycolysis in infected T cells by activation of mTOR signaling. PLoS Pathog 2020;16:e1008568. [PMID: 32516328 DOI: 10.1371/journal.ppat.1008568] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
56 Reyes A, Duarte LF, Farías MA, Tognarelli E, Kalergis AM, Bueno SM, González PA. Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021;22:7954. [PMID: 34360716 DOI: 10.3390/ijms22157954] [Reference Citation Analysis]
57 Lopes LR. Functional and tissue enrichment analyses suggest that SARS-CoV-2 infection affects host metabolism and catabolism mediated by interference on host proteins. Braz J Microbiol 2021;52:1151-9. [PMID: 33956332 DOI: 10.1007/s42770-021-00497-0] [Reference Citation Analysis]
58 Malhi M, Norris MJ, Duan W, Moraes TJ, Maynes JT. Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun Biol 2021;4:1239. [PMID: 34716403 DOI: 10.1038/s42003-021-02754-2] [Reference Citation Analysis]
59 Su S, Hua D, Li J, Zhang X, Bai L, Cao L, Guo Y, Zhang M, Dong J, Liang X, Lan K, Hu M, Shu H. Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00981-5] [Reference Citation Analysis]
60 Romano A, Casazza M, Gonella F. Addressing Non-linear System Dynamics of Single-Strand RNA Virus-Host Interaction. Front Microbiol 2020;11:600254. [PMID: 33519741 DOI: 10.3389/fmicb.2020.600254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021:fuab016. [PMID: 33765123 DOI: 10.1093/femsre/fuab016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
62 Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. European Journal of Cell Biology 2022. [DOI: 10.1016/j.ejcb.2022.151239] [Reference Citation Analysis]
63 Gan ES, Ooi EE. Oxygen: viral friend or foe? Virol J 2020;17:115. [PMID: 32718318 DOI: 10.1186/s12985-020-01374-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
64 Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021;8:732256. [PMID: 34557521 DOI: 10.3389/fmolb.2021.732256] [Reference Citation Analysis]
65 Garcia-Fandino R, Piñeiro Á. Delving Into the Origin of Destructive Inflammation in COVID-19: A Betrayal of Natural Host Defense Peptides? Front Immunol 2020;11:610024. [PMID: 33552069 DOI: 10.3389/fimmu.2020.610024] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Ariav Y, Ch'ng JH, Christofk HR, Ron-Harel N, Erez A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci Adv 2021;7:eabg6165. [PMID: 34138729 DOI: 10.1126/sciadv.abg6165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Schilling E, Wald ME, Schulz J, Werner LE, Claus C. Interferon Signaling-Dependent Contribution of Glycolysis to Rubella Virus Infection. Pathogens 2022;11:537. [DOI: 10.3390/pathogens11050537] [Reference Citation Analysis]
68 Li M, Yang J, Ye C, Bian P, Yang X, Zhang H, Luo C, Xue Z, Lei Y, Lian J. Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Landscape in Neuronal Cells during JEV Infection. Virol Sin 2021. [PMID: 34558014 DOI: 10.1007/s12250-021-00445-0] [Reference Citation Analysis]
69 Wang L, Ning S. New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021;13:5451. [PMID: 34771613 DOI: 10.3390/cancers13215451] [Reference Citation Analysis]
70 Thyrsted J, Holm CK. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr Opin Biotechnol 2021;68:44-50. [PMID: 33113498 DOI: 10.1016/j.copbio.2020.10.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
71 Mullen PJ, Garcia G Jr, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, Sen C, Langerman J, Ramaiah A, Shackelford DB, Damoiseaux R, French SW, Plath K, Gomperts BN, Arumugaswami V, Christofk HR. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun 2021;12:1876. [PMID: 33767183 DOI: 10.1038/s41467-021-22166-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
72 Singh Y, Trautwein C, Fendel R, Krickeberg N, Berezhnoy G, Bissinger R, Ossowski S, Salker MS, Casadei N, Riess O; Deutsche COVID-19 OMICS Initiate (DeCOI). SARS-CoV-2 infection paralyzes cytotoxic and metabolic functions of the immune cells. Heliyon 2021;7:e07147. [PMID: 34075347 DOI: 10.1016/j.heliyon.2021.e07147] [Reference Citation Analysis]
73 Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2020;295:140-66. [PMID: 32320072 DOI: 10.1111/imr.12851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
74 Roberts I, Wright Muelas M, Taylor JM, Davison AS, Xu Y, Grixti JM, Gotts N, Sorokin A, Goodacre R, Kell DB. Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. Metabolomics 2021;18:6. [PMID: 34928464 DOI: 10.1007/s11306-021-01859-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zou Z, Tsang JO, Yan B, Chik KK, Chan CC, Cao J, Liang R, Tang K, Yin F, Ye ZW, Chu H, Chan JF, Yuan S, Yuen KY. Metabolic Profiling Reveals Significant Perturbations of Intracellular Glucose Homeostasis in Enterovirus-Infected Cells. Metabolites 2020;10:E302. [PMID: 32717953 DOI: 10.3390/metabo10080302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Neogi U, Elaldi N, Appelberg S, Ambikan A, Kennedy E, Dowall S, Bagci BK, Gupta S, Rodriguez JE, Svensson-Akusjärvi S, Monteil V, Vegvari A, Benfeitas R, Banerjea A, Weber F, Hewson R, Mirazimi A. Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. Elife 2022;11:e76071. [PMID: 35437144 DOI: 10.7554/eLife.76071] [Reference Citation Analysis]
77 Wu YH, Yang Y, Chen CH, Hsiao CJ, Li TN, Liao KJ, Watashi K, Chen BS, Wang LH. Aerobic glycolysis supports hepatitis B virus protein synthesis through interaction between viral surface antigen and pyruvate kinase isoform M2. PLoS Pathog 2021;17:e1008866. [PMID: 33720996 DOI: 10.1371/journal.ppat.1008866] [Reference Citation Analysis]
78 Andrade Silva M, da Silva ARPA, do Amaral MA, Fragas MG, Câmara NOS. Metabolic Alterations in SARS-CoV-2 Infection and Its Implication in Kidney Dysfunction. Front Physiol 2021;12:624698. [PMID: 33716771 DOI: 10.3389/fphys.2021.624698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Mussap M, Fanos V. Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows. Clin Chem Lab Med 2021. [PMID: 34332518 DOI: 10.1515/cclm-2021-0414] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Pant A, Dsouza L, Yang Z. Alteration in Cellular Signaling and Metabolic Reprogramming during Viral Infection. mBio 2021;12:e0063521. [PMID: 34517756 DOI: 10.1128/mBio.00635-21] [Reference Citation Analysis]
81 Wan Q, Chen M, Zhang Z, Yuan Y, Wang H, Hao Y, Nie W, Wu L, Chen S. Machine Learning of Serum Metabolic Patterns Encodes Asymptomatic SARS-CoV-2 Infection. Front Chem 2021;9:746134. [PMID: 34660538 DOI: 10.3389/fchem.2021.746134] [Reference Citation Analysis]
82 Prusinkiewicz MA, Tu J, Dodge MJ, MacNeil KM, Radko-Juettner S, Fonseca GJ, Pelka P, Mymryk JS. Differential Effects of Human Adenovirus E1A Protein Isoforms on Aerobic Glycolysis in A549 Human Lung Epithelial Cells. Viruses 2020;12:E610. [PMID: 32503156 DOI: 10.3390/v12060610] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Bai Y, Huang W, Li Y, Lai C, Huang S, Wang G, He Y, Hu L, Chen C. Lipidomic alteration of plasma in cured COVID-19 patients using ultra high-performance liquid chromatography with high-resolution mass spectrometry. Biosci Rep 2021;41:BSR20204305. [PMID: 33635316 DOI: 10.1042/BSR20204305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
84 Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021;11:673724. [PMID: 34532297 DOI: 10.3389/fcimb.2021.673724] [Reference Citation Analysis]
85 Karami H, Derakhshani A, Ghasemigol M, Fereidouni M, Miri-Moghaddam E, Baradaran B, Tabrizi NJ, Najafi S, Solimando AG, Marsh LM, Silvestris N, De Summa S, Paradiso AV, Racanelli V, Safarpour H. Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection. J Clin Med 2021;10:3567. [PMID: 34441862 DOI: 10.3390/jcm10163567] [Reference Citation Analysis]
86 Hu J, Gao Q, Yang Y, Xia J, Zhang W, Chen Y, Zhou Z, Chang L, Hu Y, Zhou H, Liang L, Li X, Long Q, Wang K, Huang A, Tang N. Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Theranostics 2021;11:805-23. [PMID: 33391506 DOI: 10.7150/thno.50230] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
87 Costa JH, Mohanapriya G, Bharadwaj R, Noceda C, Thiers KLL, Aziz S, Srivastava S, Oliveira M, Gupta KJ, Kumari A, Sircar D, Kumar SR, Achra A, Sathishkumar R, Adholeya A, Arnholdt-Schmitt B. ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control - a Complex Early Trait ('CoV-MAC-TED') for Combating SARS-CoV-2-Induced Cell Reprogramming. Front Immunol 2021;12:673692. [PMID: 34305903 DOI: 10.3389/fimmu.2021.673692] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, Guo D, Hu W, Yang J, Tang Z, Wu H, Lin Y, Zhang M, Zhang Q, Shi M, Zhou Y, Lan K, Chen Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9:761-770. [PMID: 32228226 DOI: 10.1080/22221751.2020.1747363] [Cited by in Crossref: 508] [Cited by in F6Publishing: 472] [Article Influence: 254.0] [Reference Citation Analysis]
89 Li CX, Chen J, Lv SK, Li JH, Li LL, Hu X. Whole-Transcriptome RNA Sequencing Reveals Significant Differentially Expressed mRNAs, miRNAs, and lncRNAs and Related Regulating Biological Pathways in the Peripheral Blood of COVID-19 Patients. Mediators Inflamm 2021;2021:6635925. [PMID: 33833618 DOI: 10.1155/2021/6635925] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
90 Butler M, Chotiwan N, Brewster CD, DiLisio JE, Ackart DF, Podell BK, Basaraba RJ, Perera R, Quackenbush SL, Rovnak J. Cyclin-Dependent Kinases 8 and 19 Regulate Host Cell Metabolism during Dengue Virus Serotype 2 Infection. Viruses 2020;12:E654. [PMID: 32560467 DOI: 10.3390/v12060654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Turpin J, El Safadi D, Lebeau G, Krejbich M, Chatelain C, Desprès P, Viranaïcken W, Krejbich-Trotot P. Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022;23:1287. [PMID: 35163212 DOI: 10.3390/ijms23031287] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
92 Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE. Metabolic Reprogramming in HIV-Associated Neurocognitive Disorders. Front Cell Neurosci 2022;16:812887. [DOI: 10.3389/fncel.2022.812887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Morris DR, Qu Y, Agrawal A, Garofalo RP, Casola A. HIF-1α Modulates Core Metabolism and Virus Replication in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Viruses 2020;12:E1088. [PMID: 32993138 DOI: 10.3390/v12101088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
94 Manocha E, Caruso A, Caccuri F. Viral Proteins as Emerging Cancer Therapeutics. Cancers (Basel) 2021;13:2199. [PMID: 34063663 DOI: 10.3390/cancers13092199] [Reference Citation Analysis]
95 Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021;478:3157-78. [PMID: 34492096 DOI: 10.1042/BCJ20210263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Stubbs BJ, Koutnik AP, Goldberg EL, Upadhyay V, Turnbaugh PJ, Verdin E, Newman JC. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. Med (N Y) 2020;1:43-65. [PMID: 32838361 DOI: 10.1016/j.medj.2020.06.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
97 Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022;13:868679. [DOI: 10.3389/fimmu.2022.868679] [Reference Citation Analysis]
98 Renz A, Widerspick L, Dräger A. FBA reveals guanylate kinase as a potential target for antiviral therapies against SARS-CoV-2. Bioinformatics 2020;36:i813-21. [PMID: 33381848 DOI: 10.1093/bioinformatics/btaa813] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
99 Gould O, Ratcliffe N, Król E, de Lacy Costello B. Breath analysis for detection of viral infection, the current position of the field. J Breath Res 2020;14:041001. [PMID: 32531777 DOI: 10.1088/1752-7163/ab9c32] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
100 Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Palacios-Rápalo SN, Cordero-Rivera CD, Farfan-Morales CN, Hurtado-Monzón AM, Gallardo-Flores CE, Alcaraz-Estrada SL, Salas-Benito JS, Del Ángel RM. The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell-Cell Communication: New Insights on Virus-Host Interactions. Viruses 2020;12:E765. [PMID: 32708685 DOI: 10.3390/v12070765] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
101 Qin C, Rao Y, Yuan H, Wang TY, Zhao J, Espinosa B, Liu Y, Zhang S, Savas AC, Liu Q, Zarinfar M, Rice S, Henley J, Comai L, Graham NA, Chen C, Zhang C, Feng P. SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Proc Natl Acad Sci U S A 2022;119:e2122897119. [PMID: 35700355 DOI: 10.1073/pnas.2122897119] [Reference Citation Analysis]
102 Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021;12:637553. [PMID: 34054806 DOI: 10.3389/fimmu.2021.637553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Liu P, Hu D, Yuan L, Lian Z, Yao X, Zhu Z, Li X. Metabolomics Analysis of PK-15 Cells with Pseudorabies Virus Infection Based on UHPLC-QE-MS. Viruses 2022;14:1158. [PMID: 35746630 DOI: 10.3390/v14061158] [Reference Citation Analysis]
104 Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology 2022. [DOI: 10.1016/j.tim.2021.12.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
105 Wu D, Shu T, Yang X, Song J, Zhang M, Yao C, Liu W, Huang M, Yu Y, Yang Q, Zhu T, Xu J, Mu J, Wang Y, Wang H, Tang T, Ren Y, Wu Y, Lin S, Qiu Y, Zhang D, Shang Y, Zhou X. Plasma metabolomic and lipidomic alterations associated with COVID-19. National Science Review 2020;7:1157-68. [DOI: 10.1093/nsr/nwaa086] [Cited by in Crossref: 80] [Cited by in F6Publishing: 24] [Article Influence: 40.0] [Reference Citation Analysis]
106 Thomas S. The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET. Pathog Immun 2020;5:342-63. [PMID: 33154981 DOI: 10.20411/pai.v5i1.377] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
107 Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019;10:2647. [PMID: 31798565 DOI: 10.3389/fmicb.2019.02647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
108 Lathwal A, Kumar R, Raghava GPS. In-silico identification of subunit vaccine candidates against lung cancer-associated oncogenic viruses. Comput Biol Med 2021;130:104215. [PMID: 33465550 DOI: 10.1016/j.compbiomed.2021.104215] [Reference Citation Analysis]
109 Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, Jalil AT, Bokov DO, Mustafa YF, Noroozbeygi M, Karampoor S, Mirzaei R. Coronavirus disease 2019 (COVID-19) update: From metabolic reprogramming to immunometabolism. J Med Virol 2022. [PMID: 35689351 DOI: 10.1002/jmv.27929] [Reference Citation Analysis]
110 Bhatt AN, Kumar A, Rai Y, Kumari N, Vedagiri D, Harshan KH, Chinnadurai V, Chandna S. Glycolytic inhibitor 2-deoxy-d-glucose attenuates SARS-CoV-2 multiplication in host cells and weakens the infective potential of progeny virions. Life Sci 2022;:120411. [PMID: 35181310 DOI: 10.1016/j.lfs.2022.120411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
111 Pernas L. Cellular metabolism in the defense against microbes. J Cell Sci 2021;134:jcs252023. [PMID: 33558420 DOI: 10.1242/jcs.252023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Irwin NAT, Pittis AA, Richards TA, Keeling PJ. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol 2021. [PMID: 34972821 DOI: 10.1038/s41564-021-01026-3] [Reference Citation Analysis]
113 [DOI: 10.1101/2020.12.09.20246389] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
114 Proto MC, Fiore D, Piscopo C, Pagano C, Galgani M, Bruzzaniti S, Laezza C, Gazzerro P, Bifulco M. Lipid homeostasis and mevalonate pathway in COVID-19: Basic concepts and potential therapeutic targets. Prog Lipid Res 2021;82:101099. [PMID: 33915202 DOI: 10.1016/j.plipres.2021.101099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. bioRxiv 2021:2020. [PMID: 32577652 DOI: 10.1101/2020.05.28.122291] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 12.0] [Reference Citation Analysis]
116 Pant A, Dsouza L, Cao S, Peng C, Yang Z. Viral growth factor- and STAT3 signaling-dependent elevation of the TCA cycle intermediate levels during vaccinia virus infection. PLoS Pathog 2021;17:e1009303. [PMID: 33529218 DOI: 10.1371/journal.ppat.1009303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
117 Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2020;7:627842. [PMID: 33585567 DOI: 10.3389/fmolb.2020.627842] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
118 Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology 2020;161:200-8. [PMID: 32920838 DOI: 10.1111/imm.13260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Laviada-Molina HA, Leal-Berumen I, Rodriguez-Ayala E, Bastarrachea RA. Working Hypothesis for Glucose Metabolism and SARS-CoV-2 Replication: Interplay Between the Hexosamine Pathway and Interferon RF5 Triggering Hyperinflammation. Role of BCG Vaccine? Front Endocrinol (Lausanne) 2020;11:514. [PMID: 32733388 DOI: 10.3389/fendo.2020.00514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
120 Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022;14:602. [DOI: 10.3390/v14030602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Beale DJ, Shah R, Karpe AV, Hillyer KE, McAuley AJ, Au GG, Marsh GA, Vasan SS. Metabolic Profiling from an Asymptomatic Ferret Model of SARS-CoV-2 Infection. Metabolites 2021;11:327. [PMID: 34069591 DOI: 10.3390/metabo11050327] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
122 Subbaram K, Ali PSS, Ali S. Enhanced endocytosis elevated virulence and severity of SARS-CoV-2 due to hyperglycemia in type 2 diabetic patients. Gene Rep 2022;26:101495. [PMID: 35043090 DOI: 10.1016/j.genrep.2022.101495] [Reference Citation Analysis]
123 Arunasri K, Sai Prashanthi G, Tyagi M, Pappuru RR, Shivaji S. Intraocular Viral Communities Associated With Post-fever Retinitis. Front Med (Lausanne) 2021;8:724195. [PMID: 34869420 DOI: 10.3389/fmed.2021.724195] [Reference Citation Analysis]
124 Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022;1877:188724. [DOI: 10.1016/j.bbcan.2022.188724] [Reference Citation Analysis]
125 Pant A, Yang Z. Asparagine: An Achilles Heel of Virus Replication? ACS Infect Dis 2020;6:2301-3. [PMID: 32786295 DOI: 10.1021/acsinfecdis.0c00504] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
126 Pasini E, Corsetti G, Romano C, Scarabelli TM, Chen-Scarabelli C, Saravolatz L, Dioguardi FS. Serum Metabolic Profile in Patients With Long-Covid (PASC) Syndrome: Clinical Implications. Front Med (Lausanne) 2021;8:714426. [PMID: 34368201 DOI: 10.3389/fmed.2021.714426] [Reference Citation Analysis]
127 Cheng S, Liu X, Mu J, Yan W, Wang M, Chai H, Sha Y, Jiang S, Wang S, Ren Y, Gao C, Ding Z, Stoeger T, Tseren-ochir E, Dodovski A, Alfonso P, Mingala CN, Yin R. Intense Innate Immune Responses and Severe Metabolic Disorders in Chicken Embryonic Visceral Tissues Caused by Infection with Highly Virulent Newcastle Disease Virus Compared to the Avirulent Virus: A Bioinformatics Analysis. Viruses 2022;14:911. [DOI: 10.3390/v14050911] [Reference Citation Analysis]
128 Moolamalla STR, Balasubramanian R, Chauhan R, Priyakumar UD, Vinod PK. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. Microb Pathog 2021;158:105114. [PMID: 34333072 DOI: 10.1016/j.micpath.2021.105114] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Monferrer E, Sanegre S, Vieco-Martí I, López-Carrasco A, Fariñas F, Villatoro A, Abanades S, Mañes S, de la Cruz-Merino L, Noguera R, Álvaro Naranjo T. Immunometabolism Modulation in Therapy. Biomedicines 2021;9:798. [PMID: 34356862 DOI: 10.3390/biomedicines9070798] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
130 Zhu F, Song D, Chen H, Tang Q, Huo S, Liu X, Chen K. A Lipidome Map of the Silkworm Bombyx mori: Influences of Viral Infection. J Proteome Res 2021;20:695-703. [PMID: 33175548 DOI: 10.1021/acs.jproteome.0c00608] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
131 Vulturar R, Chiș A, Pintilie S, Farcaș IM, Botezatu A, Login CC, Sitar-taut A, Orasan OH, Stan A, Lazea C, Al-khzouz C, Mager M, Vințan MA, Manole S, Damian L. One Molecule for Mental Nourishment and More: Glucose Transporter Type 1—Biology and Deficiency Syndrome. Biomedicines 2022;10:1249. [DOI: 10.3390/biomedicines10061249] [Reference Citation Analysis]
132 Reyna-Hernández MA, Alarcón-Romero LDC, Ortiz-Ortiz J, Illades-Aguiar B, Jiménez-López MA, Ocampo-Bárcenas A, Morrugares-Ixtepan MO, Torres-Rojas FI. GLUT1, LDHA, and MCT4 Expression Is Deregulated in Cervical Cancer and Precursor Lesions. J Histochem Cytochem 2022;70:437-46. [PMID: 35615882 DOI: 10.1369/00221554221101662] [Reference Citation Analysis]
133 Lorente E, Martín-Galiano AJ, Kadosh DM, Barriga A, García-Arriaza J, Mir C, Esteban M, Admon A, López D. Abundance, Betweenness Centrality, Hydrophobicity, and Isoelectric Points Are Relevant Factors in the Processing of Parental Proteins of the HLA Class II Ligandome. J Proteome Res 2021. [PMID: 34937342 DOI: 10.1021/acs.jproteome.1c00662] [Reference Citation Analysis]
134 Wijayasinghe YS, Bhansali MP, Borkar MR, Chaturbhuj GU, Muntean BS, Viola RE, Bhansali PR. A Comprehensive Biological and Synthetic Perspective on 2-Deoxy-d-Glucose (2-DG), A Sweet Molecule with Therapeutic and Diagnostic Potentials. J Med Chem 2022;65:3706-28. [PMID: 35192360 DOI: 10.1021/acs.jmedchem.1c01737] [Reference Citation Analysis]
135 Perrin-Cocon L, Kundlacz C, Jacquemin C, Hanoulle X, Aublin-Gex A, Figl M, Manteca J, André P, Vidalain PO, Lotteau V, Diaz O. Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. Int J Mol Sci 2022;23:919. [PMID: 35055105 DOI: 10.3390/ijms23020919] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Lorente E, Marcilla M, de la Sota PG, Quijada-Freire A, Mir C, López D. Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry. Int J Mol Sci 2021;22:10503. [PMID: 34638844 DOI: 10.3390/ijms221910503] [Reference Citation Analysis]
137 Özilgen M, Yilmaz B. COVID-19 disease causes an energy supply deficit in a patient. Int J Energy Res 2020. [PMID: 33041464 DOI: 10.1002/er.5883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
138 Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinder progress of ostreid herpesvirus (OsHV-1) and promote survival. J Exp Biol 2020;223:jeb226233. [PMID: 32816959 DOI: 10.1242/jeb.226233] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
139 Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021;12:278-85. [PMID: 34719219 DOI: 10.24171/j.phrp.2021.0153] [Reference Citation Analysis]
140 Seggelke SA, Ingram CC, Crawley S, Low Wang CC. Insulin Resistance in a Hospitalized COVID-19 Patient: A Case Review. Clin Diabetes 2021;39:228-32. [PMID: 33986579 DOI: 10.2337/cd20-0036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
141 Khanal S, Schank M, El Gazzar M, Moorman JP, Yao ZQ. HIV-1 Latency and Viral Reservoirs: Existing Reversal Approaches and Potential Technologies, Targets, and Pathways Involved in HIV Latency Studies. Cells 2021;10:475. [PMID: 33672138 DOI: 10.3390/cells10020475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
142 Battaglia DM, Sanchez-pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022;13:859866. [DOI: 10.3389/fmicb.2022.859866] [Reference Citation Analysis]
143 Zhou W, Song D, Chen H, Tang Q, Yu Q, Huo S, Liu X, Chen K, Zhu F. Identification of key metabolic pathways reprogrammed by BmNPV in silkworm Bombyx mori. Journal of Invertebrate Pathology 2022. [DOI: 10.1016/j.jip.2022.107736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, Rouse BT. Host-Directed Antiviral Therapy. Clin Microbiol Rev 2020;33:e00168-19. [PMID: 32404434 DOI: 10.1128/CMR.00168-19] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
145 [DOI: 10.1101/2020.07.06.20147082] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]