BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 2017;17:110. [PMID: 28196487 DOI: 10.1186/s12906-017-1620-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Manoraj A, Thevanesam V, Bandara BMR, Ekanayake A, Liyanapathirana V. Synergistic activity between Triphala and selected antibiotics against drug resistant clinical isolates. BMC Complement Altern Med 2019;19:199. [PMID: 31375093 DOI: 10.1186/s12906-019-2618-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
2 Jantakee K, Prangkio P, Panya A, Tragoolpua Y. Anti-Herpes Simplex Virus Efficacy of Silk Cocoon, Silkworm Pupa and Non-Sericin Extracts. Antibiotics (Basel) 2021;10:1553. [PMID: 34943765 DOI: 10.3390/antibiotics10121553] [Reference Citation Analysis]
3 Andarkhor P, Sadeghi A, Khodadoost M, Kamalinejad M, Gachkar L, Abdi S, Zargaran A. Effects of Terminalia chebula Retz. in treatment of hemorrhoids: A double – blind randomized placebo – controlled clinical trial. European Journal of Integrative Medicine 2019;30:100935. [DOI: 10.1016/j.eujim.2019.100935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Thomas E, Stewart LE, Darley BA, Pham AM, Esteban I, Panda SS. Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates. Molecules 2021;26:6197. [PMID: 34684782 DOI: 10.3390/molecules26206197] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Garber A, Barnard L, Pickrell C. Review of Whole Plant Extracts With Activity Against Herpes Simplex Viruses In Vitro and In Vivo. J Evid Based Integr Med 2021;26:2515690X20978394. [PMID: 33593082 DOI: 10.1177/2515690X20978394] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int J Mol Sci 2020;21:E5105. [PMID: 32707732 DOI: 10.3390/ijms21145105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
7 Yang L, Liu Y, Zhang W, Hua Y, Chen B, Wu Q, Chen D, Liu S, Li X. Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules 2021;26:4300. [PMID: 34299576 DOI: 10.3390/molecules26144300] [Reference Citation Analysis]
8 Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. Environ Sci Pollut Res Int 2021;28:55925-51. [PMID: 34491498 DOI: 10.1007/s11356-021-16280-5] [Reference Citation Analysis]
9 Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research 2020;34:742-68. [DOI: 10.1002/ptr.6575] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
10 Treml J, Gazdová M, Šmejkal K, Šudomová M, Kubatka P, Hassan STS. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses 2020;12:E154. [PMID: 32013134 DOI: 10.3390/v12020154] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
11 Ahmad S, Zahiruddin S, Parveen B, Basist P, Parveen A, Gaurav, Parveen R, Ahmad M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19-Preclinical and Clinical Research. Front Pharmacol 2020;11:578970. [PMID: 33737875 DOI: 10.3389/fphar.2020.578970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Meenakumari R, Thangaraj K, Sundaram A, Sundaram MM, Shanmugapriya P, Mariappan A, George M, Suba V, Rajalakshmi E, Sendhilkumar M. Clinical outcomes among COVID-19 patients managed with modern and traditional Siddha medicine -A retrospective cohort study, Chennai, Tamil Nadu, India, 2020. J Ayurveda Integr Med 2021. [PMID: 34188417 DOI: 10.1016/j.jaim.2021.06.010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Ma N, Shen M, Chen T, Liu Y, Mao Y, Chen L, Xiong H, Hou W, Liu D, Yang Z. Assessment of a new arbidol derivative against herpes simplex virus II in human cervical epithelial cells and in BALB/c mice. Biomed Pharmacother 2019;118:109359. [PMID: 31545243 DOI: 10.1016/j.biopha.2019.109359] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
14 Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. Plants (Basel) 2020;9:E1244. [PMID: 32967179 DOI: 10.3390/plants9091244] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
15 Boff L, Schneider NFZ, Munkert J, Ottoni FM, Ramos GS, Kreis W, Braga FC, Alves RJ, de Pádua RM, Simões CMO. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020;165:1385-96. [PMID: 32346764 DOI: 10.1007/s00705-020-04562-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Vora J, Athar M, Sinha S, Jha PC, Shrivastava N. Binding Insight of Anti-HIV Phytocompounds with Prime Targets of HIV: A Molecular Dynamics Simulation Analysis. Curr HIV Res 2020;18:132-41. [PMID: 31995010 DOI: 10.2174/1570162X18666200129112509] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Li P, Du R, Wang Y, Hou X, Wang L, Zhao X, Zhan P, Liu X, Rong L, Cui Q. Identification of Chebulinic Acid and Chebulagic Acid as Novel Influenza Viral Neuraminidase Inhibitors. Front Microbiol 2020;11:182. [PMID: 32256457 DOI: 10.3389/fmicb.2020.00182] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
18 Heiat M, Hashemi-Aghdam MR, Heiat F, Rastegar Shariat Panahi M, Aghamollaei H, Moosazadeh Moghaddam M, Sathyapalan T, Ranjbar R, Sahebkar A. Integrative role of traditional and modern technologies to combat COVID-19. Expert Rev Anti Infect Ther 2021;19:23-33. [PMID: 32703036 DOI: 10.1080/14787210.2020.1799784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 S. V, S. N, P. R, S. M. Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agriculture, Ecosystems & Environment 2018;267:42-51. [DOI: 10.1016/j.agee.2018.08.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Khan T, Khan MA, Mashwani ZU, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal Agric Biotechnol 2021;31:101890. [PMID: 33520034 DOI: 10.1016/j.bcab.2020.101890] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
21 Munawar TM, Surya Prakash DV, Vangalapati M. Development of response surface methodology for optimization of parameters and quantitative analysis of chebulinic acid from composition of medicinal herbs by HPLC. Saudi J Biol Sci 2019;26:1809-14. [PMID: 31762663 DOI: 10.1016/j.sjbs.2018.02.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Mishra NN, Kesharwani A, Agarwal A, Polachira SK, Nair R, Gupta SK. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses 2018;10:E580. [PMID: 30352961 DOI: 10.3390/v10110580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
23 Duan Q, Liu T, Yuan P, Huang C, Shao Q, Xu L, Sun J, Huang G, Chen Z. Antiviral effect of Chinese herbal prescription JieZe-1 on adhesion and penetration of VK2/E6E7 with herpes simplex viruses type 2. J Ethnopharmacol 2020;249:112405. [PMID: 31743766 DOI: 10.1016/j.jep.2019.112405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
24 Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ. The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review. Nat Prod Bioprospect 2019;9:357-92. [PMID: 31696441 DOI: 10.1007/s13659-019-00222-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
25 Nigam M, Mishra AP, Adhikari-Devkota A, Dirar AI, Hassan MM, Adhikari A, Belwal T, Devkota HP. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 2020;34:2518-33. [PMID: 32307775 DOI: 10.1002/ptr.6702] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
26 Orłowski P, Kowalczyk A, Tomaszewska E, Ranoszek-Soliwoda K, Węgrzyn A, Grzesiak J, Celichowski G, Grobelny J, Eriksson K, Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018;10:E524. [PMID: 30261662 DOI: 10.3390/v10100524] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 10.5] [Reference Citation Analysis]
27 Kowalczyk M, Golonko A, Świsłocka R, Kalinowska M, Parcheta M, Swiergiel A, Lewandowski W. Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives. Front Pharmacol 2021;12:709104. [PMID: 34393787 DOI: 10.3389/fphar.2021.709104] [Reference Citation Analysis]
28 van de Sand L, Bormann M, Schmitz Y, Heilingloh CS, Witzke O, Krawczyk A. Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses 2021;13:1386. [PMID: 34372592 DOI: 10.3390/v13071386] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Duncan MC, Onguéné PA, Kihara I, Nebangwa DN, Naidu ME, Williams DE, Balgi AD, Andrae-Marobela K, Roberge M, Andersen RJ, Niikura M, Ntie-Kang F, Tietjen I. Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules 2020;25:E2903. [PMID: 32599753 DOI: 10.3390/molecules25122903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wang M, Li Y, Hu X. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. BMC Complement Altern Med 2018;18:342. [PMID: 30587184 DOI: 10.1186/s12906-018-2412-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
31 Upadhyay S, Tripathi PK, Singh M, Raghavendhar S, Bhardwaj M, Patel AK. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res 2020;34:3411-9. [PMID: 32748969 DOI: 10.1002/ptr.6802] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
32 Mondal P, Natesh J, Abdul Salam AA, Thiyagarajan S, Meeran SM. Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation. J Biomol Struct Dyn 2020;:1-18. [PMID: 33150860 DOI: 10.1080/07391102.2020.1842246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]