BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 2008;111:4690-9. [PMID: 18305219 DOI: 10.1182/blood-2007-09-112904] [Cited by in Crossref: 174] [Cited by in F6Publishing: 177] [Article Influence: 13.4] [Reference Citation Analysis]
Number Citing Articles
1 Sootichote R, Thuwajit P, Singsuksawat E, Warnnissorn M, Yenchitsomanus PT, Ithimakin S, Chantharasamee J, Thuwajit C. Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 2018;18:231. [PMID: 29486738 DOI: 10.1186/s12885-018-4155-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
2 Bulatov E, Ciulli A. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015;467:365-86. [PMID: 25886174 DOI: 10.1042/BJ20141450] [Cited by in Crossref: 117] [Cited by in F6Publishing: 64] [Article Influence: 19.5] [Reference Citation Analysis]
3 Michallet AS, Mondiere P, Taillardet M, Leverrier Y, Genestier L, Defrance T. Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PLoS One 2011;6:e25820. [PMID: 22028791 DOI: 10.1371/journal.pone.0025820] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
4 Kullmann MK, Grubbauer C, Goetsch K, Jäkel H, Podmirseg SR, Trockenbacher A, Ploner C, Cato AC, Weiss C, Kofler R, Hengst L. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle 2013;12:2625-35. [PMID: 23907123 DOI: 10.4161/cc.25622] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
5 Barré B, Perkins ND. The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell. 2010;38:524-538. [PMID: 20513428 DOI: 10.1016/j.molcel.2010.03.018] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
6 Rico-Bautista E, Wolf DA. Skipping cancer: small molecule inhibitors of SKP2-mediated p27 degradation. Chem Biol 2012;19:1497-8. [PMID: 23261592 DOI: 10.1016/j.chembiol.2012.12.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
7 Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021;10:1147. [PMID: 34068643 DOI: 10.3390/cells10051147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020;5:11. [PMID: 32296023 DOI: 10.1038/s41392-020-0107-0] [Cited by in Crossref: 54] [Cited by in F6Publishing: 63] [Article Influence: 54.0] [Reference Citation Analysis]
9 Shouksmith AE, Evans LE, Tweddle DA, Miller DC, Willmore E, Newell DR, Golding BT, Griffin RJ. Synthesis and Activity of Putative Small-Molecule Inhibitors of the F-Box Protein SKP2. Aust J Chem 2015;68:660. [DOI: 10.1071/ch14586] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fuster JJ, González JM, Edo MD, Viana R, Boya P, Cervera J, Verges M, Rivera J, Andrés V. Tumor suppressor p27(Kip1) undergoes endolysosomal degradation through its interaction with sorting nexin 6. FASEB J 2010;24:2998-3009. [PMID: 20228253 DOI: 10.1096/fj.09-138255] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
11 Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Bukawa H. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest. BMC Cancer 2012;12:321. [PMID: 22839099 DOI: 10.1186/1471-2407-12-321] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
12 Debald M, Schildberg FA, Linke A, Walgenbach K, Kuhn W, Hartmann G, Walgenbach-Brünagel G. Specific expression of k63-linked ubiquitination of calmodulin-like protein 5 in breast cancer of premenopausal patients. J Cancer Res Clin Oncol 2013;139:2125-32. [PMID: 24146193 DOI: 10.1007/s00432-013-1541-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
13 Li W, Dai Y, Shi B, Yue F, Zou J, Xu G, Jiang X, Wang F, Zhou X, Liu L. LRPPRC sustains Yap-P27-mediated cell ploidy and P62-HDAC6-mediated autophagy maturation and suppresses genome instability and hepatocellular carcinomas. Oncogene 2020;39:3879-92. [PMID: 32203162 DOI: 10.1038/s41388-020-1257-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Cheng X, Zhou Z, Xu G, Zhao J, Wu H, Long L, Wen H, Gu X, Wang Y. Dynamic Changes of Jab1 and p27kip1 Expression in Injured Rat Sciatic Nerve. J Mol Neurosci 2013;51:148-58. [DOI: 10.1007/s12031-013-9969-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
15 Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng C, Li M, Zhou X, Zhang S, Cao J. Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Sci Rep. 2015;5:9476. [PMID: 25820571 DOI: 10.1038/srep09476] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
16 Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018;101:80-93. [PMID: 29864543 DOI: 10.1016/j.biocel.2018.06.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 16.0] [Reference Citation Analysis]
17 Ni D, Liu N, Sheng C. Allosteric Modulators of Protein-Protein Interactions (PPIs). Adv Exp Med Biol 2019;1163:313-34. [PMID: 31707709 DOI: 10.1007/978-981-13-8719-7_13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Wei D, Morgan MA, Sun Y. Radiosensitization of Cancer Cells by Inactivation of Cullin-RING E3 Ubiquitin Ligases. Transl Oncol 2012;5:305-12. [PMID: 23066438 DOI: 10.1593/tlo.12229] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lough L, Sherman D, Ni E, Young LM, Hao B, Cardozo T. Chemical probes of Skp2-mediated p27 ubiquitylation and degradation. Medchemcomm 2018;9:1093-104. [PMID: 30108998 DOI: 10.1039/c8md00140e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett 2010;293:144-57. [PMID: 20153925 DOI: 10.1016/j.canlet.2010.01.015] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 6.0] [Reference Citation Analysis]
21 Huang X, Qian X, Cheng C, He S, Sun L, Ke Q, Zhang L, Pan X, He F, Wang Q, Meng J, Ni R, Shen A. Expression of Pirh2, a p27(Kip1) ubiquitin ligase, in hepatocellular carcinoma: correlation with p27(Kip1) and cell proliferation. Hum Pathol 2011;42:507-15. [PMID: 21236467 DOI: 10.1016/j.humpath.2010.04.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
22 Alexander A, Keyomarsi K. Exploiting Cell Cycle Pathways in Cancer Therapy: New (and Old) Targets and Potential Strategies. In: Kumar R, editor. Nuclear Signaling Pathways and Targeting Transcription in Cancer. New York: Springer; 2014. pp. 337-72. [DOI: 10.1007/978-1-4614-8039-6_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 2011;11:347-56. [PMID: 21247385 DOI: 10.2174/156800911794519734] [Cited by in Crossref: 96] [Cited by in F6Publishing: 87] [Article Influence: 9.6] [Reference Citation Analysis]
24 Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, Damoiseaux R, Hao R, Del Moral PM, Verma R, Li Y, Li C, Houk KN, Jung ME, Zheng N, Huang L, Deshaies RJ, Kaiser P, Huang J. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 2010;28:738-42. [PMID: 20581845 DOI: 10.1038/nbt.1645] [Cited by in Crossref: 106] [Cited by in F6Publishing: 104] [Article Influence: 9.6] [Reference Citation Analysis]
25 Skaar JR, Pagan JK, Pagano M. SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 2014;13:889-903. [PMID: 25394868 DOI: 10.1038/nrd4432] [Cited by in Crossref: 194] [Cited by in F6Publishing: 184] [Article Influence: 27.7] [Reference Citation Analysis]
26 Malek E, Abdel-Malek MA, Jagannathan S, Vad N, Karns R, Jegga AG, Broyl A, van Duin M, Sonneveld P, Cottini F, Anderson KC, Driscoll JJ. Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma. Leukemia 2017;31:645-53. [PMID: 27677741 DOI: 10.1038/leu.2016.258] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
27 Ye D, Li Z, Wei C. Genistein inhibits the S-phase kinase-associated protein 2 expression in breast cancer cells. Exp Ther Med 2018;15:1069-75. [PMID: 29434697 DOI: 10.3892/etm.2017.5489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
28 Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 2016;7:6521-37. [PMID: 26695547 DOI: 10.18632/oncotarget.6658] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 10.6] [Reference Citation Analysis]
29 Fang Y, Wang Y, Wang Y, Meng Y, Zhu J, Jin H, Li J, Zhang D, Yu Y, Wu XR, Huang C. A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition. Biochem J 2014;463:383-92. [PMID: 25121353 DOI: 10.1042/BJ20140103] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
30 Wang X, Bustos MA, Zhang X, Ramos RI, Tan C, Iida Y, Chang SC, Salomon MP, Tran K, Gentry R, Kravtsova-Ivantsiv Y, Kelly DF, Mills GB, Ciechanover A, Mao Y, Hoon DSB. Downregulation of the Ubiquitin-E3 Ligase RNF123 Promotes Upregulation of the NF-κB1 Target SerpinE1 in Aggressive Glioblastoma Tumors. Cancers (Basel) 2020;12:E1081. [PMID: 32349217 DOI: 10.3390/cancers12051081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
31 Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020;12:E1249. [PMID: 32429232 DOI: 10.3390/cancers12051249] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
32 Li W, Zou J, Yue F, Song K, Chen Q, McKeehan WL, Wang F, Xu G, Huang H, Yi J, Liu L. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell 2016;15:370-9. [PMID: 26750654 DOI: 10.1111/acel.12441] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
33 Wang ST, Ho HJ, Lin JT, Shieh JJ, Wu CY. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 2017;8:e2626. [PMID: 28230855 DOI: 10.1038/cddis.2016.472] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 15.0] [Reference Citation Analysis]
34 Wang G, Chan CH, Gao Y, Lin HK. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis. Chin J Cancer. 2012;31:169-177. [PMID: 22200179 DOI: 10.5732/cjc.011.10319] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
35 Shen M, Schmitt S, Buac D, Dou QP. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets. 2013;17:1091-1108. [PMID: 23822887 DOI: 10.1517/14728222.2013.815728] [Cited by in Crossref: 113] [Cited by in F6Publishing: 108] [Article Influence: 14.1] [Reference Citation Analysis]
36 Wu WK, Sung JJ, Wu YC, Li HT, Yu L, Li ZJ, Cho CH. Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells. Biochem Biophys Res Commun. 2009;382:79-84. [PMID: 19258012 DOI: 10.1016/j.bbrc.2009.02.140] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
37 Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J, Zhu L. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 2013;24:645-59. [PMID: 24229711 DOI: 10.1016/j.ccr.2013.09.021] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 7.4] [Reference Citation Analysis]
38 Cao M, Zhou Y, Gao A, Cao J, Gao L, Sheng L, Xu L, Su M, Cao X, Han M, Wang M, Li J. Curcusone D, a novel ubiquitin–proteasome pathway inhibitor via ROS-induced DUB inhibition, is synergistic with bortezomib against multiple myeloma cell growth. Biochimica et Biophysica Acta (BBA) - General Subjects 2014;1840:2004-13. [DOI: 10.1016/j.bbagen.2014.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
39 Meyer SE, Muench DE, Rogers AM, Newkold TJ, Orr E, O'Brien E, Perentesis JP, Doench JG, Lal A, Morris PJ, Thomas CJ, Lieberman J, McGlinn E, Aronow BJ, Salomonis N, Grimes HL. miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential. J Exp Med 2018;215:2115-36. [PMID: 29997117 DOI: 10.1084/jem.20171312] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
40 Nencioni A, Cea M, Montecucco F, Longo VD, Patrone F, Carella AM, Holyoake TL, Helgason GV. Autophagy in blood cancers: biological role and therapeutic implications. Haematologica 2013;98:1335-43. [PMID: 24006406 DOI: 10.3324/haematol.2012.079061] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
41 Gummlich L, Rabien A, Jung K, Dubiel W. Deregulation of the COP9 signalosome–cullin-RING ubiquitin-ligase pathway: Mechanisms and roles in urological cancers. The International Journal of Biochemistry & Cell Biology 2013;45:1327-37. [DOI: 10.1016/j.biocel.2013.03.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zhu L, Lu Z, Zhao H. Antitumor mechanisms when pRb and p53 are genetically inactivated. Oncogene 2015;34:4547-57. [PMID: 25486431 DOI: 10.1038/onc.2014.399] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
43 Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021;285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Reference Citation Analysis]
44 Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 2011;145:1075-87. [PMID: 21683433 DOI: 10.1016/j.cell.2011.05.039] [Cited by in Crossref: 158] [Cited by in F6Publishing: 146] [Article Influence: 15.8] [Reference Citation Analysis]
45 Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014;33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
46 Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013;154:556-68. [PMID: 23911321 DOI: 10.1016/j.cell.2013.06.048] [Cited by in Crossref: 244] [Cited by in F6Publishing: 225] [Article Influence: 30.5] [Reference Citation Analysis]
47 Wallace AS, Supnick HT, Bunaciu RP, Yen A. RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells. Oncotarget 2016;7:46401-18. [PMID: 27331409 DOI: 10.18632/oncotarget.10136] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
48 Kumari N, Lee KK, Jha S. Targeting the Ubiquitin Proteasome System in Cancer. In: Shahzad HN, editor. Neoplasm. InTech; 2018. [DOI: 10.5772/intechopen.76705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Chang T, Huang Y, Ou Y. The role of ginsenosides in inhibiting ubiquitin activating enzyme (E1) activity. Journal of Functional Foods 2014;7:462-70. [DOI: 10.1016/j.jff.2014.01.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
50 Luo J, Zhou Y, Wang B, Li Q, Chen Y, Lan H. Immunohistochemically detected expression of Skp2, p27 kip1, and p-p27 (Thr187) in patients with cholangiocarcinoma. Tumour Biol 2015;36:5119-25. [PMID: 25663461 DOI: 10.1007/s13277-015-3164-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 2016;379:245-52. [PMID: 26193663 DOI: 10.1016/j.canlet.2015.06.023] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
52 Li H, Deng J, Chen H, Chen T, Cao X, Hou H, Huan W, Zhang G, Yu B, Wang Y. Dynamic changes of PIRH2 and p27kip1 expression in injured rat sciatic nerve. Neurol Sci 2012;33:749-57. [PMID: 21959983 DOI: 10.1007/s10072-011-0809-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
53 Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer 2021;7:982-94. [PMID: 34481764 DOI: 10.1016/j.trecan.2021.08.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Aubry A, Yu T, Bremner R. Preclinical studies reveal MLN4924 is a promising new retinoblastoma therapy. Cell Death Discov 2020;6:2. [PMID: 32123578 DOI: 10.1038/s41420-020-0237-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
55 Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics 2020;10:4150-67. [PMID: 32226545 DOI: 10.7150/thno.42735] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Huang J, Tsvetkov L, Qu K, Daniel-issakani S, Payan DG. Approaches to Discovering Drugs that Regulate E3 Ubiquitin Ligases. In: Jentsch S, Haendler B, editors. The Ubiquitin System in Health and Disease. Berlin: Springer Berlin Heidelberg; 2009. pp. 153-70. [DOI: 10.1007/2789_2008_107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
57 Sistrunk C, Kim SH, Wang X, Lee SH, Kim Y, Macias E, Rodriguez-Puebla ML. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. Am J Pathol 2013;182:1854-64. [PMID: 23474082 DOI: 10.1016/j.ajpath.2013.01.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
58 Deng W, Ma L, Zhang Y, Zhou J, Wang Y, Liu Z, Xue Y. THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy 2018;14:296-310. [PMID: 29157087 DOI: 10.1080/15548627.2017.1402990] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
59 Song Y, Lin M, Liu Y, Wang ZW, Zhu X. Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019;10:124. [PMID: 30999935 DOI: 10.1186/s13287-019-1222-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
60 Zhou H, Luo W, Zeng C, Zhang Y, Wang L, Yao W, Nie C. PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines. Oncotarget 2017;8:80770-89. [PMID: 29113343 DOI: 10.18632/oncotarget.20415] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
61 Di Costanzo A, Del Gaudio N, Conte L, Altucci L. The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020;12:E1898. [PMID: 32674429 DOI: 10.3390/cancers12071898] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2014;588:356-67. [PMID: 24239534 DOI: 10.1016/j.febslet.2013.11.003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 6.4] [Reference Citation Analysis]
63 Liou JS, Wu YC, Yen WY, Tang YS, Kakadiya RB, Su TL, Yih LH. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest. Toxicol Appl Pharmacol 2014;278:249-58. [PMID: 24823293 DOI: 10.1016/j.taap.2014.04.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
64 Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol 2012;19:1515-24. [PMID: 23261596 DOI: 10.1016/j.chembiol.2012.09.015] [Cited by in Crossref: 138] [Cited by in F6Publishing: 133] [Article Influence: 17.3] [Reference Citation Analysis]
65 Bulatov E, Valiullina A, Sayarova R, Rizvanov A. Promising new therapeutic targets for regulation of inflammation and immunity: RING-type E3 ubiquitin ligases. Immunol Lett 2018;202:44-51. [PMID: 30099009 DOI: 10.1016/j.imlet.2018.08.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
66 Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020;40:1920-49. [PMID: 32391596 DOI: 10.1002/med.21675] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
67 Singh R, Sran A, Carroll DC, Huang J, Tsvetkov L, Zhou X, Sheung J, McLaughlin J, Issakani SD, Payan DG, Shaw SJ. Developing structure-activity relationships from an HTS hit for inhibition of the Cks1-Skp2 protein-protein interaction. Bioorg Med Chem Lett 2015;25:5199-202. [PMID: 26463131 DOI: 10.1016/j.bmcl.2015.09.067] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
68 Tomar D, Singh R, Singh AK, Pandya CD, Singh R. TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 2012;1823:316-26. [PMID: 22178386 DOI: 10.1016/j.bbamcr.2011.11.015] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 5.7] [Reference Citation Analysis]
69 Ungermannova D, Parker SJ, Nasveschuk CG, Chapnick DA, Phillips AJ, Kuchta RD, Liu X. Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. J Biomol Screen 2012;17:421-34. [PMID: 22274912 DOI: 10.1177/1087057111433843] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
70 McCue HV, Chen X, Barclay JW, Morgan A, Burgoyne RD. Expression profile of a Caenorhabditis elegans model of adult neuronal ceroid lipofuscinosis reveals down regulation of ubiquitin E3 ligase components. Sci Rep 2015;5:14392. [PMID: 26395859 DOI: 10.1038/srep14392] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
71 Aronson LI, Davies FE. DangER: protein ovERload. Targeting protein degradation to treat myeloma. Haematologica. 2012;97:1119-1130. [PMID: 22580998 DOI: 10.3324/haematol.2012.064923] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
72 Liao Y, Liu N, Xia X, Guo Z, Li Y, Jiang L, Zhou R, Tang D, Huang H, Liu J. USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discov 2019;5:24. [PMID: 31044085 DOI: 10.1038/s41421-019-0092-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
73 Crawford LJ, Irvine AE. Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev. 2013;27:297-304. [PMID: 24183816 DOI: 10.1016/j.blre.2013.10.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 5.6] [Reference Citation Analysis]
74 Gorelik M, Sidhu SS. Specific targeting of the deubiquitinase and E3 ligase families with engineered ubiquitin variants. Bioeng Transl Med 2017;2:31-42. [PMID: 28580429 DOI: 10.1002/btm2.10044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
75 Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2016;91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
76 Wu Q, Zhou X, Li P, Ding M, You S, Xu Z, Ye J, Chen X, Tan M, Wang J, Wang W, Qiu J. ROC1 promotes the malignant progression of bladder cancer by regulating p-IκBα/NF-κB signaling. J Exp Clin Cancer Res 2021;40:158. [PMID: 33962660 DOI: 10.1186/s13046-021-01935-5] [Reference Citation Analysis]
77 Cohen P, Tcherpakov M. Will the Ubiquitin System Furnish as Many Drug Targets as Protein Kinases? Cell 2010;143:686-93. [DOI: 10.1016/j.cell.2010.11.016] [Cited by in Crossref: 213] [Cited by in F6Publishing: 201] [Article Influence: 19.4] [Reference Citation Analysis]
78 LeBlanc N, Mallette E, Zhang W. Targeted modulation of E3 ligases using engineered ubiquitin variants. FEBS J 2021;288:2143-65. [PMID: 32867007 DOI: 10.1111/febs.15536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
79 Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2016;36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
80 Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 Ligases for Cancer Therapies. Adv Exp Med Biol 2020;1217:123-46. [PMID: 31898226 DOI: 10.1007/978-981-15-1025-0_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
81 Zhao Y, Sun Y. Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application. Neoplasia 2012;14:360-7. [PMID: 22745582 DOI: 10.1593/neo.12532] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
82 Edelmann MJ, Nicholson B, Kessler BM. Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Expert Rev Mol Med 2011;13:e35. [PMID: 22088887 DOI: 10.1017/S1462399411002031] [Cited by in Crossref: 74] [Cited by in F6Publishing: 49] [Article Influence: 7.4] [Reference Citation Analysis]
83 Desiderio S. Temporal and spatial regulatory functions of the V(D)J recombinase. Semin Immunol 2010;22:362-9. [PMID: 21036059 DOI: 10.1016/j.smim.2010.09.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
84 Wu WK, Coffelt SB, Cho CH, Wang XJ, Lee CW, Chan FK, Yu J, Sung JJ. The autophagic paradox in cancer therapy. Oncogene. 2012;31:939-953. [PMID: 21765470 DOI: 10.1038/onc.2011.295] [Cited by in Crossref: 146] [Cited by in F6Publishing: 147] [Article Influence: 14.6] [Reference Citation Analysis]
85 Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017;10:151. [PMID: 28579943 DOI: 10.3389/fnmol.2017.00151] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
86 Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020;21:E3018. [PMID: 32344731 DOI: 10.3390/ijms21083018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
87 Temblador A, Topalis D, Andrei G, Snoeck R. CRISPR/Cas9 Editing of the Polyomavirus Tumor Antigens Inhibits Merkel Cell Carcinoma Growth In Vitro. Cancers (Basel) 2019;11:E1260. [PMID: 31466237 DOI: 10.3390/cancers11091260] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
88 Shin MH, Lee KJ, Lim H. DNA-Encoded Combinatorial Library of Macrocyclic Peptoids. Bioconjugate Chem 2019;30:2931-8. [DOI: 10.1021/acs.bioconjchem.9b00628] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
89 Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, Zannas AS, Herrmann A, Holsboer F, Brack-Werner R, Boshart M, Müller-Myhsok B, Drosten C, Müller MA, Rein T. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun 2019;10:5770. [PMID: 31852899 DOI: 10.1038/s41467-019-13659-4] [Cited by in Crossref: 149] [Cited by in F6Publishing: 146] [Article Influence: 74.5] [Reference Citation Analysis]
90 Sun XX, Li Y, Sears RC, Dai MS. Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Front Oncol 2021;11:679445. [PMID: 34178666 DOI: 10.3389/fonc.2021.679445] [Reference Citation Analysis]
91 Agarwal A, Mackenzie RJ, Besson A, Jeng S, Carey A, LaTocha DH, Fleischman AG, Duquesnes N, Eide CA, Vasudevan KB, Loriaux MM, Firpo E, Cortes JE, McWeeney S, O'Hare T, Roberts JM, Druker BJ, Deininger MW. BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein. Blood 2014;124:3260-73. [PMID: 25293778 DOI: 10.1182/blood-2013-04-497040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
92 Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020;12:E1579. [PMID: 32549302 DOI: 10.3390/cancers12061579] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 18.0] [Reference Citation Analysis]
93 Cardote TAF, Ciulli A. Structure-Guided Design of Peptides as Tools to Probe the Protein-Protein Interaction between Cullin-2 and Elongin BC Substrate Adaptor in Cullin RING E3 Ubiquitin Ligases. ChemMedChem 2017;12:1491-6. [PMID: 28776949 DOI: 10.1002/cmdc.201700359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
94 Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020;49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
95 Eisenberg-Lerner A, Ciechanover A, Merbl Y. Post-translational modification profiling - A novel tool for mapping the protein modification landscape in cancer. Exp Biol Med (Maywood) 2016;241:1475-82. [PMID: 27229346 DOI: 10.1177/1535370216651732] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
96 Chen T, Liu L, Zou Y, Hu X, Zhang W, Zhou T, Luo X, Fu W, Xu J. Nobiletin downregulates the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and shows synergistic effects with palbociclib on renal cell carcinoma. Cancer Biol Med 2021;18:227-44. [PMID: 33628597 DOI: 10.20892/j.issn.2095-3941.2020.0186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
97 Zhou L, Yu X, Li M, Gong G, Liu W, Li T, Zuo H, Li W, Gao F, Liu H. Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2020;51:102570. [PMID: 31806563 DOI: 10.1016/j.ebiom.2019.11.031] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
98 Eichner R, Fernández-Sáiz V, Targosz BS, Bassermann F. Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. Int Rev Cell Mol Biol 2019;343:219-97. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
99 Lu G, Wang L, Zhou J, Liu W, Shen HM. A Destiny for Degradation: Interplay between Cullin-RING E3 Ligases and Autophagy. Trends Cell Biol 2021;31:432-44. [PMID: 33573849 DOI: 10.1016/j.tcb.2021.01.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
100 Hollstein PE, Cichowski K. Identifying the Ubiquitin Ligase complex that regulates the NF1 tumor suppressor and Ras. Cancer Discov 2013;3:880-93. [PMID: 23661552 DOI: 10.1158/2159-8290.CD-13-0146] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
101 Oh M, Lee JH, Moon H, Hyun YJ, Lim HS. A Chemical Inhibitor of the Skp2/p300 Interaction that Promotes p53-Mediated Apoptosis. Angew Chem Int Ed Engl 2016;55:602-6. [PMID: 26593157 DOI: 10.1002/anie.201508716] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 5.7] [Reference Citation Analysis]
102 Wang L, Ye X, Cai X, Su J, Ma R, Yin X, Zhou X, Li H, Wang Z. Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells. Oncotarget 2015;6:18027-37. [PMID: 26046466 DOI: 10.18632/oncotarget.4090] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 8.6] [Reference Citation Analysis]
103 Djavaheri-Mergny M, Giuriato S, Tschan MP, Humbert M. Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells. 2019;8. [PMID: 30704144 DOI: 10.3390/cells8020103] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
104 Škrott Z, Cvek B. Linking the activity of bortezomib in multiple myeloma and autoimmune diseases. Crit Rev Oncol Hematol 2014;92:61-70. [PMID: 24890785 DOI: 10.1016/j.critrevonc.2014.05.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
105 Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, Wei W. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta. 2015;1855:50-60. [PMID: 25481052 DOI: 10.1016/j.bbcan.2014.11.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 72] [Article Influence: 5.9] [Reference Citation Analysis]
106 Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev 2015;24:138-59. [PMID: 26247845 DOI: 10.1016/j.arr.2015.07.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
107 Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021;58:3252-69. [PMID: 33665742 DOI: 10.1007/s12035-021-02339-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
108 Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017;36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 12.5] [Reference Citation Analysis]
109 Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Progress in Neurobiology 2017;159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
110 Yin X, Zhang Y, Su J, Hou Y, Wang L, Ye X, Zhao Z, Zhou X, Li Y, Wang Z. Rottlerin exerts its anti-tumor activity through inhibition of Skp2 in breast cancer cells. Oncotarget 2016;7:66512-24. [PMID: 27582552 DOI: 10.18632/oncotarget.11614] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
111 Das CM, Taylor P, Gireud M, Singh A, Lee D, Fuller G, Ji L, Fangusaro J, Rajaram V, Goldman S, Eberhart C, Gopalakrishnan V. The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 2013;32:1691-701. [PMID: 22665064 DOI: 10.1038/onc.2012.182] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
112 Liu YQ, Wang XL, Cheng X, Lu YZ, Wang GZ, Li XC, Zhang J, Wen ZS, Huang ZL, Gao QL, Yang LN, Cheng YX, Tao SC, Liu J, Zhou GB. Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 2015;6:34953-67. [PMID: 26474281 DOI: 10.18632/oncotarget.5547] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
113 Vélez C, Zayas B, Kumar A. Biological Activity of N-Hydroxyethyl-4-aza-2,3-didehydropodophyllotoxin Derivatives upon Colorectal Adenocarcinoma Cells. Open J Med Chem 2014;4:1-11. [PMID: 25554737 DOI: 10.4236/ojmc.2014.41001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
114 Zhang L, Rastgoo N, Wu J, Zhang M, Pourabdollah M, Zacksenhaus E, Chen Y, Chang H. MARCKS inhibition cooperates with autophagy antagonists to potentiate the effect of standard therapy against drug-resistant multiple myeloma. Cancer Lett 2020;480:29-38. [PMID: 32220540 DOI: 10.1016/j.canlet.2020.03.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
115 Wu L, Wang G, Wei J, Huang N, Zhang S, Yang F, Li M, Zhou G, Wang L. Matrine derivative YF-18 inhibits lung cancer cell proliferation and migration through down-regulating Skp2. Oncotarget 2017;8:11729-38. [PMID: 28036296 DOI: 10.18632/oncotarget.14329] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
116 He DH, Chen YF, Zhou YL, Zhang SB, Hong M, Yu X, Wei SF, Fan XZ, Li SY, Wang Q, Lu Y, Liu YQ. Phytochemical library screening reveals betulinic acid as a novel Skp2-SCF E3 ligase inhibitor in non-small cell lung cancer. Cancer Sci 2021;112:3218-32. [PMID: 34080260 DOI: 10.1111/cas.15005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
117 Zhu H, Wang T, Xin Z, Zhan Y, Gu G, Li X, Wang X, Yang S, Liu C. An oral second-generation proteasome inhibitor oprozomib significantly inhibits lung cancer in a p53 independent manner in vitro. Acta Biochimica et Biophysica Sinica 2019;51:1034-40. [DOI: 10.1093/abbs/gmz093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
118 Feng S, Wang Y, Zhang R, Yang G, Liang Z, Wang Z, Zhang G. Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. Onco Targets Ther 2017;10:2377-88. [PMID: 28496336 DOI: 10.2147/OTT.S130055] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
119 Jia W, He MX, McLeod IX, Guo J, Ji D, He YW. Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy 2015;11:2335-45. [PMID: 26569626 DOI: 10.1080/15548627.2015.1110666] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 10.4] [Reference Citation Analysis]
120 Zismanov V, Lishner M, Tartakover-Matalon S, Radnay J, Shapiro H, Drucker L. Tetraspanin-induced death of myeloma cell lines is autophagic and involves increased UPR signalling. Br J Cancer 2009;101:1402-9. [PMID: 19755988 DOI: 10.1038/sj.bjc.6605291] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
121 Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, Paudel KR, Hansbro PM, Kumar Singh S, Ruokolainen J, Kesari KK, Dua K, Jha NK. The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced crosstalk modulating oncogenic transformation in human tissues. Cancer Rep (Hoboken) 2021;4:e1369. [PMID: 33822486 DOI: 10.1002/cnr2.1369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
122 Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta 2016;1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 48] [Article Influence: 5.0] [Reference Citation Analysis]
123 LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021;13:3079. [PMID: 34203106 DOI: 10.3390/cancers13123079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
124 Blees JS, Bokesch HR, Rübsamen D, Schulz K, Milke L, Bajer MM, Gustafson KR, Henrich CJ, McMahon JB, Colburn NH, Schmid T, Brüne B. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1. PLoS One 2012;7:e46567. [PMID: 23056346 DOI: 10.1371/journal.pone.0046567] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
125 Fagan-Solis KD, Pentecost BT, Gozgit JM, Bentley BA, Marconi SM, Otis CN, Anderton DL, Schneider SS, Arcaro KF. SKP2 overexpression is associated with increased serine 10 phosphorylation of p27 (pSer10p27) in triple-negative breast cancer. J Cell Physiol 2014;229:1160-9. [PMID: 24443386 DOI: 10.1002/jcp.24545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
126 Wang F, Liao Y, Zhang M, Zhu Y, Wang W, Cai H, Liang J, Song F, Hou C, Huang S, Zhang Y, Wang C, Hou J. N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene 2021;40:3885-98. [PMID: 33972683 DOI: 10.1038/s41388-021-01820-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
127 Bochis OV, Fetica B, Vlad C, Achimas-Cadariu P, Irimie A. The Importance of Ubiquitin E3 Ligases, SCF and APC/C, in Human Cancers. Clujul Med 2015;88:9-14. [PMID: 26528041 DOI: 10.15386/cjmed-377] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
128 Gong L, Cui D, Xiong X, Zhao Y. Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. In: Sun Y, Wei W, Jin J, editors. Cullin-RING Ligases and Protein Neddylation. Singapore: Springer; 2020. pp. 317-47. [DOI: 10.1007/978-981-15-1025-0_19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
129 Bulatov E, Zagidullin A, Valiullina A, Sayarova R, Rizvanov A. Small Molecule Modulators of RING-Type E3 Ligases: MDM and Cullin Families as Targets. Front Pharmacol 2018;9:450. [PMID: 29867461 DOI: 10.3389/fphar.2018.00450] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
130 Bianchi G, Ghobrial IM. Molecular mechanisms of effectiveness of novel therapies in multiple myeloma. Leukemia & Lymphoma 2012;54:229-41. [DOI: 10.3109/10428194.2012.706287] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
131 Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021;22:1784. [PMID: 33670113 DOI: 10.3390/ijms22041784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Oh M, Lee JH, Moon H, Hyun Y, Lim H. A Chemical Inhibitor of the Skp2/p300 Interaction that Promotes p53-Mediated Apoptosis. Angew Chem 2016;128:612-6. [DOI: 10.1002/ange.201508716] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
133 Wu X, Shi W, Zhao W, Shao B, Yuan Q, Li C, Zhang S, Sun B, Wu Q, Chen J. Changes in Pirh2 and p27kip1 Expression Following Traumatic Brain Injury in Adult Rats. J Mol Neurosci 2012;46:184-91. [DOI: 10.1007/s12031-011-9572-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
134 Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019;99:1047-78. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Cited by in Crossref: 134] [Cited by in F6Publishing: 131] [Article Influence: 67.0] [Reference Citation Analysis]
135 Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2020;10:621294. [PMID: 33643919 DOI: 10.3389/fonc.2020.621294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
136 Filippi-Chiela EC, Villodre ES, Zamin LL, Lenz G. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One. 2011;6:e20849. [PMID: 21695150 DOI: 10.1371/journal.pone.0020849] [Cited by in Crossref: 106] [Cited by in F6Publishing: 109] [Article Influence: 10.6] [Reference Citation Analysis]
137 Yang WH, Lin CC, Wu J, Chao PY, Chen K, Chen PH, Chi JT. The Hippo Pathway Effector YAP Promotes Ferroptosis via the E3 Ligase SKP2. Mol Cancer Res 2021;19:1005-14. [PMID: 33707306 DOI: 10.1158/1541-7786.MCR-20-0534] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
138 Li X, Elmira E, Rohondia S, Wang J, Liu J, Dou QP. A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat 2018;28:919-37. [PMID: 30449221 DOI: 10.1080/13543776.2018.1549229] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
139 Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 2013;8:e59070. [PMID: 23554972 DOI: 10.1371/journal.pone.0059070] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
140 Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H. Identification of small molecule inhibitors of p27(Kip1) ubiquitination by high-throughput screening. Cancer Sci 2013;104:1461-7. [PMID: 23910095 DOI: 10.1111/cas.12246] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
141 Yang Q, Huang J, Wu Q, Cai Y, Zhu L, Lu X, Chen S, Chen C, Wang Z. Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells. Br J Cancer 2014;110:1958-67. [PMID: 24642627 DOI: 10.1038/bjc.2014.136] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 8.4] [Reference Citation Analysis]
142 Song H, Fu Y, Wan D, Xia W, Lyu F, Liu L, Shen L. Mytoxin B and Myrothecine A Induce Apoptosis in Human Hepatocarcinoma Cell Line SMMC-7721 via PI3K/Akt Signaling Pathway. Molecules 2019;24:E2291. [PMID: 31226773 DOI: 10.3390/molecules24122291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
143 Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Seminars in Cancer Biology 2016;36:18-32. [DOI: 10.1016/j.semcancer.2015.09.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
144 Li CJ, Li RW, Elsasser TH, Kahl S. Lipopolysaccharide-induced early response genes in bovine peripheral blood mononuclear cells implicate GLG1/E-selectin as a key ligand-receptor interaction. Funct Integr Genomics 2009;9:335-49. [PMID: 19263101 DOI: 10.1007/s10142-009-0116-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
145 Yang Y, Chen Y, Saha MN, Chen J, Evans K, Qiu L, Reece D, Chen GA, Chang H. Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia 2015;29:715-26. [PMID: 25179733 DOI: 10.1038/leu.2014.255] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
146 Ding L, Li R, Sun R, Zhou Y, Zhou Y, Han X, Cui Y, Wang W, Lv Q, Bai J. S-phase kinase-associated protein 2 promotes cell growth and motility in osteosarcoma cells. Cell Cycle 2017;16:1547-55. [PMID: 28771075 DOI: 10.1080/15384101.2017.1346760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
147 Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. Biochemistry (Mosc). 2009;74:1411-1442. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
148 Hussain M, Lu Y, Liu YQ, Su K, Zhang J, Liu J, Zhou GB. Skp1: Implications in cancer and SCF-oriented anti-cancer drug discovery. Pharmacol Res 2016;111:34-42. [PMID: 27238229 DOI: 10.1016/j.phrs.2016.05.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
149 Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021;11:200390. [PMID: 33906413 DOI: 10.1098/rsob.200390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Sharma SS, Pledger WJ. The non-canonical functions of p27(Kip1) in normal and tumor biology. Cell Cycle 2016;15:1189-201. [PMID: 27082696 DOI: 10.1080/15384101.2016.1157238] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 8.8] [Reference Citation Analysis]
151 Titus AS, V H, Kailasam S. Coordinated regulation of cell survival and cell cycle pathways by DDR2-dependent SRF transcription factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2020;318:H1538-58. [PMID: 32412792 DOI: 10.1152/ajpheart.00740.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
152 Gavenonis J, Sheneman BA, Siegert TR, Eshelman MR, Kritzer JA. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat Chem Biol 2014;10:716-22. [PMID: 25038791 DOI: 10.1038/nchembio.1580] [Cited by in Crossref: 120] [Cited by in F6Publishing: 107] [Article Influence: 17.1] [Reference Citation Analysis]
153 Fuster JJ, Fernández P, González-Navarro H, Silvestre C, Nabah YN, Andrés V. Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovasc Res 2010;86:254-64. [PMID: 19900964 DOI: 10.1093/cvr/cvp363] [Cited by in Crossref: 76] [Cited by in F6Publishing: 63] [Article Influence: 6.3] [Reference Citation Analysis]
154 Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 2013;40:97-106. [PMID: 23522382 DOI: 10.1016/j.jgg.2013.02.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
155 Xu J, Su Y, Xu A, Fan F, Mu S, Chen L, Chu Z, Zhang B, Huang H, Zhang J, Deng J, Ai L, Sun C, Hu Y. miR-221/222-Mediated Inhibition of Autophagy Promotes Dexamethasone Resistance in Multiple Myeloma. Mol Ther 2019;27:559-70. [PMID: 30765325 DOI: 10.1016/j.ymthe.2019.01.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
156 Hang Q, Fei M, Hou S, Ni Q, Lu C, Zhang G, Gong P, Guan C, Huang X, He S. Expression of Spy1 protein in human non-Hodgkin's lymphomas is correlated with phosphorylation of p27 Kip1 on Thr187 and cell proliferation. Med Oncol 2012;29:3504-14. [PMID: 22492278 DOI: 10.1007/s12032-012-0224-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
157 Jain S, Diefenbach C, Zain J, O'Connor OA. Emerging role of carfilzomib in treatment of relapsed and refractory lymphoid neoplasms and multiple myeloma. Core Evid 2011;6:43-57. [PMID: 21654882 DOI: 10.2147/CE.S13838] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 3.1] [Reference Citation Analysis]
158 Ruan D, He J, Li CF, Lee HJ, Liu J, Lin HK, Chan CH. Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist. Oncogene. 2017;36:4299-4310. [PMID: 28346424 DOI: 10.1038/onc.2017.64] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
159 Fulda S, Rajalingam K, Dikic I. Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications. EMBO Mol Med 2012;4:545-56. [PMID: 22730341 DOI: 10.1002/emmm.201100707] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
160 Chen L, Tweddle DA. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front Oncol 2012;2:173. [PMID: 23226679 DOI: 10.3389/fonc.2012.00173] [Cited by in Crossref: 19] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
161 Pramod S, Shivakumar K. Mechanisms in cardiac fibroblast growth: an obligate role for Skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27 kip1. American Journal of Physiology-Heart and Circulatory Physiology 2014;306:H844-55. [DOI: 10.1152/ajpheart.00933.2013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.9] [Reference Citation Analysis]
162 Wang Z, Fukushima H, Inuzuka H, Wan L, Liu P, Gao D, Sarkar FH, Wei W. Skp2 is a promising therapeutic target in breast cancer. Front Oncol 2012;1:18702. [PMID: 22279619 DOI: 10.3389/fonc.2011.00057] [Cited by in Crossref: 37] [Cited by in F6Publishing: 47] [Article Influence: 4.1] [Reference Citation Analysis]
163 Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013;19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Cited by in Crossref: 149] [Cited by in F6Publishing: 148] [Article Influence: 18.6] [Reference Citation Analysis]
164 Yang Y, Yan W, Liu Z, Wei M. Skp2 inhibitor SKPin C1 decreased viability and proliferation of multiple myeloma cells and induced apoptosis. Braz J Med Biol Res 2019;52:e8412. [PMID: 31038581 DOI: 10.1590/1414-431X20198412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
165 Fei X, Qin Z, Xiang B, Li L, Han F, Fukunaga K, Liang Z. Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine. Brain Research 2009;1264:85-97. [DOI: 10.1016/j.brainres.2009.01.057] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
166 Rufini A, Cavallo F, Condò I, Fortuni S, De Martino G, Incani O, Di Venere A, Benini M, Massaro DS, Arcuri G, Serio D, Malisan F, Testi R. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis 2015;75:91-9. [PMID: 25549872 DOI: 10.1016/j.nbd.2014.12.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
167 Mattern MR, Wu J, Nicholson B. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. Biochim Biophys Acta 2012;1823:2014-21. [PMID: 22610084 DOI: 10.1016/j.bbamcr.2012.05.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 5.2] [Reference Citation Analysis]
168 Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer 2014;14:233-47. [PMID: 24658274 DOI: 10.1038/nrc3700] [Cited by in Crossref: 261] [Cited by in F6Publishing: 260] [Article Influence: 37.3] [Reference Citation Analysis]
169 Hsieh HY, Shieh JJ, Chen CJ, Pan MY, Yang SY, Lin SC, Chang JS, Lee AY, Chang CC. Prodigiosin down-regulates SKP2 to induce p27(KIP1) stabilization and antiproliferation in human lung adenocarcinoma cells. Br J Pharmacol 2012;166:2095-108. [PMID: 22372491 DOI: 10.1111/j.1476-5381.2012.01921.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
170 Gu Y, Ting Z, Qiu X, Zhang X, Gan X, Fang Y, Xu X, Xu R. Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010;268:19-24. [PMID: 19922762 DOI: 10.1016/j.tox.2009.11.013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
171 Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 2014;1843:150-62. [PMID: 23466868 DOI: 10.1016/j.bbamcr.2013.02.028] [Cited by in Crossref: 142] [Cited by in F6Publishing: 140] [Article Influence: 17.8] [Reference Citation Analysis]
172 Morrow JK, Lin HK, Sun SC, Zhang S. Targeting ubiquitination for cancer therapies. Future Med Chem 2015;7:2333-50. [PMID: 26630263 DOI: 10.4155/fmc.15.148] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
173 Chan CH, Morrow JK, Zhang S, Lin HK. Skp2: a dream target in the coming age of cancer therapy. Cell Cycle 2014;13:679-80. [PMID: 24526126 DOI: 10.4161/cc.27853] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
174 Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020;67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
175 Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, Sarkar FH, Wei W. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 2012;1825:11-17. [PMID: 21963805 DOI: 10.1016/j.bbcan.2011.09.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 57] [Article Influence: 1.6] [Reference Citation Analysis]
176 Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell 2010;38:250-64. [PMID: 20417603 DOI: 10.1016/j.molcel.2010.02.033] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 4.7] [Reference Citation Analysis]
177 Koutsami M, Velimezi G, Kotsinas A, Evangelou K, Papavassiliou AG, Kittas C, Gorgoulis VG. Is exclusive Skp2 targeting always beneficial in cancer therapy? Blood 2008;112:4777-9. [DOI: 10.1182/blood-2008-06-161802] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]