BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23-67. [PMID: 23303905 DOI: 10.1152/physrev.00043.2011] [Cited by in Crossref: 963] [Cited by in F6Publishing: 895] [Article Influence: 107.0] [Reference Citation Analysis]
Number Citing Articles
1 Agha O, Diaz A, Davies M, Kim HT, Liu X, Feeley BT. Rotator cuff tear degeneration and the role of fibro-adipogenic progenitors. Ann N Y Acad Sci 2021;1490:13-28. [PMID: 32725671 DOI: 10.1111/nyas.14437] [Reference Citation Analysis]
2 O'Brien ME, Londino J, McGinnis M, Weathington N, Adair J, Suber T, Kagan V, Chen K, Zou C, Chen B, Bon J, Mallampalli RK. Tumor Necrosis Factor Alpha Regulates Skeletal Myogenesis by Inhibiting SP1 Interaction with cis-Acting Regulatory Elements within the Fbxl2 Gene Promoter. Mol Cell Biol 2020;40:e00040-20. [PMID: 32205409 DOI: 10.1128/MCB.00040-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017;9:E208. [PMID: 28264439 DOI: 10.3390/nu9030208] [Cited by in Crossref: 72] [Cited by in F6Publishing: 51] [Article Influence: 14.4] [Reference Citation Analysis]
4 Dayanidhi S, Kinney MC, Dykstra PB, Lieber RL. Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clin Orthop Relat Res 2020;478:886-99. [PMID: 32011372 DOI: 10.1097/CORR.0000000000001134] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
5 Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, Aránega AE. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate. Mol Cell Biol 2015;35:2892-909. [PMID: 26055324 DOI: 10.1128/MCB.00536-15] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
6 Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Fahami NAM, Mohamed IN, Shuid AN, Saad QM, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin AK. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020;12:E259. [PMID: 31963885 DOI: 10.3390/nu12010259] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
7 Kowalski K, Dos Santos M, Maire P, Ciemerych MA, Brzoska E. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche. Stem Cell Res Ther 2018;9:258. [PMID: 30261919 DOI: 10.1186/s13287-018-0993-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tabakov VY, Zinov'eva OE, Voskresenskaya ON, Skoblov MY. Isolation and Characterization of Human Myoblast Culture In Vitro for Technologies of Cell and Gene Therapy of Skeletal Muscle Pathologies. Bull Exp Biol Med 2018;164:536-42. [PMID: 29504093 DOI: 10.1007/s10517-018-4028-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Andrade BM, Baldanza MR, Ribeiro KC, Porto A, Peçanha R, Fortes FS, Zapata-Sudo G, Campos-de-Carvalho AC, Goldenberg RC, Werneck-de-Castro JP. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model. PLoS One 2015;10:e0127561. [PMID: 26039243 DOI: 10.1371/journal.pone.0127561] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
10 Bjørnsen T, Wernbom M, Kirketeig A, Paulsen G, Samnøy L, Bækken L, Cameron-Smith D, Berntsen S, Raastad T. Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters. Med Sci Sports Exerc 2019;51:288-98. [PMID: 30188363 DOI: 10.1249/MSS.0000000000001775] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 12.3] [Reference Citation Analysis]
11 Li Q, Lin J, Rosen SM, Zhang T, Kazerounian S, Luo S, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. Am J Pathol 2020;190:2453-63. [PMID: 32919980 DOI: 10.1016/j.ajpath.2020.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liu Y, Wang J, Zhou X, Cao H, Zhang X, Huang K, Li X, Yang G, Shi X. miR-324-5p Inhibits C2C12 cell Differentiation and Promotes Intramuscular Lipid Deposition through lncDUM and PM20D1. Mol Ther Nucleic Acids 2020;22:722-32. [PMID: 33230469 DOI: 10.1016/j.omtn.2020.09.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021. [PMID: 33942976 DOI: 10.1111/jcmm.16427] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Zhou S, Han L, Weng M, Zhu H, Heng Y, Wang G, Shen Z, Chen X, Fu X, Zhang M, Wu Z. Paxbp1 controls a key checkpoint for cell growth and survival during early activation of quiescent muscle satellite cells. Proc Natl Acad Sci U S A 2021;118:e2021093118. [PMID: 33753492 DOI: 10.1073/pnas.2021093118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021. [PMID: 34435361 DOI: 10.1002/jcp.30562] [Reference Citation Analysis]
16 Victor EC, Goulardins J, Cardoso VO, Silva REC, Brugnera A, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Effect of Photobiomodulation in Lipopolysaccharide-Treated Myoblasts. Photobiomodul Photomed Laser Surg 2021;39:30-7. [PMID: 33332202 DOI: 10.1089/photob.2019.4782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Lewandowski D, Dubińska-Magiera M, Posyniak E, Rupik W, Daczewska M. Does the grass snake (Natrix natrix) (Squamata: Serpentes: Natricinae) fit the amniotes-specific model of myogenesis? Protoplasma 2017;254:1507-16. [PMID: 27834030 DOI: 10.1007/s00709-016-1040-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 2014;5:99. [PMID: 24672488 DOI: 10.3389/fphys.2014.00099] [Cited by in Crossref: 121] [Cited by in F6Publishing: 105] [Article Influence: 15.1] [Reference Citation Analysis]
19 Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation. Can J Physiol Pharmacol 2015;93:945-51. [PMID: 26406298 DOI: 10.1139/cjpp-2015-0106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
20 Vallejo D, Hernández-Torres F, Lozano-Velasco E, Rodriguez-Outeiriño L, Carvajal A, Creus C, Franco D, Aránega AE. PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells. Stem Cell Reports 2018;10:1398-411. [PMID: 29641992 DOI: 10.1016/j.stemcr.2018.03.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
21 Smith LR, Meyer GA. Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connect Tissue Res 2020;61:248-61. [PMID: 31492079 DOI: 10.1080/03008207.2019.1662409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gorski JP, Huffman NT, Vallejo J, Brotto L, Chittur SV, Breggia A, Stern A, Huang J, Mo C, Seidah NG, Bonewald L, Brotto M. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. J Biol Chem 2016;291:4308-22. [PMID: 26719336 DOI: 10.1074/jbc.M115.686626] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
23 Syverud BC, VanDusen KW, Larkin LM. Growth Factors for Skeletal Muscle Tissue Engineering. Cells Tissues Organs 2016;202:169-79. [PMID: 27825154 DOI: 10.1159/000444671] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
24 Zhou J, So KK, Li Y, Li Y, Yuan J, Ding Y, Chen F, Huang Y, Liu J, Lee W, Li G, Ju Z, Sun H, Wang H. Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells. Aging Cell 2019;18:e12996. [PMID: 31325224 DOI: 10.1111/acel.12996] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
25 De Micheli AJ, Laurilliard EJ, Heinke CL, Ravichandran H, Fraczek P, Soueid-Baumgarten S, De Vlaminck I, Elemento O, Cosgrove BD. Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell Rep 2020;30:3583-3595.e5. [PMID: 32160558 DOI: 10.1016/j.celrep.2020.02.067] [Cited by in Crossref: 55] [Cited by in F6Publishing: 39] [Article Influence: 55.0] [Reference Citation Analysis]
26 Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021;13:1762-82. [PMID: 34909122 DOI: 10.4252/wjsc.v13.i11.1762] [Reference Citation Analysis]
27 Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P, Eriksson JE. Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci 2017;130:2833-42. [PMID: 28733456 DOI: 10.1242/jcs.202226] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
28 Chiu CH, Chang TH, Chang SS, Chang GJ, Chen AC, Cheng CY, Chen SC, Fu JF, Wen CJ, Chan YS. Application of Bone Marrow-Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice. Am J Sports Med 2020;48:1226-35. [PMID: 32134689 DOI: 10.1177/0363546520905853] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
29 Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021;12:638983. [PMID: 33841177 DOI: 10.3389/fphys.2021.638983] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020;104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 García-Prat L, Muñoz-Cánoves P. Aging, metabolism and stem cells: Spotlight on muscle stem cells. Mol Cell Endocrinol 2017;445:109-17. [PMID: 27531569 DOI: 10.1016/j.mce.2016.08.021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
32 Nascimento TL, Conte TC, Rissato TS, Luna MS, Soares AG, Moriscot AS, Yamanouye N, Miyabara EH. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation. Toxicon 2019;167:6-9. [PMID: 31173791 DOI: 10.1016/j.toxicon.2019.06.011] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, Parise G. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle 2016;7:547-54. [PMID: 27239425 DOI: 10.1002/jcsm.12105] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 10.5] [Reference Citation Analysis]
34 Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2018;10:102-17. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
35 Hwang AB, Brack AS. Muscle Stem Cells and Aging. Curr Top Dev Biol 2018;126:299-322. [PMID: 29305003 DOI: 10.1016/bs.ctdb.2017.08.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
36 Shehata AS, Al-Ghonemy NM, Ahmed SM, Mohamed SR. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. Int J Biochem Cell Biol 2017;85:135-48. [PMID: 28232107 DOI: 10.1016/j.biocel.2017.01.016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Zheng YY, Wang Y, Chen X, Wei LS, Wang H, Tao T, Zhou YW, Jiang ZH, Qiu TT, Sun ZY, Sun J, Wang P, Zhao W, Li YQ, Chen HQ, Zhu MS, Zhang XN. The thymus regulates skeletal muscle regeneration by directly promoting satellite cell expansion. J Biol Chem 2021;:101516. [PMID: 34942145 DOI: 10.1016/j.jbc.2021.101516] [Reference Citation Analysis]
38 Dayanidhi S, Lieber RL. Muscle Biology of Contractures in Children with Cerebral Palsy. In: Panteliadis CP, editor. Cerebral Palsy. Cham: Springer International Publishing; 2018. pp. 143-53. [DOI: 10.1007/978-3-319-67858-0_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
39 Kim JA, Kim SM, Ha SE, Vetrivel P, Saralamma VVG, Kim EH, Kim GS. Sinensetin regulates age-related sarcopenia in cultured primary thigh and calf muscle cells. BMC Complement Altern Med 2019;19:287. [PMID: 31660942 DOI: 10.1186/s12906-019-2714-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Ludlow AT, Ludlow LW, Roth SM. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int 2013;2013:601368. [PMID: 24455708 DOI: 10.1155/2013/601368] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
41 Farup J, Rahbek SK, Knudsen IS, de Paoli F, Mackey AL, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids 2014;46:2503-16. [DOI: 10.1007/s00726-014-1810-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
42 Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y, Gao C, Ma PX, Lei B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018;175:19-29. [PMID: 29793089 DOI: 10.1016/j.biomaterials.2018.05.027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
43 Urciuolo A, Poli I, Brandolino L, Raffa P, Scattolini V, Laterza C, Giobbe GG, Zambaiti E, Selmin G, Magnussen M, Brigo L, De Coppi P, Salmaso S, Giomo M, Elvassore N. Intravital three-dimensional bioprinting. Nat Biomed Eng 2020;4:901-15. [DOI: 10.1038/s41551-020-0568-z] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 18.5] [Reference Citation Analysis]
44 Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 2014;9:e90398. [PMID: 24587351 DOI: 10.1371/journal.pone.0090398] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
45 Yamanouchi K, Nakamura K, Takegahara Y, Nakano S, Nishihara M. Ex vivo bupivacaine treatment results in increased adipogenesis of skeletal muscle cells in the rat: Adipogenicity of Cells by Ex Vivo BPVC Treatment. Animal Science Journal 2013;84:757-63. [DOI: 10.1111/asj.12112] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
46 Garcia SM, Tamaki S, Xu X, Pomerantz JH. Human Satellite Cell Isolation and Xenotransplantation. Methods Mol Biol 2017;1668:105-23. [PMID: 28842905 DOI: 10.1007/978-1-4939-7283-8_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
47 Fanzani A, Monti E, Donato R, Sorci G. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 2013;19:546-54. [PMID: 23890422 DOI: 10.1016/j.molmed.2013.07.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
48 Lin BL, Song T, Sadayappan S. Myofilaments: Movers and Rulers of the Sarcomere. Compr Physiol 2017;7:675-92. [PMID: 28333386 DOI: 10.1002/cphy.c160026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
49 Ravel-Chapuis A, Crawford TE, Blais-Crépeau ML, Bélanger G, Richer CT, Jasmin BJ. The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell 2014;25:3765-78. [PMID: 25208565 DOI: 10.1091/mbc.E14-04-0895] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
50 Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022;13. [DOI: 10.1186/s13287-022-02730-5] [Reference Citation Analysis]
51 Schaaf GJ, van Gestel TJM, In 't Groen SLM, de Jong B, Boomaars B, Tarallo A, Cardone M, Parenti G, van der Ploeg AT, Pijnappel WWMP. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathol Commun 2018;6:119. [PMID: 30404653 DOI: 10.1186/s40478-018-0620-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
52 Wang X, Huang N, Yang M, Wei D, Tai H, Han X, Gong H, Zhou J, Qin J, Wei X, Chen H, Fang T, Xiao H. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis 2017;8:e2702. [PMID: 28333151 DOI: 10.1038/cddis.2017.122] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 7.6] [Reference Citation Analysis]
53 Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid Redox Signal 2017;27:276-310. [PMID: 28027662 DOI: 10.1089/ars.2016.6782] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 12.6] [Reference Citation Analysis]
54 Mourikis P, Relaix F. Activated Muscle Satellite Cells Chase Ghosts. Cell Stem Cell 2016;18:160-2. [PMID: 26849298 DOI: 10.1016/j.stem.2016.01.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
55 Surinlert P, Kongthong N, Watthanard M, Sae-Lao T, Sookbangnop P, Pholpramool C, Tipbunjong C. Styrene Oxide Caused Cell Cycle Arrest and Abolished Myogenic Differentiation of C2C12 Myoblasts. J Toxicol 2020;2020:1807126. [PMID: 32454818 DOI: 10.1155/2020/1807126] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 de Souza GT, Zanette Rde S, do Amaral DL, da Guia FC, Maranduba CP, de Souza CM, Guimarães Eda S, Rettore JV, Rabelo NC, do Carmo AM, Silva Fde S, Maranduba CM. Satellite cells: regenerative mechanisms and applicability in muscular dystrophy. Stem Cells Int 2015;2015:487467. [PMID: 25763072 DOI: 10.1155/2015/487467] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
57 Maesner CC, Almada AE, Wagers AJ. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skelet Muscle 2016;6:35. [PMID: 27826411 DOI: 10.1186/s13395-016-0106-6] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
58 Lin JW, Huang YM, Chen YQ, Chuang TY, Lan TY, Liu YW, Pan HW, You LR, Wang YK, Lin KH, Chiou A, Kuo JC. Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021;7:35. [PMID: 33597503 DOI: 10.1038/s41420-021-00412-4] [Reference Citation Analysis]
59 Yoshioka K, Kitajima Y, Okazaki N, Chiba K, Yonekura A, Ono Y. A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Front Cell Dev Biol 2020;8:793. [PMID: 32903486 DOI: 10.3389/fcell.2020.00793] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020;8:564581. [PMID: 33163487 DOI: 10.3389/fcell.2020.564581] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Kim J, Hopkinson M, Kavishwar M, Fernandez-Fuente M, Brown SC. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Skelet Muscle 2016;6:3. [PMID: 26900448 DOI: 10.1186/s13395-016-0073-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
62 Michailovici I, Eigler T, Tzahor E. Craniofacial Muscle Development. Curr Top Dev Biol 2015;115:3-30. [PMID: 26589919 DOI: 10.1016/bs.ctdb.2015.07.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
63 De D, Karmakar P, Bhattacharya D. Stem Cell Aging and Regenerative Medicine. Adv Exp Med Biol 2021;1326:11-37. [PMID: 32910426 DOI: 10.1007/5584_2020_577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Jin CL, Ye M, Song ZW, Zhang ZM, Gao CQ, Yan HC, Wang XQ. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. J Agric Food Chem 2022. [PMID: 35312309 DOI: 10.1021/acs.jafc.2c01027] [Reference Citation Analysis]
65 Lewis FC, Cottle BJ, Shone V, Marazzi G, Sassoon D, Tseng CCS, Dankers PYW, Chamuleau SAJ, Nadal-Ginard B, Ellison-Hughes GM. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle. JACC Basic Transl Sci 2017;2:717-36. [PMID: 30062184 DOI: 10.1016/j.jacbts.2017.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
66 Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. NPJ Regen Med 2018;3:24. [PMID: 30588332 DOI: 10.1038/s41536-018-0062-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
67 Bouvière J, Trignol A, Hoang D, del Carmine P, Goriot M, Ben Larbi S, Barritault D, Banzet S, Chazaud B. Heparan Sulfate Mimetics Accelerate Postinjury Skeletal Muscle Regeneration. Tissue Engineering Part A 2019;25:1667-76. [DOI: 10.1089/ten.tea.2019.0058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
68 Gilbert-Honick J, Grayson W. Vascularized and Innervated Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2020;9:e1900626. [PMID: 31622051 DOI: 10.1002/adhm.201900626] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
69 Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020;147:dev185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
70 Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015;80:2-13. [DOI: 10.1016/j.bone.2015.02.028] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 6.9] [Reference Citation Analysis]
71 Togliatto G, Trombetta A, Dentelli P, Cotogni P, Rosso A, Tschöp MH, Granata R, Ghigo E, Brizzi MF. Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Heart Assoc 2013;2:e000376. [PMID: 24308935 DOI: 10.1161/JAHA.113.000376] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
72 Mahdy MAA. Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 2018;374:233-41. [DOI: 10.1007/s00441-018-2846-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
73 Lou Y, Miao J, Li F, Ding J, Wang L. Maternal smoking during pregnancy aggravated muscle phenotype in FHL1-/y offspring mice similar to congenital clubfoot through P2RX7-mediated pyroptosis. Toxicol Lett 2021;345:54-60. [PMID: 33872746 DOI: 10.1016/j.toxlet.2021.04.014] [Reference Citation Analysis]
74 Hong L, Gu T, He Y, Zhou C, Hu Q, Wang X, Zheng E, Huang S, Xu Z, Yang J, Yang H, Li Z, Liu D, Cai G, Wu Z. Genome-Wide Analysis of Circular RNAs Mediated ceRNA Regulation in Porcine Embryonic Muscle Development. Front Cell Dev Biol 2019;7:289. [PMID: 31803743 DOI: 10.3389/fcell.2019.00289] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
75 Galli F, Mouly V, Butler-Browne G, Cossu G. Challenges in cell transplantation for muscular dystrophy. Exp Cell Res 2021;409:112908. [PMID: 34736920 DOI: 10.1016/j.yexcr.2021.112908] [Reference Citation Analysis]
76 Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2020;8:629088. [PMID: 33553131 DOI: 10.3389/fbioe.2020.629088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
77 Abbadi D, Andrews JJ, Katsara O, Schneider RJ. AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Mol Ther Methods Clin Dev 2021;22:222-36. [PMID: 34485607 DOI: 10.1016/j.omtm.2021.07.005] [Reference Citation Analysis]
78 Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S. Stage-specific effects of Notch activation during skeletal myogenesis. Elife 2016;5:e17355. [PMID: 27644105 DOI: 10.7554/eLife.17355] [Cited by in Crossref: 40] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
79 Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021;278:121173. [PMID: 34619561 DOI: 10.1016/j.biomaterials.2021.121173] [Reference Citation Analysis]
80 Li P, Liu A, Liu C, Qu Z, Xiao W, Huang J, Liu Z, Zhang S. Role and mechanism of catechin in skeletal muscle cell differentiation. The Journal of Nutritional Biochemistry 2019;74:108225. [DOI: 10.1016/j.jnutbio.2019.108225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
81 Incitti T, Magli A, Darabi R, Yuan C, Lin K, Arpke RW, Azzag K, Yamamoto A, Stewart R, Thomson JA, Kyba M, Perlingeiro RCR. Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proc Natl Acad Sci U S A 2019;116:4346-51. [PMID: 30760602 DOI: 10.1073/pnas.1808303116] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
82 Handschin C, Mortezavi A, Plock J, Eberli D. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev 2015;82-83:168-75. [PMID: 25453267 DOI: 10.1016/j.addr.2014.10.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
83 Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019;99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Cited by in Crossref: 243] [Cited by in F6Publishing: 225] [Article Influence: 81.0] [Reference Citation Analysis]
84 Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell. 2015;17:651-662. [PMID: 26637942 DOI: 10.1016/j.stem.2015.11.012] [Cited by in Crossref: 148] [Cited by in F6Publishing: 144] [Article Influence: 29.6] [Reference Citation Analysis]
85 Marinkovic M, Fuoco C, Sacco F, Cerquone Perpetuini A, Giuliani G, Micarelli E, Pavlidou T, Petrilli LL, Reggio A, Riccio F, Spada F, Vumbaca S, Zuccotti A, Castagnoli L, Mann M, Gargioli C, Cesareni G. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Sci Alliance 2019;2:e201900437. [PMID: 31239312 DOI: 10.26508/lsa.201900437] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
86 Seo JY, Kim JH, Kong YY. Unraveling the Paradoxical Action of Androgens on Muscle Stem Cells. Mol Cells 2019;42:97-103. [PMID: 30759971 DOI: 10.14348/molcells.2019.0004] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018;285:1973-84. [PMID: 29473995 DOI: 10.1111/febs.14417] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
88 Dinulovic I, Furrer R, Handschin C. Plasticity of the Muscle Stem Cell Microenvironment. Adv Exp Med Biol 2017;1041:141-69. [PMID: 29204832 DOI: 10.1007/978-3-319-69194-7_8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
89 Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019;37:1246-62. [PMID: 30604468 DOI: 10.1002/jor.24212] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
90 Lee EJ, Jan AT, Baig MH, Ahmad K, Malik A, Rabbani G, Kim T, Lee IK, Lee YH, Park SY, Choi I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J 2018;32:768-81. [PMID: 28974563 DOI: 10.1096/fj.201700665R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
91 Choi YH, Kim SH, Kim IG, Lee JH, Kwon SK. Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomaterialia 2019;89:104-14. [DOI: 10.1016/j.actbio.2019.03.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
92 Tichy ED, Sidibe DK, Greer CD, Oyster NM, Rompolas P, Rosenthal NA, Blau HM, Mourkioti F. A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells. Skelet Muscle 2018;8:27. [PMID: 30139374 DOI: 10.1186/s13395-018-0169-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
93 de Las Heras-Saldana S, Chung KY, Lee SH, Gondro C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genomics 2019;20:156. [PMID: 30808286 DOI: 10.1186/s12864-019-5530-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
94 Hogarth MW, Defour A, Lazarski C, Gallardo E, Diaz Manera J, Partridge TA, Nagaraju K, Jaiswal JK. Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B. Nat Commun 2019;10:2430. [PMID: 31160583 DOI: 10.1038/s41467-019-10438-z] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
95 Dhanani ZN, Mann G, Adegoke OAJ. Depletion of branched-chain aminotransferase 2 (BCAT2) enzyme impairs myoblast survival and myotube formation. Physiol Rep 2019;7:e14299. [PMID: 31833233 DOI: 10.14814/phy2.14299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
96 Lima ARR, Pagan LU, Damatto RL, Cezar MDM, Bonomo C, Gomes MJ, Martinez PF, Guizoni DM, Campos DHS, Damatto FC, Okoshi K, Okoshi MP. Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget 2017;8:83009-21. [PMID: 29137319 DOI: 10.18632/oncotarget.20583] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
97 Rong S, Wang L, Peng Z, Liao Y, Li D, Yang X, Nuessler AK, Liu L, Bao W, Yang W. The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle 2020;11:348-65. [PMID: 31989804 DOI: 10.1002/jcsm.12536] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
98 Zhu P, Zhou Y, Wu F, Hong Y, Wang X, Shekhawat G, Mosenson J, Wu WS. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three-Dimensional Fibrin Gel. Stem Cells Transl Med 2017;6:1412-23. [PMID: 28244269 DOI: 10.1002/sctm.16-0427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
99 Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019;39:e00447-18. [PMID: 30692273 DOI: 10.1128/MCB.00447-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
100 Safaee H, Bakooshli MA, Davoudi S, Cheng RY, Martowirogo AJ, Li EW, Simmons CA, Gilbert PM. Tethered Jagged-1 Synergizes with Culture Substrate Stiffness to Modulate Notch-Induced Myogenic Progenitor Differentiation. Cell Mol Bioeng 2017;10:501-13. [PMID: 31719873 DOI: 10.1007/s12195-017-0506-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
101 Wang J, Wen Y, Xu J, Yue B, Zhong J, Zheng L, Lei C, Chen H, Huang Y. CircRIMKLB promotes myoblast proliferation and inhibits differentiation by sponging miR-29c to release KCNJ12. Epigenetics 2022;:1-15. [PMID: 35348434 DOI: 10.1080/15592294.2022.2058211] [Reference Citation Analysis]
102 Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 2016;30:3929-41. [PMID: 27601440 DOI: 10.1096/fj.201600757R] [Cited by in Crossref: 38] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
103 Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019;23:8392-409. [PMID: 31600036 DOI: 10.1111/jcmm.14720] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Jun I, Li N, Shin J, Park J, Kim YJ, Jeon H, Choi H, Cho JG, Chan Choi B, Han HS, Song JJ. Synergistic stimulation of surface topography and biphasic electric current promotes muscle regeneration. Bioact Mater 2022;11:118-29. [PMID: 34938917 DOI: 10.1016/j.bioactmat.2021.10.015] [Reference Citation Analysis]
105 Thakar D, Dalonneau F, Migliorini E, Lortat-Jacob H, Boturyn D, Albiges-Rizo C, Coche-Guerente L, Picart C, Richter RP. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials 2017;123:24-38. [PMID: 28152381 DOI: 10.1016/j.biomaterials.2017.01.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
106 Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016;50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
107 Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020;8:480. [PMID: 32612995 DOI: 10.3389/fcell.2020.00480] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
108 Farhang-Sardroodi S, Wilkie KP. Mathematical Model of Muscle Wasting in Cancer Cachexia. J Clin Med 2020;9:E2029. [PMID: 32605273 DOI: 10.3390/jcm9072029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
109 Wang S, Xu X, Liu Y, Jin J, Zhu F, Bai W, Guo Y, Zhang J, Zuo H, Xu Z, Zuo B. RIP-Seq of EZH2 Identifies TCONS-00036665 as a Regulator of Myogenesis in Pigs. Front Cell Dev Biol 2020;8:618617. [PMID: 33511127 DOI: 10.3389/fcell.2020.618617] [Reference Citation Analysis]
110 Nakatani M, Ito J, Koyama R, Iijima M, Yoshimoto N, Niimi T, Kuroda S, Maturana AD. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2. Biochem Biophys Res Commun 2016;474:413-20. [PMID: 27114303 DOI: 10.1016/j.bbrc.2016.04.119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
111 Emami NK, Cauble RN, Dhamad AE, Greene ES, Coy CS, Velleman SG, Orlowski S, Anthony N, Bedford M, Dridi S. Hypoxia further exacerbates woody breast myopathy in broilers via alteration of satellite cell fate. Poult Sci 2021;100:101167. [PMID: 34091348 DOI: 10.1016/j.psj.2021.101167] [Reference Citation Analysis]
112 Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020;255:120207. [PMID: 32569868 DOI: 10.1016/j.biomaterials.2020.120207] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
113 Moyle LA, Jacques E, Gilbert PM. Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. Current Opinion in Biomedical Engineering 2020;16:9-18. [DOI: 10.1016/j.cobme.2020.05.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
114 Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle 2021;11:14. [PMID: 34051858 DOI: 10.1186/s13395-021-00271-8] [Reference Citation Analysis]
115 Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020;9:E1659. [PMID: 32660168 DOI: 10.3390/cells9071659] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
116 Moro T, Brightwell CR, Volpi E, Rasmussen BB, Fry CS. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. J Appl Physiol (1985) 2020;128:795-804. [PMID: 32134710 DOI: 10.1152/japplphysiol.00723.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
117 Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem 2017;292:5981-91. [PMID: 28232488 DOI: 10.1074/jbc.M116.756312] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 5.6] [Reference Citation Analysis]
118 Ceccarelli G, Benedetti L, Arcari ML, Carubbi C, Galli D. Muscle Stem Cell and Physical Activity: What Point is the Debate at? Open Med (Wars) 2017;12:144-56. [PMID: 28765836 DOI: 10.1515/med-2017-0022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
119 Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020;10:4. [PMID: 32033591 DOI: 10.1186/s13395-020-0222-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
120 Pan X, Liu B, Chen S, Ding H, Yao X, Cheng Y, Xu D, Yin Y, Dai X, Sun J, Xu G, Pan J, Xiao L, Xie L. Nr4a1 as a myogenic factor is upregulated in satellite cells/myoblast under proliferation and differentiation state. Biochemical and Biophysical Research Communications 2019;513:573-81. [DOI: 10.1016/j.bbrc.2019.04.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Chen X, He Y, Lu F. Autophagy in Stem Cell Biology: A Perspective on Stem Cell Self-Renewal and Differentiation. Stem Cells Int 2018;2018:9131397. [PMID: 29765428 DOI: 10.1155/2018/9131397] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
122 Zhang Q, Duplany A, Moncollin V, Mouradian S, Goillot E, Mazelin L, Gauthier K, Streichenberger N, Angleraux C, Chen J, Ding S, Schaeffer L, Gangloff YG. Lack of muscle mTOR kinase activity causes early onset myopathy and compromises whole-body homeostasis. J Cachexia Sarcopenia Muscle 2019;10:35-53. [PMID: 30461220 DOI: 10.1002/jcsm.12336] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
123 Syverud BC, Lee JD, VanDusen KW, Larkin LM. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. J Regen Med 2014;3:117. [PMID: 26413555 DOI: 10.4172/2325-9620.1000117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 0.3] [Reference Citation Analysis]
124 Boscolo Sesillo F, Wong M, Cortez A, Alperin M. Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Res 2020;43:101684. [PMID: 31931473 DOI: 10.1016/j.scr.2019.101684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
125 Suzuhigashi M, Kaji T, Nakame K, Mukai M, Yamada W, Onishi S, Yamada K, Kawano T, Takamatsu H, Ieiri S. Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study. Pediatr Surg Int 2016;32:959-65. [DOI: 10.1007/s00383-016-3949-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
126 Girgis CM. Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcif Tissue Int 2020;106:47-57. [PMID: 31312865 DOI: 10.1007/s00223-019-00583-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
127 Girardi F, Taleb A, Ebrahimi M, Datye A, Gamage DG, Peccate C, Giordani L, Millay DP, Gilbert PM, Cadot B, Le Grand F. TGFβ signaling curbs cell fusion and muscle regeneration. Nat Commun 2021;12:750. [PMID: 33531466 DOI: 10.1038/s41467-020-20289-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
128 Salvadori L, Chiappalupi S, Arato I, Mancuso F, Calvitti M, Marchetti MC, Riuzzi F, Calafiore R, Luca G, Sorci G. Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules 2021;11:1504. [PMID: 34680138 DOI: 10.3390/biom11101504] [Reference Citation Analysis]
129 Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, Schoonjans K, Menzies KJ, Auwerx J. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016;352:1436-43. [PMID: 27127236 DOI: 10.1126/science.aaf2693] [Cited by in Crossref: 549] [Cited by in F6Publishing: 505] [Article Influence: 91.5] [Reference Citation Analysis]
130 Choi HK, Kim CH, Lee SN, Kim TH, Oh BK. Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. Nano Converg 2021;8:40. [PMID: 34862954 DOI: 10.1186/s40580-021-00291-6] [Reference Citation Analysis]
131 Vogel P, Ding ZM, Read R, DaCosta CM, Hansard M, Small DL, Ye GL, Hansen G, Brommage R, Powell DR. Progressive Degenerative Myopathy and Myosteatosis in ASNSD1-Deficient Mice. Vet Pathol 2020;57:723-35. [PMID: 32638637 DOI: 10.1177/0300985820939251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
132 Lampert MA, Gustafsson ÅB. Mitochondria and autophagy in adult stem cells: proliferate or differentiate. J Muscle Res Cell Motil 2020;41:355-62. [PMID: 31313217 DOI: 10.1007/s10974-019-09542-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
133 Scala P, Rehak L, Giudice V, Ciaglia E, Puca AA, Selleri C, Della Porta G, Maffulli N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int J Mol Sci 2021;22:10867. [PMID: 34639203 DOI: 10.3390/ijms221910867] [Reference Citation Analysis]
134 Tipanee J, Chai YC, VandenDriessche T, Chuah MK. Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep. 2017;37. [PMID: 29089466 DOI: 10.1042/bsr20160614] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
135 Cretoiu D, Pavelescu L, Duica F, Radu M, Suciu N, Cretoiu SM. Myofibers. Adv Exp Med Biol 2018;1088:23-46. [PMID: 30390246 DOI: 10.1007/978-981-13-1435-3_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
136 Starosta A, Konieczny P. Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci 2021;78:4867-91. [PMID: 33825942 DOI: 10.1007/s00018-021-03821-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
137 Gil S, Kirwan JP, Murai IH, Dantas WS, Merege-Filho CAA, Ghosh S, Shinjo SK, Pereira RMR, Teodoro WR, Felau SM, Benatti FB, de Sá-Pinto AL, Lima F, de Cleva R, Santo MA, Gualano B, Roschel H. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J Cachexia Sarcopenia Muscle 2021. [PMID: 34666419 DOI: 10.1002/jcsm.12815] [Reference Citation Analysis]
138 Gräs S, Klarskov N, Lose G. Intraurethral injection of autologous minced skeletal muscle: a simple surgical treatment for stress urinary incontinence. J Urol. 2014;192:850-855. [PMID: 24735937 DOI: 10.1016/j.juro.2014.04.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
139 Dayton WR, White ME. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers. J Anim Sci 2014;92:30-8. [PMID: 24166993 DOI: 10.2527/jas.2013-7077] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
140 Raffa P, Easler M, Urciuolo A. Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 2022;17:759-66. [PMID: 34472462 DOI: 10.4103/1673-5374.322447] [Reference Citation Analysis]
141 Aguilar VM, Cosgrove BD. Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures. In: Ryall JG, editor. Skeletal Muscle Development. New York: Springer; 2017. pp. 75-92. [DOI: 10.1007/978-1-4939-7283-8_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
142 Kolanowski TJ, Rozwadowska N, Zimna A, Nowaczyk M, Siatkowski M, Łabędź W, Wiland E, Gapiński J, Jurga S, Kurpisz M. Chromatin and transcriptome changes in human myoblasts show spatio-temporal correlations and demonstrate DPP4 inhibition in differentiated myotubes. Sci Rep 2020;10:14336. [PMID: 32868771 DOI: 10.1038/s41598-020-70756-x] [Reference Citation Analysis]
143 Koike TE, Fuziwara CS, Brum PC, Kimura ET, Rando TA, Miyabara EH. Muscle Stem Cell Function Is Impaired in β2-Adrenoceptor Knockout Mice. Stem Cell Rev Rep 2022. [PMID: 35244862 DOI: 10.1007/s12015-022-10334-y] [Reference Citation Analysis]
144 Li Y, Chen M, Zhao Y, Li M, Qin Y, Cheng S, Yang Y, Yin P, Zhang L, Tang P. Advance in Drug Delivery for Ageing Skeletal Muscle. Front Pharmacol 2020;11:1016. [PMID: 32733249 DOI: 10.3389/fphar.2020.01016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
145 Ayansola H, Liao C, Dong Y, Yu X, Zhang B, Wang B. Prospect of early vascular tone and satellite cell modulations on white striping muscle myopathy. Poult Sci 2021;100:100945. [PMID: 33652536 DOI: 10.1016/j.psj.2020.12.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
146 Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts. PLoS One 2016;11:e0149265. [PMID: 26885980 DOI: 10.1371/journal.pone.0149265] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
147 Nielsen C, Potter RM, Borowy C, Jacinto K, Kumar R, Carlson CG. Postnatal Hyperplasic Effects of ActRIIB Blockade in a Severely Dystrophic Muscle. J Cell Physiol 2017;232:1774-93. [PMID: 27859236 DOI: 10.1002/jcp.25694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
148 Squecco R, Chellini F, Idrizaj E, Tani A, Garella R, Pancani S, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020;9:E1199. [PMID: 32408529 DOI: 10.3390/cells9051199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
149 Bachman JF, Chakkalakal JV. Insights into muscle stem cell dynamics during postnatal development. FEBS J 2021. [PMID: 33811430 DOI: 10.1111/febs.15856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Ambrosio R, De Stefano MA, Di Girolamo D, Salvatore D. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Molecular and Cellular Endocrinology 2017;459:79-83. [DOI: 10.1016/j.mce.2017.06.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
151 Yue L, Wan R, Luan S, Zeng W, Cheung TH. Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Developmental Cell 2020;53:661-676.e6. [DOI: 10.1016/j.devcel.2020.05.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
152 Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol 2014;5:34. [PMID: 24550918 DOI: 10.3389/fimmu.2014.00034] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
153 Vallecillo-Zúniga ML, Rathgeber MF, Poulson PD, Hayes S, Luddington JS, Gill HN, Teynor M, Kartchner BC, Valdoz J, Stowell C, Markham AR, Arthur C, Stowell S, Van Ry PM. Treatment with galectin-1 improves myogenic potential and membrane repair in dysferlin-deficient models. PLoS One 2020;15:e0238441. [PMID: 32881965 DOI: 10.1371/journal.pone.0238441] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
154 Jackson MF, Li N, Rodgers BD. Myostatin regulates tissue potency and cardiac calcium-handling proteins. Endocrinology 2014;155:1771-85. [PMID: 24517228 DOI: 10.1210/en.2013-2014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
155 Bentzinger CF, Rudnicki MA. Rejuvenating aged muscle stem cells. Nat Med 2014;20:234-5. [PMID: 24603790 DOI: 10.1038/nm.3499] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
156 Turner S, Balain B, Caterson B, Morgan C, Roberts S. Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur Spine J 2014;23:2462-72. [PMID: 25095758 DOI: 10.1007/s00586-014-3500-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
157 Tanaka Y, Kita S, Nishizawa H, Fukuda S, Fujishima Y, Obata Y, Nagao H, Masuda S, Nakamura Y, Shimizu Y, Mineo R, Natsukawa T, Funahashi T, Ranscht B, Fukada SI, Maeda N, Shimomura I. Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep 2019;9:16. [PMID: 30626897 DOI: 10.1038/s41598-018-37115-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
158 Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020;12:e12357. [PMID: 33210465 DOI: 10.15252/emmm.202012357] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
159 Sambasivan R, Tajbakhsh S. Adult skeletal muscle stem cells. Results Probl Cell Differ 2015;56:191-213. [PMID: 25344672 DOI: 10.1007/978-3-662-44608-9_9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
160 Koopman R, Ly CH, Ryall JG. A metabolic link to skeletal muscle wasting and regeneration. Front Physiol 2014;5:32. [PMID: 24567722 DOI: 10.3389/fphys.2014.00032] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 8.1] [Reference Citation Analysis]
161 Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol. 2018;78:155-166. [PMID: 30100674 DOI: 10.1016/j.tifs.2018.04.010] [Cited by in Crossref: 137] [Cited by in F6Publishing: 91] [Article Influence: 34.3] [Reference Citation Analysis]
162 Chen TH, Ma GC, Lin WH, Lee DJ, Wu SH, Liao BY, Chen M, Lin LK. Genome-Wide Microarray Analysis Suggests Transcriptomic Response May Not Play a Major Role in High- to Low-Altitude Acclimation in Harvest Mouse (Micromys minutus). Animals (Basel) 2019;9:E92. [PMID: 30871279 DOI: 10.3390/ani9030092] [Reference Citation Analysis]
163 Gibbons MC, Singh A, Engler AJ, Ward SR. The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 2018;36:546-56. [PMID: 28755470 DOI: 10.1002/jor.23662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
164 Gumpenberger M, Wessner B, Graf A, Narici MV, Fink C, Braun S, Hoser C, Blazevich AJ, Csapo R. Remodeling the Skeletal Muscle Extracellular Matrix in Older Age-Effects of Acute Exercise Stimuli on Gene Expression. Int J Mol Sci 2020;21:E7089. [PMID: 32992998 DOI: 10.3390/ijms21197089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
165 Kozakowska M, Kotlinowski J, Grochot-Przeczek A, Ciesla M, Pilecki B, Derlacz R, Dulak J, Jozkowicz A. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice.Stem Cell Res Ther. 2015;6:61. [PMID: 25889676 DOI: 10.1186/s13287-015-0063-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
166 Carotenuto F, Costa A, Albertini MC, Rocchi MB, Rudov A, Coletti D, Minieri M, Di Nardo P, Teodori L. Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: in Vivo, in Vitro and in Silico Studies. Int J Med Sci 2016;13:206-19. [PMID: 26941581 DOI: 10.7150/ijms.13268] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
167 Guitart M, Lloreta J, Mañas‐garcia L, Barreiro E. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. J Cell Physiol 2018;233:4360-72. [DOI: 10.1002/jcp.26282] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
168 Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MR, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2015;93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
169 Jørgensen AN, Aagaard P, Frandsen U, Boyle E, Diederichsen LP. Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scand J Rheumatol 2018;47:400-9. [PMID: 29775118 DOI: 10.1080/03009742.2017.1423109] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
170 Birbrair A. Stem Cell Microenvironments and Beyond. Adv Exp Med Biol. 2017;1041:1-3. [PMID: 29204825 DOI: 10.1007/978-3-319-69194-7_1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
171 Xu P, Werner JU, Milerski S, Hamp CM, Kuzenko T, Jähnert M, Gottmann P, de Roy L, Warnecke D, Abaei A, Palmer A, Huber-Lang M, Dürselen L, Rasche V, Schürmann A, Wabitsch M, Knippschild U. Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma-A Broad Spectrum Analysis. Front Physiol 2018;9:674. [PMID: 29922174 DOI: 10.3389/fphys.2018.00674] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
172 Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021;10:2512. [PMID: 34685492 DOI: 10.3390/cells10102512] [Reference Citation Analysis]
173 Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2019;94:1038-55. [PMID: 30588725 DOI: 10.1111/brv.12489] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
174 Hindi SM, Kumar A. Toll-like receptor signalling in regenerative myogenesis: friend and foe. J Pathol 2016;239:125-8. [PMID: 26956975 DOI: 10.1002/path.4714] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
175 Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020;104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
176 Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods 2016;99:81-90. [PMID: 26455485 DOI: 10.1016/j.ymeth.2015.10.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
177 Barraza-Flores P, Bukovec KE, Dagda M, Conner BW, Oliveira-Santos A, Grange RW, Burkin DJ. Laminin-111 protein therapy after disease onset slows muscle disease in a mouse model of laminin-α2 related congenital muscular dystrophy. Hum Mol Genet 2020;29:2162-70. [PMID: 32472139 DOI: 10.1093/hmg/ddaa104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 de Souza C, Eyng C, Viott A, de Avila A, Pacheco W, Junior N, Kohler T, Tenorio K, Cirilo E, Nunes R. Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livestock Science 2021;251:104659. [DOI: 10.1016/j.livsci.2021.104659] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Mária J, Ingrid Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 2017;8:2394-418. [DOI: 10.1039/c7fo00161d] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 6.8] [Reference Citation Analysis]
180 Downey J, Lauzier D, Kloen P, Klarskov K, Richter M, Hamdy R, Faucheux N, Scimè A, Balg F, Grenier G. Prospective heterotopic ossification progenitors in adult human skeletal muscle. Bone 2015;71:164-70. [DOI: 10.1016/j.bone.2014.10.020] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
181 Jakobsgaard JE, Christiansen M, Sieljacks P, Wang J, Groennebaek T, de Paoli F, Vissing K. Impact of blood flow-restricted bodyweight exercise on skeletal muscle adaptations. Clin Physiol Funct Imaging 2018;38:965-75. [DOI: 10.1111/cpf.12509] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
182 Virgilio KM, Martin KS, Peirce SM, Blemker SS. Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol (1985) 2018;125:1424-39. [PMID: 30070607 DOI: 10.1152/japplphysiol.00379.2018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
183 Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021;10:2086. [PMID: 34440855 DOI: 10.3390/cells10082086] [Reference Citation Analysis]
184 Hornberger TA, Carter HN, Hood DA, Figueiredo VC, Dupont-Versteegden EE, Peterson CA, McCarthy JJ, Camera DM, Hawley JA, Chaillou T, Cheng AJ, Nader GA, Wüst RC, Houtkooper RH. Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. J Appl Physiol (1985) 2016;121:597-600. [PMID: 27543661 DOI: 10.1152/japplphysiol.00509.2016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
185 Rajabian N, Shahini A, Asmani M, Vydiam K, Choudhury D, Nguyen T, Ikhapoh I, Zhao R, Lei P, Andreadis ST. Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Eng Part A 2021;27:74-86. [PMID: 32364045 DOI: 10.1089/ten.TEA.2020.0005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
186 Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015;72:1663-77. [PMID: 25572293 DOI: 10.1007/s00018-014-1819-5] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
187 Podkalicka P, Mucha O, Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Głowniak-Kwitek U, Bukowska-Strakova K, Cieśla M, Kulecka M, Ostrowski J, Mikuła M, Potulska-Chromik A, Kostera-Pruszczyk A, Józkowicz A, Łoboda A, Dulak J. Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight 2020;5:135576. [PMID: 32493839 DOI: 10.1172/jci.insight.135576] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
188 Xiong G, Hindi SM, Mann AK, Gallot YS, Bohnert KR, Cavener DR, Whittemore SR, Kumar A. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. Elife 2017;6:e22871. [PMID: 28332979 DOI: 10.7554/eLife.22871] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
189 Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021;599:171-92. [PMID: 32991751 DOI: 10.1113/JP280405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Sorensen JC, Cheregi BD, Timpani CA, Nurgali K, Hayes A, Rybalka E. Mitochon-dria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wast-ing? Cancer Chemother Pharmacol. 2016;78:673-683. [PMID: 27167634 DOI: 10.1007/s00280-016-3045-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
191 D'Andrea P, Scaini D, Ulloa Severino L, Borelli V, Passamonti S, Lorenzon P, Bandiera A. In vitro myogenesis induced by human recombinant elastin-like proteins. Biomaterials 2015;67:240-53. [PMID: 26231915 DOI: 10.1016/j.biomaterials.2015.07.041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
192 Nunes AM, Barraza-Flores P, Smith CR, Burkin DJ. Integrin α7: a major driver and therapeutic target for glioblastoma malignancy. Stem Cell Investig 2017;4:97. [PMID: 29359136 DOI: 10.21037/sci.2017.12.01] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
193 Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019;94:1740-9. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
194 Sah JP, Hao NTT, Kim Y, Eigler T, Tzahor E, Kim SH, Hwang Y, Yoon JK. MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. Int J Stem Cells 2019;12:360-6. [PMID: 30836735 DOI: 10.15283/ijsc18125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
195 Perniconi B, Coletti D, Aulino P, Costa A, Aprile P, Santacroce L, Chiaravalloti E, Coquelin L, Chevallier N, Teodori L, Adamo S, Marrelli M, Tatullo M. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Front Physiol 2014;5:354. [PMID: 25309452 DOI: 10.3389/fphys.2014.00354] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
196 Lee Y, Choi JJ, Ahn SI, Lee NH, Han WM, Mohiuddin M, Shin EJ, Wood L, Park KD, Kim Y, Jang YC. Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle Rejuvenating Factors. Adv Funct Mater 2020;30:2002924. [DOI: 10.1002/adfm.202002924] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Newmire DE, Willoughby DS. Partial Compared with Full Range of Motion Resistance Training for Muscle Hypertrophy: A Brief Review and an Identification of Potential Mechanisms. J Strength Cond Res 2018;32:2652-64. [PMID: 29985227 DOI: 10.1519/JSC.0000000000002723] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
198 Sun W, He T, Qin C, Qiu K, Zhang X, Luo Y, Li D, Yin J. A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Sci Rep 2017;7:44133. [PMID: 28276486 DOI: 10.1038/srep44133] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
199 Song KY, Guo XM, Wang HQ, Zhang L, Huang SY, Huo YC, Zhang G, Feng JZ, Zhang RR, Ma Y, Hu QZ, Qin XY. MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death Dis 2020;11:545. [PMID: 32683410 DOI: 10.1038/s41419-020-02756-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
200 Loiben AM, Soueid-Baumgarten S, Kopyto RF, Bhattacharya D, Kim JC, Cosgrove BD. Data-Modeling Identifies Conflicting Signaling Axes Governing Myoblast Proliferation and Differentiation Responses to Diverse Ligand Stimuli. Cell Mol Bioeng 2017;10:433-50. [PMID: 31719871 DOI: 10.1007/s12195-017-0508-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
201 Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol 2016;94:140-5. [PMID: 26526620 DOI: 10.1038/icb.2015.97] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 13.1] [Reference Citation Analysis]
202 Gabay Yehezkely R, Zaffryar-eilot S, Kaganovsky A, Fainshtain Malka N, Aviram R, Livneh I, Hasson P. Intracellular Role for the Matrix-Modifying Enzyme Lox in Regulating Transcription Factor Subcellular Localization and Activity in Muscle Regeneration. Developmental Cell 2020;53:406-417.e5. [DOI: 10.1016/j.devcel.2020.04.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
203 Lacraz G, Rouleau AJ, Couture V, Söllrald T, Drouin G, Veillette N, Grandbois M, Grenier G. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity. PLoS One 2015;10:e0136217. [PMID: 26295702 DOI: 10.1371/journal.pone.0136217] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
204 Sassoli C, Nosi D, Tani A, Chellini F, Mazzanti B, Quercioli F, Zecchi-Orlandini S, Formigli L. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Exp Cell Res. 2014;323:297-313. [PMID: 24631289 DOI: 10.1016/j.yexcr.2014.03.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
205 Liu Q, Gao J, Deng J, Xiao J. Current Studies and Future Directions of Exercise Therapy for Muscle Atrophy Induced by Heart Failure. Front Cardiovasc Med 2020;7:593429. [PMID: 33195482 DOI: 10.3389/fcvm.2020.593429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
206 Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. Int J Mol Sci 2020;21:E7545. [PMID: 33066271 DOI: 10.3390/ijms21207545] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
207 Zhang Y, Cong X, Wang A, Jiang H. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle1. Journal of Animal Science 2014;92:3284-90. [DOI: 10.2527/jas.2014-7656] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
208 Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett 2017;591:3007-21. [PMID: 28555751 DOI: 10.1002/1873-3468.12703] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
209 Snijders T, Verdijk LB, Smeets JS, McKay BR, Senden JM, Hartgens F, Parise G, Greenhaff P, van Loon LJ. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr) 2014;36:9699. [PMID: 25108351 DOI: 10.1007/s11357-014-9699-z] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 8.1] [Reference Citation Analysis]
210 Girgis CM. Vitamin D and Skeletal Muscle. Vitamin D. Elsevier; 2018. pp. 597-612. [DOI: 10.1016/b978-0-12-809965-0.00035-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
211 Scully D, Naseem KM, Matsakas A. Platelet biology in regenerative medicine of skeletal muscle. Acta Physiol 2018;223:e13071. [DOI: 10.1111/apha.13071] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
212 Kim Y. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life (Basel) 2021;11:250. [PMID: 33803020 DOI: 10.3390/life11030250] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
213 Sousa-victor P, García-prat L, Serrano AL, Perdiguero E, Muñoz-cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology & Metabolism 2015;26:287-96. [DOI: 10.1016/j.tem.2015.03.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 11.7] [Reference Citation Analysis]
214 Juban G. [Targeting macrophages in muscular dystrophies?]. Med Sci (Paris) 2021;37 Hors série n° 1:15-8. [PMID: 34878387 DOI: 10.1051/medsci/2021184] [Reference Citation Analysis]
215 Luongo C, Dentice M, Salvatore D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol 2019;15:479-88. [PMID: 31160732 DOI: 10.1038/s41574-019-0218-2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 25.5] [Reference Citation Analysis]
216 Kawashima M, Miyakawa M, Sugiyama M, Miyoshi M, Arakawa T. Unloading during skeletal muscle regeneration retards iNOS-expressing macrophage recruitment and perturbs satellite cell accumulation. Histochem Cell Biol 2020;154:355-67. [DOI: 10.1007/s00418-020-01897-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
217 Hauck JS, Howard ZM, Lowe J, Rastogi N, Pico MG, Swager SA, Petrosino JM, Gomez-Sanchez CE, Gomez-Sanchez EP, Accornero F, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Front Physiol 2019;10:1324. [PMID: 31736768 DOI: 10.3389/fphys.2019.01324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
218 Chazaud B, Mouchiroud G. Inflamm-aging: STAT3 signaling pushes muscle stem cells off balance. Cell Stem Cell 2014;15:401-2. [PMID: 25280215 DOI: 10.1016/j.stem.2014.09.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
219 Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, Batchelor E, Kyba M, Lowe DA. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol 2022. [PMID: 35442828 DOI: 10.1152/ajpcell.00429.2021] [Reference Citation Analysis]
220 Fiore PF, Benedetti A, Sandonà M, Madaro L, De Bardi M, Saccone V, Puri PL, Gargioli C, Lozanoska-Ochser B, Bouché M. Lack of PKCθ Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. Int J Mol Sci 2020;21:E932. [PMID: 32023816 DOI: 10.3390/ijms21030932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
221 Simsa R, Yuen J, Stout A, Rubio N, Fogelstrand P, Kaplan DL. Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods 2019;8:E521. [PMID: 31640291 DOI: 10.3390/foods8100521] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
222 Hao D, Wang X, Wang X, Thomsen B, Yang Y, Lan X, Huang Y, Chen H. MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. J Anim Sci Biotechnol 2021;12:16. [PMID: 33431058 DOI: 10.1186/s40104-020-00528-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
223 Li L, Cheng X, Chen L, Li J, Luo W, Li C. Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of PALLD. Front Genet 2019;10:1220. [PMID: 31850071 DOI: 10.3389/fgene.2019.01220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
224 Vagnozzi RJ, Molkentin JD, Houser SR. New Myocyte Formation in the Adult Heart: Endogenous Sources and Therapeutic Implications. Circ Res. 2018;123:159-176. [PMID: 29976685 DOI: 10.1161/circresaha.118.311208] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
225 García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P. Autophagy maintains stemness by preventing senescence. Nature 2016;529:37-42. [PMID: 26738589 DOI: 10.1038/nature16187] [Cited by in F6Publishing: 603] [Reference Citation Analysis]
226 Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020;24:4900-12. [PMID: 32281300 DOI: 10.1111/jcmm.15197] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
227 Mizuno S, Yoda M, Shimoda M, Tohmonda T, Okada Y, Toyama Y, Takeda S, Nakamura M, Matsumoto M, Horiuchi K. A Disintegrin and Metalloprotease 10 (ADAM10) Is Indispensable for Maintenance of the Muscle Satellite Cell Pool. J Biol Chem 2015;290:28456-64. [PMID: 26453297 DOI: 10.1074/jbc.M115.653477] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
228 Purohit G, Dhawan J. Adult Muscle Stem Cells: Exploring the Links Between Systemic and Cellular Metabolism. Front Cell Dev Biol 2019;7:312. [PMID: 31921837 DOI: 10.3389/fcell.2019.00312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
229 Farup J, De Lisio M, Rahbek SK, Bjerre J, Vendelbo MH, Boppart MD, Vissing K. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985) 2015;119:1053-63. [PMID: 26404620 DOI: 10.1152/japplphysiol.01108.2014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
230 García-prat L, Sousa-victor P, Muñoz-cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013;280:4051-62. [DOI: 10.1111/febs.12221] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 9.7] [Reference Citation Analysis]
231 Ceco E, Celli D, Weinberg S, Shigemura M, Welch LC, Volpe L, Chandel NS, Bharat A, Lecuona E, Sznajder JI. Elevated CO2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Front Physiol 2020;11:630910. [PMID: 33551852 DOI: 10.3389/fphys.2020.630910] [Reference Citation Analysis]
232 Flück M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser K, Gerber C. Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. Am J Sports Med 2021;49:3970-80. [PMID: 34714701 DOI: 10.1177/03635465211052566] [Reference Citation Analysis]
233 Bahri OA, Naldaiz-Gastesi N, Kennedy DC, Wheatley AM, Izeta A, McCullagh KJA. The panniculus carnosus muscle: A novel model of striated muscle regeneration that exhibits sex differences in the mdx mouse. Sci Rep 2019;9:15964. [PMID: 31685850 DOI: 10.1038/s41598-019-52071-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
234 An Y, Wang G, Diao Y, Long Y, Fu X, Weng M, Zhou L, Sun K, Cheung TH, Ip NY, Sun H, Wang H, Wu Z. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Dev Cell 2017;41:382-391.e5. [PMID: 28535373 DOI: 10.1016/j.devcel.2017.04.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
235 Davegårdh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, Scheele C, Ling C. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther 2019;10:26. [PMID: 30646953 DOI: 10.1186/s13287-018-1118-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
236 Tatem AJ, Holland LC, Kovac J, Beilan JA, Lipshultz LI. Nandrolone decanoate relieves joint pain in hypogonadal men: a novel prospective pilot study and review of the literature. Transl Androl Urol 2020;9:S186-94. [PMID: 32257859 DOI: 10.21037/tau.2019.11.03] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
237 Manoharan P, Song T, Radzyukevich TL, Sadayappan S, Lingrel JB, Heiny JA. KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. iScience 2019;17:334-46. [PMID: 31326700 DOI: 10.1016/j.isci.2019.07.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
238 Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015;20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
239 Roy A, Tomaz da Silva M, Bhat R, Bohnert KR, Iwawaki T, Kumar A. The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism. Elife 2021;10:e73215. [PMID: 34812145 DOI: 10.7554/eLife.73215] [Reference Citation Analysis]
240 Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017;125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
241 Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Orofacial Muscles: Embryonic Development and Regeneration after Injury. J Dent Res 2020;99:125-32. [PMID: 31675262 DOI: 10.1177/0022034519883673] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
242 Testa S, Riera CS, Fornetti E, Riccio F, Fuoco C, Bernardini S, Baldi J, Costantini M, Foddai ML, Cannata S, Gargioli C. Skeletal Muscle-Derived Human Mesenchymal Stem Cells: Influence of Different Culture Conditions on Proliferative and Myogenic Capabilities. Front Physiol 2020;11:553198. [PMID: 33041857 DOI: 10.3389/fphys.2020.553198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
243 Bersini S, Gilardi M, Ugolini GS, Sansoni V, Talò G, Perego S, Zanotti S, Ostano P, Mora M, Soncini M, Vanoni M, Lombardi G, Moretti M. Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium. Cell Reports 2018;25:3858-3868.e4. [DOI: 10.1016/j.celrep.2018.11.092] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
244 Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021;12:682091. [PMID: 34149458 DOI: 10.3389/fphys.2021.682091] [Reference Citation Analysis]
245 Rajgara RF, Lala-Tabbert N, Marchildon F, Lamarche É, MacDonald JK, Scott DA, Blais A, Skerjanc IS, Wiper-Bergeron N. SOX7 Is Required for Muscle Satellite Cell Development and Maintenance. Stem Cell Reports 2017;9:1139-51. [PMID: 28943254 DOI: 10.1016/j.stemcr.2017.08.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
246 Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. MicroRNA-7 Targets the KLF4 Gene to Regulate the Proliferation and Differentiation of Chicken Primary Myoblasts. Front Genet 2020;11:842. [PMID: 33193566 DOI: 10.3389/fgene.2020.00842] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
247 Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2021;9:785712. [PMID: 35004684 DOI: 10.3389/fcell.2021.785712] [Reference Citation Analysis]
248 Thomas KA, Gibbons MC, Lane JG, Singh A, Ward SR, Engler AJ. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells. J Orthop Res 2017;35:1816-23. [PMID: 27699827 DOI: 10.1002/jor.23453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
249 Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 2020;380:155-72. [PMID: 31820147 DOI: 10.1007/s00441-019-03133-4] [Reference Citation Analysis]
250 Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng 2021;12:2041731420981339. [PMID: 33628411 DOI: 10.1177/2041731420981339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
251 Pantelic MN, Larkin LM. Stem Cells for Skeletal Muscle Tissue Engineering. Tissue Eng Part B Rev 2018;24:373-91. [PMID: 29652595 DOI: 10.1089/ten.TEB.2017.0451] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
252 Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017;24:42. [PMID: 28688452 DOI: 10.1186/s12929-017-0346-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
253 Ikeda K, Ito A, Sato M, Kanno S, Kawabe Y, Kamihira M. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. J Tissue Eng Regen Med 2017;11:1322-31. [PMID: 26033935 DOI: 10.1002/term.2030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
254 Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, Yang Y, Qin J, Liu D, Zhang H, Shao X, Wang J, Wang H, Yang W, Wang H, Chen S, Hu P, Sun L. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res 2020;30:1063-77. [PMID: 32839552 DOI: 10.1038/s41422-020-00393-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
255 Stanley A, Tichy ED, Kocan J, Roberts DW, Shore EM, Mourkioti F. Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva. NPJ Regen Med 2022;7:5. [PMID: 35031614 DOI: 10.1038/s41536-021-00201-8] [Reference Citation Analysis]
256 Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021;144:111-59. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
257 Talbert EE, Guttridge DC. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol 2016;54:82-91. [PMID: 26385617 DOI: 10.1016/j.semcdb.2015.09.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
258 Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced Glycation End-Products in Skeletal Muscle Aging. Bioengineering (Basel) 2021;8:168. [PMID: 34821734 DOI: 10.3390/bioengineering8110168] [Reference Citation Analysis]
259 Cho DS, Doles JD. Skeletal Muscle Progenitor Cell Heterogeneity. Adv Exp Med Biol 2019;1169:179-93. [PMID: 31487024 DOI: 10.1007/978-3-030-24108-7_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
260 Nichenko AS, Southern WM, Tehrani KF, Qualls AE, Flemington AB, Mercer GH, Yin A, Mortensen LJ, Yin H, Call JA. Mitochondrial-specific autophagy linked to mitochondrial dysfunction following traumatic freeze injury in mice. Am J Physiol Cell Physiol 2020;318:C242-52. [PMID: 31721614 DOI: 10.1152/ajpcell.00123.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
261 Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, Shiojima I, Grosse Kreymborg K, Renz H, Walsh K, Braun T. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 2013;1:397-410. [PMID: 24286028 DOI: 10.1016/j.stemcr.2013.09.004] [Cited by in Crossref: 111] [Cited by in F6Publishing: 93] [Article Influence: 12.3] [Reference Citation Analysis]
262 Sala D, Cunningham TJ, Stec MJ, Etxaniz U, Nicoletti C, Dall'Agnese A, Puri PL, Duester G, Latella L, Sacco A. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun 2019;10:1796. [PMID: 30996264 DOI: 10.1038/s41467-019-09746-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
263 Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, Xi H, Young CS, Evseenko D, Nelson SF, Spencer MJ, Handel BV, Pyle AD. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 2018;20:46-57. [PMID: 29255171 DOI: 10.1038/s41556-017-0010-2] [Cited by in Crossref: 79] [Cited by in F6Publishing: 65] [Article Influence: 15.8] [Reference Citation Analysis]
264 Fiaschi T, Magherini F, Gamberi T, Modesti PA, Modesti A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cell Mol Life Sci 2014;71:1917-25. [PMID: 24322911 DOI: 10.1007/s00018-013-1537-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
265 Goody MF, Henry CA. A need for NAD+ in muscle development, homeostasis, and aging. Skelet Muscle 2018;8:9. [PMID: 29514713 DOI: 10.1186/s13395-018-0154-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
266 Cheng X, Shi B, Li J. Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles. Front Physiol 2021;12:690248. [PMID: 34276411 DOI: 10.3389/fphys.2021.690248] [Reference Citation Analysis]
267 Eren Cimenci C, Uzunalli G, Uysal O, Yergoz F, Karaca Umay E, Guler MO, Tekinay AB. Laminin mimetic peptide nanofibers regenerate acute muscle defect. Acta Biomaterialia 2017;60:190-200. [DOI: 10.1016/j.actbio.2017.07.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
268 Jiao Y, Huang B, Chen Y, Hong G, Xu J, Hu C, Wang C. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Int J Mol Sci 2018;19:E271. [PMID: 29337929 DOI: 10.3390/ijms19010271] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
269 Schwartz LM, Brown C, McLaughlin K, Smith W, Bigelow C. The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death. Am J Physiol Cell Physiol 2016;311:C607-15. [PMID: 27558160 DOI: 10.1152/ajpcell.00176.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
270 Barraza-Flores P, Bates CR, Oliveira-Santos A, Burkin DJ. Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics. Front Mol Neurosci 2020;13:1. [PMID: 32116540 DOI: 10.3389/fnmol.2020.00001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
271 Balnis J, Drake LA, Vincent CE, Korponay TC, Singer DV, Lacomis D, Lee CG, Elias JA, Jourd'heuil D, Singer HA, Jaitovich A. Succinate Dehydrogenase (SDH)-subunit C Regulates Muscle Oxygen Consumption and Fatigability in an Animal Model of Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021. [PMID: 33909984 DOI: 10.1165/rcmb.2020-0551OC] [Reference Citation Analysis]
272 van Velthoven CTJ, de Morree A, Egner IM, Brett JO, Rando TA. Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo. Cell Rep 2017;21:1994-2004. [PMID: 29141228 DOI: 10.1016/j.celrep.2017.10.037] [Cited by in Crossref: 89] [Cited by in F6Publishing: 69] [Article Influence: 22.3] [Reference Citation Analysis]
273 Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016;73:617-35. [PMID: 26211463 DOI: 10.1007/s00018-015-1994-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
274 Cornelison D. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology. Curr Top Dev Biol 2018;126:205-33. [PMID: 29304999 DOI: 10.1016/bs.ctdb.2017.08.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
275 Gudagudi KB, d'Entrèves NP, Ollewagen T, Myburgh KH. Total mRNA and primary human myoblasts' in vitro cell cycle progression distinguishes between clones. Biochimie 2022:S0300-9084(22)00020-7. [PMID: 35114349 DOI: 10.1016/j.biochi.2022.01.010] [Reference Citation Analysis]
276 Brown LD, Wesolowski SR, Kailey J, Bourque S, Wilson A, Andrews SE, Hay WW Jr, Rozance PJ. Chronic Hyperinsulinemia Increases Myoblast Proliferation in Fetal Sheep Skeletal Muscle. Endocrinology 2016;157:2447-60. [PMID: 27049667 DOI: 10.1210/en.2015-1744] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
277 He P, Williams BA, Trout D, Marinov GK, Amrhein H, Berghella L, Goh ST, Plajzer-Frick I, Afzal V, Pennacchio LA, Dickel DE, Visel A, Ren B, Hardison RC, Zhang Y, Wold BJ. The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature 2020;583:760-7. [PMID: 32728245 DOI: 10.1038/s41586-020-2536-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
278 Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 2013;305:C1098-113. [PMID: 24067916 DOI: 10.1152/ajpcell.00171.2013] [Cited by in Crossref: 119] [Cited by in F6Publishing: 111] [Article Influence: 13.2] [Reference Citation Analysis]
279 Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A 2014;111:4109-14. [PMID: 24591619 DOI: 10.1073/pnas.1401732111] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 12.5] [Reference Citation Analysis]
280 Ben-arye T, Shandalov Y, Ben-shaul S, Landau S, Zagury Y, Ianovici I, Lavon N, Levenberg S. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat Food 2020;1:210-20. [DOI: 10.1038/s43016-020-0046-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
281 Fujimaki S, Wakabayashi T, Asashima M, Takemasa T, Kuwabara T. Treadmill running induces satellite cell activation in diabetic mice. Biochem Biophys Rep 2016;8:6-13. [PMID: 28955935 DOI: 10.1016/j.bbrep.2016.07.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
282 Sciorati C, Clementi E, Manfredi AA, Rovere-querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015;72:2135-56. [DOI: 10.1007/s00018-015-1857-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
283 Ling M, Quan L, Lai X, Lang L, Li F, Yang X, Fu Y, Feng S, Yi X, Zhu C, Gao P, Zhu X, Wang L, Shu G, Jiang Q, Wang S. VEGFB Promotes Myoblasts Proliferation and Differentiation through VEGFR1-PI3K/Akt Signaling Pathway. Int J Mol Sci 2021;22:13352. [PMID: 34948148 DOI: 10.3390/ijms222413352] [Reference Citation Analysis]
284 Baig MH, Jan AT, Rabbani G, Ahmad K, Ashraf JM, Kim T, Min HS, Lee YH, Cho WK, Ma JY, Lee EJ, Choi I. Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep 2017;7:5916. [PMID: 28725008 DOI: 10.1038/s41598-017-06067-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
285 Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018;109:178-86. [PMID: 29409971 DOI: 10.1016/j.bone.2018.01.029] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
286 Azam H, Pierro L, Reina M, Gallagher WM, Prencipe M. Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opin Ther Targets 2022. [PMID: 35114091 DOI: 10.1080/14728222.2022.2032652] [Reference Citation Analysis]
287 Zhang Z, Zhao LD, Johnson SE, Rhoads ML, Jiang H, Rhoads RP. Oxytocin is involved in steroid hormone-stimulated bovine satellite cell proliferation and differentiation in vitro. Domest Anim Endocrinol 2019;66:1-13. [PMID: 30195176 DOI: 10.1016/j.domaniend.2018.07.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
288 Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018;98:1205-40. [PMID: 29717930 DOI: 10.1152/physrev.00046.2017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
289 Patil P, Szymanski JM, Feinberg AW. Defined Micropatterning of ECM Protein Adhesive Sites on Alginate Microfibers for Engineering Highly Anisotropic Muscle Cell Bundles. Adv Mater Technol 2016;1:1600003. [DOI: 10.1002/admt.201600003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
290 Pagán-Conesa A, García-Ortiz MT, Salmerón-Martínez EJ, Moya-Martínez A, López-Prats F. Diagnostic Ultrasound Shows Reversal of Supraspinatus Muscle Atrophy Following Arthroscopic Rotator Cuff Repair. Arthroscopy 2021:S0749-8063(21)00402-3. [PMID: 33940124 DOI: 10.1016/j.arthro.2021.04.039] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
291 Kyryachenko S, Formicola L, Ollitrault D, Correra R, Denizot A, Kyrylkova K, Marazzi G, Sassoon D. The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. Encyclopedia of Cell Biology. Elsevier; 2016. pp. 794-806. [DOI: 10.1016/b978-0-12-394447-4.30118-3] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
292 Fei F, Zhu DL, Tao LJ, Huang BZ, Zhang HH. Protective effect of ATP on skeletal muscle satellite cells damaged by H₂O₂. J Huazhong Univ Sci Technolog Med Sci 2015;35:76-81. [PMID: 25673197 DOI: 10.1007/s11596-015-1392-7] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
293 Lin CY, Niwa A, Hou CY, Tsai CM, Chang H. Bidirectional myofiber transition through altering the photobiomodulation condition. J Photochem Photobiol B 2020;212:112041. [PMID: 33002778 DOI: 10.1016/j.jphotobiol.2020.112041] [Reference Citation Analysis]
294 Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021;22:9470. [PMID: 34502375 DOI: 10.3390/ijms22179470] [Reference Citation Analysis]
295 Al Jaam B, Heu K, Pennarubia F, Segelle A, Magnol L, Germot A, Legardinier S, Blanquet V, Maftah A. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice. Open Biol 2016;6:160211. [PMID: 27628322 DOI: 10.1098/rsob.160211] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
296 Bond NLS, Dréau D, Marriott I, Bennett JM, Turner MJ, Arthur ST, Marino JS. Low-Dose Metformin as a Monotherapy Does Not Reduce Non-Small-Cell Lung Cancer Tumor Burden in Mice. Biomedicines 2021;9:1685. [PMID: 34829914 DOI: 10.3390/biomedicines9111685] [Reference Citation Analysis]
297 Tan CM, Najib NAM, Suhaimi NF, Halid NA, Cho VV, Abdullah SI, Ismail MZ, Khor SC, Jaafar F, Makpol S. Modulation of Ki67 and myogenic regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic program of senescent human myoblasts. Arch Med Sci 2021;17:752-63. [PMID: 34025846 DOI: 10.5114/aoms.2019.85449] [Reference Citation Analysis]
298 Owston H, Giannoudis PV, Jones E. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review. Injury. 2016;47 Suppl 6:S3-S15. [PMID: 28040084 DOI: 10.1016/s0020-1383(16)30834-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
299 Palla AR, Hilgendorf KI, Yang AV, Kerr JP, Hinken AC, Demeter J, Kraft P, Mooney NA, Yucel N, Burns DM, Wang YX, Jackson PK, Blau HM. Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nat Commun 2022;13:1439. [PMID: 35301320 DOI: 10.1038/s41467-022-29150-6] [Reference Citation Analysis]
300 Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019;23:3784-94. [PMID: 30933431 DOI: 10.1111/jcmm.14292] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
301 Liu W, Wei-LaPierre L, Klose A, Dirksen RT, Chakkalakal JV. Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. Elife 2015;4. [PMID: 26312504 DOI: 10.7554/eLife.09221] [Cited by in Crossref: 63] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
302 Goel AJ, Rieder MK, Arnold HH, Radice GL, Krauss RS. Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Rep. 2017;21:2236-2250. [PMID: 29166613 DOI: 10.1016/j.celrep.2017.10.102] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
303 Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021;56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
304 Smith LR, Kok HJ, Zhang B, Chung D, Spradlin RA, Rakoczy KD, Lei H, Boesze-Battaglia K, Barton ER. Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration. Cell Physiol Biochem 2020;54:333-53. [PMID: 32275813 DOI: 10.33594/000000223] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
305 Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021;11:200377. [PMID: 33561383 DOI: 10.1098/rsob.200377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
306 Ribeiro MBT, Guzzoni V, Hord JM, Lopes GN, Marqueti RC, de Andrade RV, Selistre-de-Araujo HS, Durigan JLQ. Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Sci Rep 2017;7:8593. [PMID: 28819168 DOI: 10.1038/s41598-017-09343-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
307 von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 2013;110:16474-9. [PMID: 24065826 DOI: 10.1073/pnas.1307680110] [Cited by in Crossref: 289] [Cited by in F6Publishing: 269] [Article Influence: 32.1] [Reference Citation Analysis]
308 Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015;56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
309 Kitajima Y, Suzuki N, Nunomiya A, Osana S, Yoshioka K, Tashiro Y, Takahashi R, Ono Y, Aoki M, Nagatomi R. The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports. 2018;11:1523-1538. [PMID: 30416048 DOI: 10.1016/j.stemcr.2018.10.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
310 Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016;3:15. [PMID: 27447481 DOI: 10.1186/s40634-016-0051-7] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 9.3] [Reference Citation Analysis]
311 Huot JR, Marino JS, Turner MJ, Arthur ST. Notch Inhibition via GSI Treatment Elevates Protein Synthesis in C2C12 Myotubes. Biology (Basel) 2020;9:E115. [PMID: 32498424 DOI: 10.3390/biology9060115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
312 Lin C, Han G, Ning H, Song J, Ran N, Yi X, Seow Y, Yin H. Glycine Enhances Satellite Cell Proliferation, Cell Transplantation, and Oligonucleotide Efficacy in Dystrophic Muscle. Mol Ther 2020;28:1339-58. [PMID: 32209436 DOI: 10.1016/j.ymthe.2020.03.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
313 Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chrétien F, Mounier R, Germain S, Chazaud B. Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports 2017;9:2018-33. [PMID: 29198825 DOI: 10.1016/j.stemcr.2017.10.027] [Cited by in Crossref: 90] [Cited by in F6Publishing: 80] [Article Influence: 18.0] [Reference Citation Analysis]
314 de Lucas B, Pérez LM, Gálvez BG. Importance and regulation of adult stem cell migration. J Cell Mol Med 2018;22:746-54. [PMID: 29214727 DOI: 10.1111/jcmm.13422] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
315 Li KN, Tumbar T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis. EMBO J 2021;40:e107135. [PMID: 33880808 DOI: 10.15252/embj.2020107135] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
316 Lim JH, Beg MMA, Ahmad K, Shaikh S, Ahmad SS, Chun HJ, Choi D, Lee WJ, Jin JO, Kim J, Jan AT, Lee EJ, Choi I. IgLON5 Regulates the Adhesion and Differentiation of Myoblasts. Cells 2021;10:417. [PMID: 33671182 DOI: 10.3390/cells10020417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
317 Fontelonga TM, Jordan B, Nunes AM, Barraza-Flores P, Bolden N, Wuebbles RD, Griner LM, Hu X, Ferrer M, Marugan J, Southall N, Burkin DJ. Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2019;28:2120-32. [PMID: 30806670 DOI: 10.1093/hmg/ddz044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
318 Haroon M, Klein-Nulend J, Bakker AD, Jin J, Seddiqi H, Offringa C, de Wit GMJ, Le Grand F, Giordani L, Liu KJ, Knight RD, Jaspers RT. Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophys J 2021;120:2665-78. [PMID: 34087215 DOI: 10.1016/j.bpj.2021.05.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
319 Ahmad K, Lim JH, Lee EJ, Chun HJ, Ali S, Ahmad SS, Shaikh S, Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods 2021;10:3116. [PMID: 34945667 DOI: 10.3390/foods10123116] [Reference Citation Analysis]
320 Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture-State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022;12:699. [DOI: 10.3390/biom12050699] [Reference Citation Analysis]
321 Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021;10:2016. [PMID: 34440785 DOI: 10.3390/cells10082016] [Reference Citation Analysis]
322 Muñoz‐cánoves P, Neves J, Sousa‐victor P. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. FEBS J 2020;287:406-16. [DOI: 10.1111/febs.15182] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
323 Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2015;11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
324 Pavlidou T, Marinkovic M, Rosina M, Fuoco C, Vumbaca S, Gargioli C, Castagnoli L, Cesareni G. Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells Int. 2019;2019:5980465. [PMID: 31249600 DOI: 10.1155/2019/5980465] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
325 Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol 2017;312:C724-32. [PMID: 28356270 DOI: 10.1152/ajpcell.00348.2016] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
326 Guadagnin E, Mázala D, Chen YW. STAT3 in Skeletal Muscle Function and Disorders. Int J Mol Sci 2018;19:E2265. [PMID: 30072615 DOI: 10.3390/ijms19082265] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
327 Versluys L, Ervilha Pereira P, Schuermans N, De Paepe B, De Bleecker JL, Bogaert E, Dermaut B. Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Front Neurosci 2022;16:815765. [DOI: 10.3389/fnins.2022.815765] [Reference Citation Analysis]
328 Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. J Anim Sci Technol 2016;58:18. [PMID: 27168943 DOI: 10.1186/s40781-016-0100-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
329 Rudar M, Columbus DA, Steinhoff-Wagner J, Suryawan A, Nguyen HV, Fleischmann R, Davis TA, Fiorotto ML. Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. J Nutr 2020;150:22-30. [PMID: 31518419 DOI: 10.1093/jn/nxz216] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
330 Ito A, Yamamoto Y, Sato M, Ikeda K, Yamamoto M, Fujita H, Nagamori E, Kawabe Y, Kamihira M. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci Rep 2014;4:4781. [PMID: 24759171 DOI: 10.1038/srep04781] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 8.4] [Reference Citation Analysis]
331 Khor SC, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts. Oxid Med Cell Longev 2017;2017:3868305. [PMID: 28243354 DOI: 10.1155/2017/3868305] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
332 Mello FD, Felippe D, Godoy LC, Lothhammer N, Guerreiro LRJ, Streit Jr. DP. Morphological and morphometric analysis of skeletal muscle between male and female young adult Colossoma macropomum (Characiformes: Serrasalmidae). Neotrop ichthyol 2016;14. [DOI: 10.1590/1982-0224-20150149] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
333 Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, Handschin C. Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet Muscle 2016;6:39. [PMID: 27908291 DOI: 10.1186/s13395-016-0111-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
334 Teixeira E, Duarte JA. Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Med 2016;46:783-92. [DOI: 10.1007/s40279-015-0462-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
335 Jangö H, Gräs S, Christensen L, Lose G. Muscle fragments on a scaffold in rats: a potential regenerative strategy in urogynecology. Int Urogynecol J 2015;26:1843-51. [DOI: 10.1007/s00192-015-2782-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
336 Demonbreun AR, Biersmith BH, McNally EM. Membrane fusion in muscle development and repair. Semin Cell Dev Biol 2015;45:48-56. [PMID: 26537430 DOI: 10.1016/j.semcdb.2015.10.026] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
337 Ceafalan LC, Popescu BO, Hinescu ME. Cellular players in skeletal muscle regeneration. Biomed Res Int 2014;2014:957014. [PMID: 24779022 DOI: 10.1155/2014/957014] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
338 Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, Gherardi RK. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 2015;142:1242-53. [PMID: 25742797 DOI: 10.1242/dev.115386] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 8.7] [Reference Citation Analysis]
339 Ogura Y, Sato S, Kurosaka M, Kotani T, Fujiya H, Funabashi T. Age-related decrease in muscle satellite cells is accompanied with diminished expression of early growth response 3 in mice. Mol Biol Rep 2020;47:977-86. [PMID: 31734897 DOI: 10.1007/s11033-019-05189-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
340 Jacobsen NL, Norton CE, Shaw RL, Cornelison DDW, Segal SS. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. J Physiol 2021. [PMID: 34761825 DOI: 10.1113/JP282292] [Reference Citation Analysis]
341 Shi A, Hillege MMG, Wüst RCI, Wu G, Jaspers RT. Synergistic short-term and long-term effects of TGF-β1 and 3 on collagen production in differentiating myoblasts. Biochem Biophys Res Commun 2021;547:176-82. [PMID: 33618224 DOI: 10.1016/j.bbrc.2021.02.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
342 Fowler C. Do nonsteroidal anti-inflammatory drugs impair tissue healing? JAAPA 2018;31:1-5. [PMID: 30048362 DOI: 10.1097/01.JAA.0000541488.41149.95] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
343 Goh Q, Millay DP. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife 2017;6:e20007. [PMID: 28186492 DOI: 10.7554/eLife.20007] [Cited by in Crossref: 62] [Cited by in F6Publishing: 41] [Article Influence: 12.4] [Reference Citation Analysis]
344 Gao CQ, Xu YL, Jin CL, Hu XC, Li HC, Xing GX, Yan HC, Wang XQ. Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget 2017;8:43192-200. [PMID: 28574820 DOI: 10.18632/oncotarget.17860] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
345 Moussa MH, Hamam GG, Abd Elaziz AE, Rahoma MA, Abd El Samad AA, El-Waseef DAA, Hegazy MA. Comparative Study on Bone Marrow-Versus Adipose-Derived Stem Cells on Regeneration and Re-Innervation of Skeletal Muscle Injury in Wistar Rats. Tissue Eng Regen Med 2020;17:887-900. [PMID: 33030680 DOI: 10.1007/s13770-020-00288-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
346 Corvelyn M, De Beukelaer N, Duelen R, Deschrevel J, Van Campenhout A, Prinsen S, Gayan-Ramirez G, Maes K, Weide G, Desloovere K, Sampaolesi M, Costamagna D. Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2020;11:945. [PMID: 32848872 DOI: 10.3389/fphys.2020.00945] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
347 Sarrafian TL, Bodine SC, Murphy B, Grayson JK, Stover SM. Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Vet Surg 2018;47:524-35. [PMID: 29603757 DOI: 10.1111/vsu.12787] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
348 Redelsperger F, Raddi N, Bacquin A, Vernochet C, Mariot V, Gache V, Blanchard-Gutton N, Charrin S, Tiret L, Dumonceaux J, Dupressoir A, Heidmann T. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice. PLoS Genet 2016;12:e1006289. [PMID: 27589388 DOI: 10.1371/journal.pgen.1006289] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
349 Gräs S, Tolstrup CK, Lose G. Regenerative medicine provides alternative strategies for the treatment of anal incontinence. Int Urogynecol J 2017;28:341-50. [PMID: 27311602 DOI: 10.1007/s00192-016-3064-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
350 Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D in vitro skeletal muscle models: A review. Materials & Design 2020;193:108794. [DOI: 10.1016/j.matdes.2020.108794] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
351 Melotti L, Vezzoli E, Mascarello F, Maccatrozzo L, Patruno M. The natural involution of the sheep proximal sesamoidean ligament is due to depletion of satellite cells and simultaneous proliferation of fibroblasts: Ultrastructural evidence. Res Vet Sci 2019;124:106-11. [PMID: 30877991 DOI: 10.1016/j.rvsc.2019.03.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
352 Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2018;233:67-78. [PMID: 28177127 DOI: 10.1002/jcp.25852] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 14.2] [Reference Citation Analysis]
353 Jeong GJ, Castels H, Kang I, Aliya B, Jang YC. Nanomaterial for Skeletal Muscle Regeneration. Tissue Eng Regen Med 2022. [PMID: 35334091 DOI: 10.1007/s13770-022-00446-4] [Reference Citation Analysis]
354 Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. Tissue Eng Part B Rev 2015;21:365-76. [PMID: 25789845 DOI: 10.1089/ten.TEB.2014.0627] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
355 Vieira Ramos G, Pinheiro CM, Messa SP, Delfino GB, Marqueti Rde C, Salvini Tde F, Durigan JL. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci Rep 2016;6:18525. [PMID: 26725948 DOI: 10.1038/srep18525] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
356 Singh A, Yadav CB, Tabassum N, Bajpeyee AK, Verma V. Stem cell niche: Dynamic neighbor of stem cells. Eur J Cell Biol 2019;98:65-73. [PMID: 30563738 DOI: 10.1016/j.ejcb.2018.12.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
357 Jimi S, Koizumi S, Sato K, Miyazaki M, Saparov A. Collagen-derived dipeptide Pro-Hyp administration accelerates muscle regenerative healing accompanied by less scarring after wounding on the abdominal wall in mice. Sci Rep 2021;11:18750. [PMID: 34548594 DOI: 10.1038/s41598-021-98407-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
358 Papanikolaou K, Draganidis D, Chatzinikolaou A, Laschou VC, Georgakouli K, Tsimeas P, Batrakoulis A, Deli CK, Jamurtas AZ, Fatouros IG. The redox-dependent regulation of satellite cells following aseptic muscle trauma (SpEED): study protocol for a randomized controlled trial. Trials 2019;20:469. [PMID: 31366396 DOI: 10.1186/s13063-019-3557-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
359 Benedetti A, Fiore PF, Madaro L, Lozanoska-Ochser B, Bouché M. Targeting PKCθ Promotes Satellite Cell Self-Renewal. Int J Mol Sci 2020;21:E2419. [PMID: 32244482 DOI: 10.3390/ijms21072419] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
360 Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021:S0167-7799(21)00265-1. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Reference Citation Analysis]
361 Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219:205-213. [PMID: 26792332 DOI: 10.1242/jeb.128207] [Cited by in Crossref: 95] [Cited by in F6Publishing: 77] [Article Influence: 15.8] [Reference Citation Analysis]
362 Brown LD. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. J Endocrinol 2014;221:R13-29. [PMID: 24532817 DOI: 10.1530/JOE-13-0567] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
363 Matsuda S, Nakagawa Y, Amano K, Ikeda Y, Tsuji A, Kitagishi Y. By using either endogenous or transplanted stem cells, which could you prefer for neural regeneration? Neural Regen Res 2018;13:1731-2. [PMID: 30136684 DOI: 10.4103/1673-5374.238609] [Reference Citation Analysis]
364 Shcherbina A, Larouche J, Fraczek P, Yang BA, Brown LA, Markworth JF, Chung CH, Khaliq M, de Silva K, Choi JJ, Fallahi-Sichani M, Chandrasekaran S, Jang YC, Brooks SV, Aguilar CA. Dissecting Murine Muscle Stem Cell Aging through Regeneration Using Integrative Genomic Analysis. Cell Rep 2020;32:107964. [PMID: 32726628 DOI: 10.1016/j.celrep.2020.107964] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
365 Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019;10:501-16. [PMID: 30843380 DOI: 10.1002/jcsm.12416] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
366 Theret M, Gsaier L, Mounier R. AMPKα1-LDHA, a new metabolic pathway, regulating stem cell fate. Cell Cycle 2018;17:403-4. [PMID: 29316838 DOI: 10.1080/15384101.2017.1421046] [Reference Citation Analysis]
367 Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep 2019;17:235-49. [PMID: 31428977 DOI: 10.1007/s11914-019-00522-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
368 Lee EJ, Jan AT, Baig MH, Ashraf JM, Nahm SS, Kim YW, Park SY, Choi I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J 2016;30:2708-19. [PMID: 27069062 DOI: 10.1096/fj.201500133R] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
369 Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff TL, Gavin TP, Kuang S. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328. [PMID: 28094257 DOI: 10.1038/ncomms14328] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]
370 Aloisio GM, Nakada Y, Saatcioglu HD, Peña CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I, Hamra FK, Castrillon DH. PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 2014;124:3929-44. [PMID: 25133429 DOI: 10.1172/JCI75943] [Cited by in Crossref: 102] [Cited by in F6Publishing: 60] [Article Influence: 12.8] [Reference Citation Analysis]
371 Girgis CM, Brennan-Speranza TC. Vitamin D and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus 2021;5:e10575. [PMID: 34950830 DOI: 10.1002/jbm4.10575] [Reference Citation Analysis]
372 Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015;7:125. [PMID: 26217220 DOI: 10.3389/fnagi.2015.00125] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
373 Clark DL, Strasburg GM, Reed KM, Velleman SG. Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation. Poult Sci 2017;96:1015-27. [PMID: 28339556 DOI: 10.3382/ps/pew374] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
374 Ben Larbi S, Saclier M, Fessard A, Juban G, Chazaud B. Histological Analysis of Tibialis Anterior Muscle of DMDmdx4Cv Mice from 1 to 24 Months. J Neuromuscul Dis 2021;8:513-24. [PMID: 33843691 DOI: 10.3233/JND-200562] [Reference Citation Analysis]
375 Malatesta M, Costanzo M, Cisterna B, Zancanaro C. Satellite Cells in Skeletal Muscle of the Hibernating Dormouse, a Natural Model of Quiescence and Re-Activation: Focus on the Cell Nucleus. Cells 2020;9:E1050. [PMID: 32340154 DOI: 10.3390/cells9041050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
376 Elliott JM, Dayanidhi S, Hazle C, Hoggarth MA, McPherson J, Sparks CL, Weber KA 2nd. Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash? J Orthop Sports Phys Ther 2016;46:862-73. [PMID: 27690836 DOI: 10.2519/jospt.2016.6735] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
377 Yagi M, Ji F, Charlton J, Cristea S, Messemer K, Horwitz N, Di Stefano B, Tsopoulidis N, Hoetker MS, Huebner AJ, Bar-Nur O, Almada AE, Yamamoto M, Patelunas A, Goldhamer DJ, Wagers AJ, Michor F, Meissner A, Sadreyev RI, Hochedlinger K. Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Genes Dev 2021;35:1209-28. [PMID: 34413137 DOI: 10.1101/gad.348678.121] [Reference Citation Analysis]
378 Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch-McChesney A, Pasiakos SM. Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. J Int Soc Sports Nutr 2021;18:56. [PMID: 34246303 DOI: 10.1186/s12970-021-00455-z] [Reference Citation Analysis]
379 Romagnoli C, Sharma P, Zonefrati R, Palmini G, Lucattelli E, Ward DT, Ellinger I, Innocenti M, Brandi ML. Study of the Expression and Function of Calcium-Sensing Receptor in Human Skeletal Muscle. Int J Mol Sci 2021;22:7282. [PMID: 34298895 DOI: 10.3390/ijms22147282] [Reference Citation Analysis]
380 Paris ND, Kallenbach JG, Bachman JF, Blanc RS, Johnston CJ, Hernady E, Williams JP, Chakkalakal JV. Chemoradiation impairs myofiber hypertrophic growth in a pediatric tumor model. Sci Rep 2020;10:19501. [PMID: 33177579 DOI: 10.1038/s41598-020-75913-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
381 Kano K, Horiuchi K, Yoshida Y, Hayasaka T, Kabara M, Tomita Y, Tatsukawa T, Matsuo R, Sawada J, Nakagawa N, Takehara N, Hasebe N, Kawabe JI. EphA7+ perivascular cells as myogenic and angiogenic precursors improving skeletal muscle regeneration in a muscular dystrophic mouse model. Stem Cell Res 2020;47:101914. [PMID: 32738632 DOI: 10.1016/j.scr.2020.101914] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
382 Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018;66:341-354. [PMID: 29536116 DOI: 10.1007/s00005-018-0509-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
383 Goh Q, Dearth CL, Corbett JT, Pierre P, Chadee DN, Pizza FX. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis. Exp Cell Res 2015;331:292-308. [PMID: 25281303 DOI: 10.1016/j.yexcr.2014.09.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
384 Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019;10:828. [PMID: 31379590 DOI: 10.3389/fphys.2019.00828] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
385 Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121508] [Reference Citation Analysis]
386 Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA 2015;6:615-29. [PMID: 26331977 DOI: 10.1002/wrna.1297] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
387 Qi Y, Zuo Y, Yeh ET, Cheng J. An essential role of small ubiquitin-like modifier (SUMO)-specific Protease 2 in myostatin expression and myogenesis. J Biol Chem 2014;289:3288-93. [PMID: 24344126 DOI: 10.1074/jbc.M113.518282] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
388 Millay DP, Sutherland LB, Bassel-Duby R, Olson EN. Myomaker is essential for muscle regeneration. Genes Dev 2014;28:1641-6. [PMID: 25085416 DOI: 10.1101/gad.247205.114] [Cited by in Crossref: 101] [Cited by in F6Publishing: 91] [Article Influence: 12.6] [Reference Citation Analysis]
389 Dolan E, Artioli GG, Pereira RMR, Gualano B. Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules 2019;9:E642. [PMID: 31652853 DOI: 10.3390/biom9110642] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
390 Jayarajan J, Milsom MD. The role of the stem cell epigenome in normal aging and rejuvenative therapy. Hum Mol Genet 2020;29:R236-47. [PMID: 32744315 DOI: 10.1093/hmg/ddaa167] [Reference Citation Analysis]
391 Piñol-Jurado P, Gallardo E, de Luna N, Suárez-Calvet X, Sánchez-Riera C, Fernández-Simón E, Gomis C, Illa I, Díaz-Manera J. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy. Am J Pathol 2017;187:1814-27. [PMID: 28618254 DOI: 10.1016/j.ajpath.2017.04.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
392 McCullagh KJ, Perlingeiro RC. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 2015;84:198-207. [PMID: 25049085 DOI: 10.1016/j.addr.2014.07.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
393 Pélisse M, Der Vartanian A, Germot A, Maftah A. Protein O -Glucosyltransferase 1 Expression Influences Formation of Differentiated Myotubes in C2C12 Cell Line. DNA and Cell Biology 2018;37:359-72. [DOI: 10.1089/dna.2017.4052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
394 Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021;9:739780. [PMID: 34778253 DOI: 10.3389/fcell.2021.739780] [Reference Citation Analysis]
395 Hyldahl RD, Olson T, Welling T, Groscost L, Parcell AC. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol 2014;5:485. [PMID: 25566087 DOI: 10.3389/fphys.2014.00485] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 5.3] [Reference Citation Analysis]
396 Mulbauer GD, Matthew HWT. Biomimetic Scaffolds in Skeletal Muscle Regeneration. Discoveries (Craiova) 2019;7:e90. [PMID: 32309608 DOI: 10.15190/d.2019.3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
397 Kim H, Jeong JH, Fendereski M, Lee HS, Kang DY, Hur SS, Amirian J, Kim Y, Pham NT, Suh N, Hwang NS, Ryu S, Yoon JK, Hwang Y. Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. Int J Mol Sci 2021;22:2488. [PMID: 33801235 DOI: 10.3390/ijms22052488] [Reference Citation Analysis]
398 Goloviznina NA, Kyba M. Twist of fate for skeletal muscle mesenchymal cells. Nat Cell Biol 2017;19:153-4. [PMID: 28248307 DOI: 10.1038/ncb3482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
399 Kawashima M, Kawanishi N, Tominaga T, Suzuki K, Miyazaki A, Nagata I, Miyoshi M, Miyakawa M, Sakuraya T, Sonomura T, Arakawa T. Icing after eccentric contraction-induced muscle damage perturbs the disappearance of necrotic muscle fibers and phenotypic dynamics of macrophages in mice. J Appl Physiol (1985) 2021;130:1410-20. [PMID: 33764172 DOI: 10.1152/japplphysiol.01069.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
400 de Morrée A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, Quarta M, Biressi S, Rando TA. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 2017;114:E8996-9005. [PMID: 29073096 DOI: 10.1073/pnas.1708725114] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 6.2] [Reference Citation Analysis]
401 Xin ZC, Xu YD, Lin G, Lue TF, Guo YL. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction. Asian J Androl 2016;18:10-5. [PMID: 25926601 DOI: 10.4103/1008-682X.150040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
402 Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345:1184-1188. [PMID: 25123483 DOI: 10.1126/science.1254445] [Cited by in Crossref: 441] [Cited by in F6Publishing: 382] [Article Influence: 55.1] [Reference Citation Analysis]
403 Kritikaki E, Asterling R, Ward L, Padget K, Barreiro E, Simoes DCM. Exercise Training-Induced Extracellular Matrix Protein Adaptation in Locomotor Muscles: A Systematic Review. Cells 2021;10:1022. [PMID: 33926070 DOI: 10.3390/cells10051022] [Reference Citation Analysis]
404 Eng D, Ma H, Gross MK, Kioussi C. Gene Networks during Skeletal Myogenesis. ISRN Developmental Biology 2013;2013:1-8. [DOI: 10.1155/2013/348704] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
405 Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med 2016;130:163-72. [PMID: 26311174 DOI: 10.1007/s00414-015-1251-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
406 Wu Z, Xu H, Xu Y, Fan W, Yao H, Wang Y, Hu W, Lou G, Shi Y, Chen X, Yang L, Wen L, Xiao H, Wang B, Yang Y, Liu W, Meng X, Wang Y. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation. Eur J Pharmacol 2020;888:173470. [PMID: 32822641 DOI: 10.1016/j.ejphar.2020.173470] [Reference Citation Analysis]
407 Tobin SW, Alibhai FJ, Wlodarek L, Yeganeh A, Millar S, Wu J, Li SH, Weisel RD, Li RK. Delineating the relationship between immune system aging and myogenesis in muscle repair. Aging Cell 2021;20:e13312. [PMID: 33511781 DOI: 10.1111/acel.13312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
408 Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S. Zingiber Officinale Roscoe Prevents Cellular Senescence of Myoblasts in Culture and Promotes Muscle Regeneration. Evid Based Complement Alternat Med 2020;2020:1787342. [PMID: 32419792 DOI: 10.1155/2020/1787342] [Reference Citation Analysis]
409 Bartley JM, Pan SJ, Keilich SR, Hopkins JW, Al-Naggar IM, Kuchel GA, Haynes L. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy. Aging (Albany NY) 2016;8:620-35. [PMID: 26856410 DOI: 10.18632/aging.100882] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
410 Martin KS, Kegelman CD, Virgilio KM, Passipieri JA, Christ GJ, Blemker SS, Peirce SM. In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Ann Biomed Eng 2017;45:747-60. [PMID: 27718091 DOI: 10.1007/s10439-016-1707-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
411 Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle 2020;11:1661-76. [PMID: 32748470 DOI: 10.1002/jcsm.12601] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
412 Wu MH, Lin CY, Hou CY, Sheu MT, Chang H. Micronized sacchachitin promotes satellite cell proliferation through TAK1-JNK-AP-1 signaling pathway predominantly by TLR2 activation. Chin Med 2020;15:100. [PMID: 33514380 DOI: 10.1186/s13020-020-00381-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
413 Vial G, Coudy-Gandilhon C, Pinel A, Wauquier F, Chevenet C, Béchet D, Wittrant Y, Coxam V, Soubrier M, Tournadre A, Capel F. Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158574. [PMID: 31747539 DOI: 10.1016/j.bbalip.2019.158574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
414 Carmeli E, Aizenbud D, Rom O. How Do Skeletal Muscles Die? An Overview. In: Pokorski M, editor. Respiratory Health. Cham: Springer International Publishing; 2015. pp. 99-111. [DOI: 10.1007/5584_2015_140] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
415 Hindi SM, Kumar A. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest 2016;126:151-68. [PMID: 26619121 DOI: 10.1172/JCI81655] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
416 Razak AM, Khor SC, Jaafar F, Karim NA, Makpol S. Targeting myomiRs by tocotrienol-rich fraction to promote myoblast differentiation. Genes Nutr 2018;13:31. [PMID: 30519366 DOI: 10.1186/s12263-018-0618-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
417 Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, Yin J. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells 2020;9:E1045. [PMID: 32331484 DOI: 10.3390/cells9041045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
418 Marg A, Escobar H, Gloy S, Kufeld M, Zacher J, Spuler A, Birchmeier C, Izsvák Z, Spuler S. Human satellite cells have regenerative capacity and are genetically manipulable. J Clin Invest 2014;124:4257-65. [PMID: 25157816 DOI: 10.1172/JCI63992] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
419 Fernández-sanjurjo M, Díaz-martínez ÁE, Díez-robles S, González-gonzález F, de Gonzalo-calvo D, Rabadán M, Dávalos A, Fernández-garcía B, Iglesias-gutiérrez E. Circulating MicroRNA Profiling Reveals Specific Subsignatures in Response to a Maximal Incremental Exercise Test. Journal of Strength and Conditioning Research 2021;35:287-91. [DOI: 10.1519/jsc.0000000000003930] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
420 Singh RK, Kolonin AM, Fiorotto ML, Cooper TA. Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis. Cell Rep 2018;24:197-208. [PMID: 29972780 DOI: 10.1016/j.celrep.2018.06.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
421 Whitlock JM, Chernomordik LV. Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021;296:100411. [PMID: 33581114 DOI: 10.1016/j.jbc.2021.100411] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
422 Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2021;10:346-56. [PMID: 33112056 DOI: 10.1002/sctm.20-0284] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
423 Kesireddy V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int J Nanomedicine 2016;11:1461-73. [PMID: 27114706 DOI: 10.2147/IJN.S101955] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
424 Wang CC, Chen HJ, Chan DC, Chiu CY, Liu SH, Lan KC. Low-Dose Acrolein, an Endogenous and Exogenous Toxic Molecule, Inhibits Glucose Transport via an Inhibition of Akt-Regulated GLUT4 Signaling in Skeletal Muscle Cells. Int J Mol Sci 2021;22:7228. [PMID: 34281282 DOI: 10.3390/ijms22137228] [Reference Citation Analysis]
425 Dibenedetto S, Niklison-Chirou M, Cabrera CP, Ellis M, Robson LG, Knopp P, Tedesco FS, Ragazzi M, Di Foggia V, Barnes MR, Radunovic A, Marino S. Enhanced Energetic State and Protection from Oxidative Stress in Human Myoblasts Overexpressing BMI1. Stem Cell Reports 2017;9:528-42. [PMID: 28735850 DOI: 10.1016/j.stemcr.2017.06.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
426 Petrany MJ, Millay DP. Cell Fusion: Merging Membranes and Making Muscle. Trends Cell Biol 2019;29:964-73. [PMID: 31648852 DOI: 10.1016/j.tcb.2019.09.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 10.3] [Reference Citation Analysis]
427 Hu B, He R, Ma K, Wang Z, Cui M, Hu H, Rai S, Wang B, Shao Z. Intervertebral Disc-Derived Stem/Progenitor Cells as a Promising Cell Source for Intervertebral Disc Regeneration. Stem Cells Int 2018;2018:7412304. [PMID: 30662469 DOI: 10.1155/2018/7412304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
428 Qaisar R, Bhaskaran S, Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 2016;98:56-67. [PMID: 27032709 DOI: 10.1016/j.freeradbiomed.2016.03.025] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 9.5] [Reference Citation Analysis]
429 Sreenivasan K, Rodríguez-delaRosa A, Kim J, Mesquita D, Segalés J, Arco PG, Espejo I, Ianni A, Di Croce L, Relaix F, Redondo JM, Braun T, Serrano AL, Perdiguero E, Muñoz-Cánoves P. CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration. Stem Cell Reports 2021;16:2089-98. [PMID: 34450038 DOI: 10.1016/j.stemcr.2021.07.022] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
430 Langlois S, Cowan KN. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. Adv Exp Med Biol 2017;925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
431 Zelada D, Bermedo-García F, Collao N, Henríquez JP. Motor function recovery: deciphering a regenerative niche at the neuromuscular synapse. Biol Rev Camb Philos Soc 2021;96:752-66. [PMID: 33336525 DOI: 10.1111/brv.12675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
432 Feige P, Brun CE, Ritso M, Rudnicki MA. Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease. Cell Stem Cell 2018;23:653-64. [PMID: 30388423 DOI: 10.1016/j.stem.2018.10.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 27.3] [Reference Citation Analysis]
433 Moyle LA, Tedesco FS, Benedetti S. Pericytes in Muscular Dystrophies. Adv Exp Med Biol 2019;1147:319-44. [PMID: 31147885 DOI: 10.1007/978-3-030-16908-4_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
434 Almeida CF, Fernandes SA, Ribeiro Junior AF, Keith Okamoto O, Vainzof M. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016;2016:1078686. [PMID: 27042182 DOI: 10.1155/2016/1078686] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
435 López-García K, Cuevas E, Sánchez-García O, Pacheco P, Martínez-Gómez M, Castelán F. Differential damage and repair responses of pubococcygeus and bulbospongiosus muscles in multiparous rabbits. Neurourol Urodyn 2016;35:180-5. [PMID: 25451605 DOI: 10.1002/nau.22702] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
436 Kakinuma Y, Noguchi T, Okazaki K, Oikawa S, Iketani M, Kurabayashi A, Furihata M, Sato T. Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model. Translational Research 2014;164:32-45. [DOI: 10.1016/j.trsl.2014.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
437 Nguyen JH, Chung JD, Lynch GS, Ryall JG. The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation. Front Cell Dev Biol 2019;7:254. [PMID: 31737625 DOI: 10.3389/fcell.2019.00254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
438 Blaauw B, Reggiani C. The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil 2014;35:3-10. [DOI: 10.1007/s10974-014-9376-y] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 5.5] [Reference Citation Analysis]
439 Choi JW, Kang SU, Kim YE, Park JK, Yang SS, Kim YS, Lee YS, Lee Y, Kim CH. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Sci Rep 2016;6:28829. [PMID: 27349181 DOI: 10.1038/srep28829] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
440 Ceafalan LC, Enciu AM, Fertig TE, Popescu BO, Gherghiceanu M, Hinescu ME, Radu E. Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018;97:442-61. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
441 Hashimoto M, Saito N, Ohta H, Yamamoto K, Tashiro A, Nakazawa K, Inanami O, Kitamura H. Inhibition of ubiquitin-specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiol Rep 2019;7:e14193. [PMID: 31353872 DOI: 10.14814/phy2.14193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
442 Gihring A, Gärtner F, Liu C, Hoenicka M, Wabitsch M, Knippschild U, Xu P. Influence of Obesity on the Organization of the Extracellular Matrix and Satellite Cell Functions After Combined Muscle and Thorax Trauma in C57BL/6J Mice. Front Physiol 2020;11:849. [PMID: 32848828 DOI: 10.3389/fphys.2020.00849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
443 Wang C, Rabadan Ros R, Martinez-Redondo P, Ma Z, Shi L, Xue Y, Guillen-Guillen I, Huang L, Hishida T, Liao HK, Nuñez Delicado E, Rodriguez Esteban C, Guillen-Garcia P, Reddy P, Izpisua Belmonte JC. In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat Commun 2021;12:3094. [PMID: 34035273 DOI: 10.1038/s41467-021-23353-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
444 Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 2014;9:e109739. [PMID: 25313863 DOI: 10.1371/journal.pone.0109739] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 10.8] [Reference Citation Analysis]
445 Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017;246:359-67. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 13.0] [Reference Citation Analysis]
446 Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020;40:22-36. [PMID: 31896561 DOI: 10.1523/JNEUROSCI.0736-19.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
447 Iolascon G, Moretti A, Paoletta M, Liguori S, Di Munno O. Muscle Regeneration and Function in Sports: A Focus on Vitamin D. Medicina (Kaunas) 2021;57:1015. [PMID: 34684052 DOI: 10.3390/medicina57101015] [Reference Citation Analysis]
448 Kirby TJ, Dupont-Versteegden EE. Cross Talk proposal: Myonuclei are lost with ageing and atrophy. J Physiol 2022. [PMID: 35388910 DOI: 10.1113/JP282380] [Reference Citation Analysis]
449 Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev 2014;20:403-36. [PMID: 24320971 DOI: 10.1089/ten.TEB.2013.0534] [Cited by in Crossref: 140] [Cited by in F6Publishing: 117] [Article Influence: 17.5] [Reference Citation Analysis]
450 Zhang M, Li B, Wang J, Zhang S, Li H, Ma L, Guo W, Lei C, Chen H, Lan X. lnc9141-a and -b Play a Different Role in Bovine Myoblast Proliferation, Apoptosis, and Differentiation. Mol Ther Nucleic Acids 2019;18:554-66. [PMID: 31675668 DOI: 10.1016/j.omtn.2019.09.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
451 Lee YS, Kim JY, Kim HN, Lee DW, Chung SW. Gene Expression Patterns Analysis in the Supraspinatus Muscle after a Rotator Cuff Tear in a Mouse Model. Biomed Res Int 2018;2018:5859013. [PMID: 30671462 DOI: 10.1155/2018/5859013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
452 Distefano G, Goodpaster BH. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med 2018;8:a029785. [PMID: 28432116 DOI: 10.1101/cshperspect.a029785] [Cited by in Crossref: 77] [Cited by in F6Publishing: 60] [Article Influence: 19.3] [Reference Citation Analysis]
453 Kim J, Park MY, Kim HK, Park Y, Whang K. Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Bioscience, Biotechnology, and Biochemistry 2016;80:2093-9. [DOI: 10.1080/09168451.2016.1210502] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
454 Yuan C, Arora A, Garofalo AM, Grange RW. Potential cross-talk between muscle and tendon in Duchenne muscular dystrophy. Connect Tissue Res 2021;62:40-52. [PMID: 32867551 DOI: 10.1080/03008207.2020.1810247] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
455 Barberi L, Scicchitano BM, De Rossi M, Bigot A, Duguez S, Wielgosik A, Stewart C, McPhee J, Conte M, Narici M, Franceschi C, Mouly V, Butler-Browne G, Musarò A. Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 2013;14:273-92. [PMID: 23666344 DOI: 10.1007/s10522-013-9429-4] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 7.2] [Reference Citation Analysis]
456 Chepurnyi YV, Kustrjo TV, Korsak AV, Likhodievskyi VV, Rodnichenko AE, Gubar OS, Zlatska OV, Kopchak AV, Zabila AO, Olefir SS, Zubov DO, Vasyliev RG, Chaikovskyi YB; Bogomolets National Medical University, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, Biotechnological Laboratory ilaya.regeneration, Medical Company ilaya, Kyiv, Ukraine, Biotechnological Laboratory ilaya.regeneration, Medical Company ilaya, Kyiv, Ukraine, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, Biotechnological Laboratory ilaya.regeneration, Medical Company ilaya, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, Biotechnological Laboratory ilaya.regeneration, Medical Company ilaya, Kyiv, Ukraine, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine, Biotechnological Laboratory ilaya.regeneration, Medical Company ilaya, Kyiv, Ukraine, Bogomolets National Medical University, Kyiv, Ukraine. Influence of Adult Neural Crest-Derived Multipotent Stem Cells on Regeneration of Orbital Soft Tissue Content After Experimental Injury. Probl Cryobiol Cryomed 2018;28:059-63. [DOI: 10.15407/cryo28.01.059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
457 Hindi SM, Shin J, Gallot YS, Straughn AR, Simionescu-Bankston A, Hindi L, Xiong G, Friedland RP, Kumar A. MyD88 promotes myoblast fusion in a cell-autonomous manner. Nat Commun 2017;8:1624. [PMID: 29158520 DOI: 10.1038/s41467-017-01866-w] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
458 Palade J, Pal A, Rawls A, Stabenfeldt S, Wilson-Rawls J. Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels. Acta Biomater 2019;97:296-309. [PMID: 31415920 DOI: 10.1016/j.actbio.2019.08.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
459 Okumura N, Toda T, Ozawa Y, Watanabe K, Ikuta T, Tatefuji T, Hashimoto K, Shimizu T. Royal Jelly Delays Motor Functional Impairment During Aging in Genetically Heterogeneous Male Mice. Nutrients 2018;10:E1191. [PMID: 30200401 DOI: 10.3390/nu10091191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
460 Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S. Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic Cell Populations. Developmental Cell 2014;31:654-67. [DOI: 10.1016/j.devcel.2014.11.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
461 Romagnoli C, Brandi ML. Muscle Physiopathology in Parathyroid Hormone Disorders. Front Med (Lausanne) 2021;8:764346. [PMID: 34746197 DOI: 10.3389/fmed.2021.764346] [Reference Citation Analysis]
462 Chen HJ, Wang CC, Chan DC, Chiu CY, Yang RS, Liu SH. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J Cachexia Sarcopenia Muscle 2019;10:165-76. [PMID: 30378754 DOI: 10.1002/jcsm.12362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
463 Pinheiro A, Naya FJ. The Key Lnc (RNA)s in Cardiac and Skeletal Muscle Development, Regeneration, and Disease. J Cardiovasc Dev Dis 2021;8:84. [PMID: 34436226 DOI: 10.3390/jcdd8080084] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
464 Pietraszek-gremplewicz K, Kozakowska M, Bronisz-budzynska I, Ciesla M, Mucha O, Podkalicka P, Madej M, Glowniak U, Szade K, Stępniewski J, Jez M, Andrysiak K, Bukowska-strakova K, Kaminska A, Kostera-pruszczyk A, Józkowicz A, Loboda A, Dulak J. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Antioxidants & Redox Signaling 2018;29:128-48. [DOI: 10.1089/ars.2017.7435] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
465 Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, Ono Y. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells 2018;36:278-85. [PMID: 29139178 DOI: 10.1002/stem.2743] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
466 Zhang T, Günther S, Looso M, Künne C, Krüger M, Kim J, Zhou Y, Braun T. Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nat Commun 2015;6:7140. [PMID: 26028225 DOI: 10.1038/ncomms8140] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
467 Pal D, Rao MRS. Long Noncoding RNAs in Pluripotency of Stem Cells and Cell Fate Specification. In: Rao M, editor. Long Non Coding RNA Biology. Singapore: Springer; 2017. pp. 223-52. [DOI: 10.1007/978-981-10-5203-3_8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
468 Huang L, Beiting DP, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Lee NA, Lee JJ, Appleton JA. Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathog 2015;11:e1005347. [PMID: 26720604 DOI: 10.1371/journal.ppat.1005347] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
469 Roveimiab Z, Lin F, Anderson JE. Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. Tissue Eng Part B Rev 2019;25:30-45. [PMID: 30073911 DOI: 10.1089/ten.TEB.2018.0181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
470 Scimeca M, Piccirilli E, Mastrangeli F, Rao C, Feola M, Orlandi A, Gasbarra E, Bonanno E, Tarantino U. Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia. J Transl Med 2017;15:34. [PMID: 28202082 DOI: 10.1186/s12967-017-1143-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
471 Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022;119:e2111445119. [PMID: 35377804 DOI: 10.1073/pnas.2111445119] [Reference Citation Analysis]
472 Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell 2018;46:135-43. [PMID: 30016618 DOI: 10.1016/j.devcel.2018.06.018] [Cited by in Crossref: 117] [Cited by in F6Publishing: 100] [Article Influence: 29.3] [Reference Citation Analysis]
473 Biswas AA, Goldhamer DJ. FACS Fractionation and Differentiation of Skeletal-Muscle Resident Multipotent Tie2+ Progenitors. Methods Mol Biol 2016;1460:255-67. [PMID: 27492178 DOI: 10.1007/978-1-4939-3810-0_18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
474 Shahini A, Vydiam K, Choudhury D, Rajabian N, Nguyen T, Lei P, Andreadis ST. Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Res 2018;30:122-9. [PMID: 29879622 DOI: 10.1016/j.scr.2018.05.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
475 Sakamoto K, Furuichi Y, Yamamoto M, Takahashi M, Akimoto Y, Ishikawa T, Shimizu T, Fujimoto M, Takada-Watanabe A, Hayashi A, Mita Y, Manabe Y, Fujii NL, Ishibashi R, Maezawa Y, Betsholtz C, Yokote K, Takemoto M. R3hdml regulates satellite cell proliferation and differentiation. EMBO Rep 2019;20:e47957. [PMID: 31524320 DOI: 10.15252/embr.201947957] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
476 Thurner M, Deutsch M, Janke K, Messner F, Kreutzer C, Beyl S, Couillard-Després S, Hering S, Troppmair J, Marksteiner R. Generation of myogenic progenitor cell-derived smooth muscle cells for sphincter regeneration. Stem Cell Res Ther 2020;11:233. [PMID: 32532320 DOI: 10.1186/s13287-020-01749-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
477 Farup J, Madaro L, Puri PL, Mikkelsen UR. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis 2015;6:e1830. [PMID: 26203859 DOI: 10.1038/cddis.2015.198] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 11.0] [Reference Citation Analysis]
478 Huang M, Lee KJ, Kim KJ, Ahn MK, Cho CH, Kim DH, Lee EH. The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016;48:e278. [PMID: 27932789 DOI: 10.1038/emm.2016.134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
479 Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020;7:E107. [PMID: 32916815 DOI: 10.3390/bioengineering7030107] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
480 Petrilli LL, Spada F, Palma A, Reggio A, Rosina M, Gargioli C, Castagnoli L, Fuoco C, Cesareni G. High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells 2020;9:E1723. [PMID: 32708412 DOI: 10.3390/cells9071723] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
481 Sugihara H, Teramoto N, Nakamura K, Shiga T, Shirakawa T, Matsuo M, Ogasawara M, Nishino I, Matsuwaki T, Nishihara M, Yamanouchi K. Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci Rep 2020;10:16385. [PMID: 33046751 DOI: 10.1038/s41598-020-73315-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
482 Zhang Y, Li H, Min YL, Sanchez-Ortiz E, Huang J, Mireault AA, Shelton JM, Kim J, Mammen PPA, Bassel-Duby R, Olson EN. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv 2020;6:eaay6812. [PMID: 32128412 DOI: 10.1126/sciadv.aay6812] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 21.0] [Reference Citation Analysis]
483 Feng X, Wang Z, Wang F, Lu T, Xu J, Ma X, Li J, He L, Zhang W, Li S, Yang W, Zhang S, Ge G, Zhao Y, Hu P, Zhang L. Dual function of VGLL4 in muscle regeneration. EMBO J 2019;38:e101051. [PMID: 31328806 DOI: 10.15252/embj.2018101051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
484 Wang Y, Song J, Liu X, Liu J, Zhang Q, Yan X, Yuan X, Ren D. Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells. Stem Cells and Development 2020;29:336-52. [DOI: 10.1089/scd.2019.0286] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
485 Yue F, Bi P, Wang C, Li J, Liu X, Kuang S. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells. Cell Rep 2016;17:2340-53. [PMID: 27880908 DOI: 10.1016/j.celrep.2016.11.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
486 Chen M, Li X, Zhang X, Li Y, Zhang J, Liu M, Zhang L, Ding X, Liu X, Guo H. A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis. In Vitro Cell Dev Biol Anim 2019;55:25-35. [PMID: 30465303 DOI: 10.1007/s11626-018-0306-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
487 Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016;22:479-96. [PMID: 27161598 DOI: 10.1016/j.molmed.2016.04.002] [Cited by in Crossref: 74] [Cited by in F6Publishing: 64] [Article Influence: 12.3] [Reference Citation Analysis]
488 Cadot B, Gache V, Gomes ER. Moving and positioning the nucleus in skeletal muscle - one step at a time. Nucleus 2015;6:373-81. [PMID: 26338260 DOI: 10.1080/19491034.2015.1090073] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
489 Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell 2016;18:243-52. [PMID: 26686466 DOI: 10.1016/j.stem.2015.11.005] [Cited by in Crossref: 107] [Cited by in F6Publishing: 93] [Article Influence: 15.3] [Reference Citation Analysis]
490 Kozakowska M, Pietraszek-Gremplewicz K, Ciesla M, Seczynska M, Bronisz-Budzynska I, Podkalicka P, Bukowska-Strakova K, Loboda A, Jozkowicz A, Dulak J. Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. Am J Pathol 2018;188:491-506. [PMID: 29169990 DOI: 10.1016/j.ajpath.2017.10.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
491 Lee H, Lim JY, Choi SJ. Role of l-carnitine and oleate in myogenic differentiation: implications for myofiber regeneration. J Exerc Nutrition Biochem 2018;22:36-42. [PMID: 30149425 DOI: 10.20463/jenb.2018.0015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
492 Silver JS, Günay KA, Cutler AA, Vogler TO, Brown TE, Pawlikowski BT, Bednarski OJ, Bannister KL, Rogowski CJ, Mckay AG, DelRio FW, Olwin BB, Anseth KS. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Sci Adv 2021;7:eabe4501. [PMID: 33712460 DOI: 10.1126/sciadv.abe4501] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
493 Agley CC, Rowlerson AM, Velloso CP, Lazarus NL, Harridge SD. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp 2015;:52049. [PMID: 25650991 DOI: 10.3791/52049] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
494 Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandoná M, Ryan T, Rojas-Muñoz A, Madaro L, Fasanaro P, Borsellino G, De Bardi M, Frigè G, Termanini A, Sun X, Rossant J, Bruneau BG, Mercola M, Minucci S, Puri PL. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 2014;28:841-57. [PMID: 24682306 DOI: 10.1101/gad.234468.113] [Cited by in Crossref: 102] [Cited by in F6Publishing: 88] [Article Influence: 12.8] [Reference Citation Analysis]
495 Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, Giammarioli AM, Malorni W, Rosano G, Ferraro E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017;8:113938-56. [PMID: 29371959 DOI: 10.18632/oncotarget.23044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
496 Ryall JG. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration. FEBS J 2013;280:4004-13. [PMID: 23402377 DOI: 10.1111/febs.12189] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
497 Daquinag AC, Gao Z, Fussell C, Sun K, Kolonin MG. Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells 2020;9:E2646. [PMID: 33317052 DOI: 10.3390/cells9122646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
498 Daya A, Donaka R, Karasik D. Zebrafish models of sarcopenia. Dis Model Mech 2020;13:dmm042689. [PMID: 32298234 DOI: 10.1242/dmm.042689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
499 Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, Farup J. Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol 2016;594:727-43. [PMID: 26607845 DOI: 10.1113/JP271333] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
500 Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014;50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
501 Belizário JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus 2016;5:619. [PMID: 27330885 DOI: 10.1186/s40064-016-2197-2] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 11.2] [Reference Citation Analysis]
502 Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020;11:536. [PMID: 33308295 DOI: 10.1186/s13287-020-02053-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
503 Ai L, Wang Q, Cheng K. Key genes in the liver fibrosis process are mined based on single-cell transcriptomics. Biochemical and Biophysical Research Communications 2022;598:131-7. [DOI: 10.1016/j.bbrc.2022.01.094] [Reference Citation Analysis]
504 Spada F, Fuoco C, Pirrò S, Paoluzi S, Castagnoli L, Gargioli C, Cesareni G. Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. N Biotechnol 2016;33:514-23. [PMID: 26773739 DOI: 10.1016/j.nbt.2015.12.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
505 Levy JR, Campbell KP. Illuminating regeneration: noninvasive imaging of disease progression in muscular dystrophy. J Clin Invest 2013;123:1931-4. [PMID: 23619358 DOI: 10.1172/JCI69568] [Reference Citation Analysis]
506 Angelino E, Reano S, Bollo A, Ferrara M, De Feudis M, Sustova H, Agosti E, Clerici S, Prodam F, Tomasetto CL, Graziani A, Filigheddu N. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal. Endocrine 2018;62:129-35. [PMID: 29846901 DOI: 10.1007/s12020-018-1606-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
507 Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
508 Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, Costelli P. The Skeletal Muscle as an Active Player Against Cancer Cachexia. Front Physiol 2019;10:41. [PMID: 30833900 DOI: 10.3389/fphys.2019.00041] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
509 di Corcia M, Tartaglia N, Polito R, Ambrosi A, Messina G, Francavilla VC, Cincione RI, della Malva A, Ciliberti MG, Sevi A, Messina G, Albenzio M. Functional Properties of Meat in Athletes’ Performance and Recovery. IJERPH 2022;19:5145. [DOI: 10.3390/ijerph19095145] [Reference Citation Analysis]
510 Deák F, Mátés L, Korpos E, Zvara A, Szénási T, Kiricsi M, Mendler L, Keller-Pintér A, Ozsvári B, Juhász H, Sorokin L, Dux L, Mermod N, Puskás LG, Kiss I. Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration. J Cell Sci 2014;127:3240-56. [PMID: 24895400 DOI: 10.1242/jcs.141556] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
511 Pallafacchina G, Blaauw B, Schiaffino S. Role of satellite cells in muscle growth and maintenance of muscle mass. Nutrition, Metabolism and Cardiovascular Diseases 2013;23:S12-8. [DOI: 10.1016/j.numecd.2012.02.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 8.1] [Reference Citation Analysis]
512 Qu Z, Zhou S, Li P, Liu C, Yuan B, Zhang S, Liu A. Natural products and skeletal muscle health. The Journal of Nutritional Biochemistry 2021;93:108619. [DOI: 10.1016/j.jnutbio.2021.108619] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
513 Adhikari R, Chen C, Kim WK. Effect of 20(S)-Hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken. Genes (Basel) 2020;11:E1360. [PMID: 33213081 DOI: 10.3390/genes11111360] [Reference Citation Analysis]
514 Ling YH, Sui MH, Zheng Q, Wang KY, Wu H, Li WY, Liu Y, Chu MX, Fang FG, Xu LN. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep 2018;8:3909. [PMID: 29500394 DOI: 10.1038/s41598-018-22262-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
515 Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micropeptide myomixer. Science 2017;356:323-7. [PMID: 28386024 DOI: 10.1126/science.aam9361] [Cited by in Crossref: 167] [Cited by in F6Publishing: 138] [Article Influence: 33.4] [Reference Citation Analysis]
516 Nakano S, Nakamura K, Teramoto N, Yamanouchi K, Nishihara M. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells: Proadipogenic Effect of bFGF. Animal Science Journal 2016;87:99-108. [DOI: 10.1111/asj.12397] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
517 Gensous N, Bacalini MG, Pirazzini C, Marasco E, Giuliani C, Ravaioli F, Mengozzi G, Bertarelli C, Palmas MG, Franceschi C, Garagnani P. The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology 2017;18:549-59. [PMID: 28352958 DOI: 10.1007/s10522-017-9695-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
518 Lee EJ, Ahmad SS, Lim JH, Ahmad K, Shaikh S, Lee YS, Park SJ, Jin JO, Lee YH, Choi I. Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021;10:2083. [PMID: 34440852 DOI: 10.3390/cells10082083] [Reference Citation Analysis]
519 Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S. Chlorella vulgaris Modulates Genes and Muscle-Specific microRNAs Expression to Promote Myoblast Differentiation in Culture. Evid Based Complement Alternat Med 2019;2019:8394648. [PMID: 31428175 DOI: 10.1155/2019/8394648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
520 He K, Hu J, Yu H, Wang L, Tang F, Gu J, Ge L, Wang H, Li S, Hu P, Jin Y. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. J Biol Chem 2017;292:351-60. [PMID: 27899448 DOI: 10.1074/jbc.M116.719849] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
521 Das A, Das A, Das D, Abdelmohsen K, Panda AC. Circular RNAs in myogenesis. Biochim Biophys Acta Gene Regul Mech 2020;1863:194372. [PMID: 30946990 DOI: 10.1016/j.bbagrm.2019.02.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
522 Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018;9:17220-37. [PMID: 29682218 DOI: 10.18632/oncotarget.24991] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
523 Mikovic J, Sadler K, Butchart L, Voisin S, Gerlinger-Romero F, Della Gatta P, Grounds MD, Lamon S. MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Front Genet 2018;9:548. [PMID: 30505320 DOI: 10.3389/fgene.2018.00548] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
524 Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021;6:17. [PMID: 33772028 DOI: 10.1038/s41536-021-00127-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
525 Wang G, Zhu H, Situ C, Han L, Yu Y, Cheung TH, Liu K, Wu Z. p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J 2018;37:e98239. [PMID: 29581096 DOI: 10.15252/embj.201798239] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
526 Sanada F, Kanbara Y, Taniyama Y, Otsu R, Carracedo M, Ikeda-Iwabu Y, Muratsu J, Sugimoto K, Yamamoto K, Rakugi H, Morishita R. Induction of Angiogenesis by a Type III Phosphodiesterase Inhibitor, Cilostazol, Through Activation of Peroxisome Proliferator-Activated Receptor-γ and cAMP Pathways in Vascular Cells. Arterioscler Thromb Vasc Biol 2016;36:545-52. [PMID: 26769045 DOI: 10.1161/ATVBAHA.115.307011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
527 Scaricamazza S, Salvatori I, Giacovazzo G, Loeffler JP, Renè F, Rosina M, Quessada C, Proietti D, Heil C, Rossi S, Battistini S, Giannini F, Volpi N, Steyn FJ, Ngo ST, Ferraro E, Madaro L, Coccurello R, Valle C, Ferri A. Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1G93A Mice Predates Disease Onset and Is A Promising Therapeutic Target. iScience 2020;23:101087. [PMID: 32371370 DOI: 10.1016/j.isci.2020.101087] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
528 Horiike M, Ogawa Y, Kawada S. Effects of hyperoxia and hypoxia on the proliferation of C2C12 myoblasts. Am J Physiol Regul Integr Comp Physiol 2021;321:R572-87. [PMID: 34431403 DOI: 10.1152/ajpregu.00269.2020] [Reference Citation Analysis]
529 Cerquone Perpetuini A, Re Cecconi AD, Chiappa M, Martinelli GB, Fuoco C, Desiderio G, Castagnoli L, Gargioli C, Piccirillo R, Cesareni G. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. J Cachexia Sarcopenia Muscle 2018;9:727-46. [PMID: 29781585 DOI: 10.1002/jcsm.12303] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
530 Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018;9:1277. [DOI: 10.3389/fphys.2018.01277] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
531 Billin AN, Bantscheff M, Drewes G, Ghidelli-disse S, Holt JA, Kramer HF, Mcdougal AJ, Smalley TL, Wells CI, Zuercher WJ, Henke BR. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle. ACS Chem Biol 2016;11:518-29. [DOI: 10.1021/acschembio.5b00772] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
532 Abreu P. Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function. Biomedicine & Pharmacotherapy 2018;103:463-72. [DOI: 10.1016/j.biopha.2018.04.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
533 Madl CM, Heilshorn SC. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu Rev Biomed Eng 2018;20:21-47. [PMID: 29220201 DOI: 10.1146/annurev-bioeng-062117-120954] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 11.6] [Reference Citation Analysis]
534 Xie X, Tsai SY, Tsai MJ. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest 2016;126:3929-41. [PMID: 27617862 DOI: 10.1172/JCI87414] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
535 Hirst CE, Marcelle C. The Avian Embryo as a Model System for Skeletal Myogenesis. In: Brand-saberi B, editor. Vertebrate Myogenesis. Berlin: Springer Berlin Heidelberg; 2015. pp. 99-122. [DOI: 10.1007/978-3-662-44608-9_5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
536 McDonald AA, Hebert SL, McLoon LK. Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis. Neuromuscul Disord 2015;25:873-87. [PMID: 26429098 DOI: 10.1016/j.nmd.2015.09.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
537 Dalle S, Rossmeislova L, Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol 2017;8:1045. [PMID: 29311975 DOI: 10.3389/fphys.2017.01045] [Cited by in Crossref: 162] [Cited by in F6Publishing: 154] [Article Influence: 32.4] [Reference Citation Analysis]
538 Guadagnin E, Bagchi D, Sinha I, Neppl RL. Nuclear localized Akt limits skeletal muscle derived fibrotic signaling. Biochem Biophys Res Commun 2019;508:838-43. [PMID: 30528731 DOI: 10.1016/j.bbrc.2018.11.202] [Reference Citation Analysis]
539 Narayanan N, Jiang C, Uzunalli G, Thankappan SK, Laurencin CT, Deng M. Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. Regen Eng Transl Med 2016;2:69-84. [DOI: 10.1007/s40883-016-0013-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
540 Bar-Nur O, Gerli MFM, Di Stefano B, Almada AE, Galvin A, Coffey A, Huebner AJ, Feige P, Verheul C, Cheung P, Payzin-Dogru D, Paisant S, Anselmo A, Sadreyev RI, Ott HC, Tajbakhsh S, Rudnicki MA, Wagers AJ, Hochedlinger K. Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports. 2018;10:1505-1521. [PMID: 29742392 DOI: 10.1016/j.stemcr.2018.04.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
541 Zhao J, Yang HT, Wasala L, Zhang K, Yue Y, Duan D, Lai Y. Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function. Mol Med 2019;25:31. [PMID: 31266455 DOI: 10.1186/s10020-019-0101-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
542 Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med 2015;39:155-62. [PMID: 25932410 DOI: 10.5535/arm.2015.39.2.155] [Cited by in Crossref: 128] [Cited by in F6Publishing: 107] [Article Influence: 18.3] [Reference Citation Analysis]
543 Giordani L, He GJ, Negroni E, Sakai H, Law JYC, Siu MM, Wan R, Corneau A, Tajbakhsh S, Cheung TH, Le Grand F. High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Mol Cell. 2019;74:609-621.e6. [PMID: 30922843 DOI: 10.1016/j.molcel.2019.02.026] [Cited by in Crossref: 106] [Cited by in F6Publishing: 87] [Article Influence: 35.3] [Reference Citation Analysis]
544 Nickels M, Mastana S, Denniff M, Codd V, Akam E. Elite swimmers possess shorter telomeres than recreationally active controls. Gene 2021;769:145242. [PMID: 33068677 DOI: 10.1016/j.gene.2020.145242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
545 Zhang L, Kubota M, Nakamura A, Kaji T, Seno S, Uezumi A, Andersen DC, Jensen CH, Fukada SI. Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells 2021;39:306-17. [PMID: 33295098 DOI: 10.1002/stem.3312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
546 Chan SMH, Cerni C, Passey S, Seow HJ, Bernardo I, van der Poel C, Dobric A, Brassington K, Selemidis S, Bozinovski S, Vlahos R. Cigarette Smoking Exacerbates Skeletal Muscle Injury without Compromising Its Regenerative Capacity. Am J Respir Cell Mol Biol 2020;62:217-30. [PMID: 31461300 DOI: 10.1165/rcmb.2019-0106OC] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]
547 García-Parra P, Naldaiz-Gastesi N, Maroto M, Padín JF, Goicoechea M, Aiastui A, Fernández-Morales JC, García-Belda P, Lacalle J, Álava JI, García-Verdugo JM, García AG, Izeta A, López de Munain A. Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration, and fatty infiltration. Tissue Eng Part C Methods 2014;20:28-41. [PMID: 23631552 DOI: 10.1089/ten.TEC.2013.0146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
548 Quarta M, Brett JO, DiMarco R, De Morree A, Boutet SC, Chacon R, Gibbons MC, Garcia VA, Su J, Shrager JB, Heilshorn S, Rando TA. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 2016;34:752-9. [PMID: 27240197 DOI: 10.1038/nbt.3576] [Cited by in Crossref: 112] [Cited by in F6Publishing: 88] [Article Influence: 18.7] [Reference Citation Analysis]
549 Cornelison D, Perdiguero E. Muscle Stem Cells: A Model System for Adult Stem Cell Biology. In: Perdiguero E, Cornelison D, editors. Muscle Stem Cells. New York: Springer; 2017. pp. 3-19. [DOI: 10.1007/978-1-4939-6771-1_1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
550 Hindi L, McMillan JD, Afroze D, Hindi SM, Kumar A. Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice. Bio Protoc 2017;7:e2248. [PMID: 28730161 DOI: 10.21769/BioProtoc.2248] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
551 Le Roux I, Konge J, Le Cam L, Flamant P, Tajbakhsh S. Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nat Commun 2015;6:8528. [PMID: 26503169 DOI: 10.1038/ncomms9528] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
552 Gonçalves N, Ambrósio C, Piedrahita J. Stem Cells and Regenerative Medicine in Domestic and Companion Animals: A Multispecies Perspective. Reprod Dom Anim 2014;49:2-10. [DOI: 10.1111/rda.12392] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
553 Dick SA, Chang NC, Dumont NA, Bell RA, Putinski C, Kawabe Y, Litchfield DW, Rudnicki MA, Megeney LA. Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proc Natl Acad Sci U S A 2015;112:E5246-52. [PMID: 26372956 DOI: 10.1073/pnas.1512869112] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
554 Bursac N, Juhas M, Rando TA. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease. Annu Rev Biomed Eng 2015;17:217-42. [PMID: 26643021 DOI: 10.1146/annurev-bioeng-071114-040640] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
555 Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020;10:E1339. [PMID: 32962155 DOI: 10.3390/biom10091339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
556 Mankowski RT, Laitano O, Clanton TL, Brakenridge SC. Pathophysiology and Treatment Strategies of Acute Myopathy and Muscle Wasting after Sepsis. J Clin Med 2021;10:1874. [PMID: 33926035 DOI: 10.3390/jcm10091874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
557 Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H, Hansen S, Seth R, Knott PD. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles. Stem Cell Reports. 2015;5:419-434. [PMID: 26352798 DOI: 10.1016/j.stemcr.2015.07.016] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 12.5] [Reference Citation Analysis]
558 Rider LG, Lindsley CB, Miller FW. Juvenile Dermatomyositis. Textbook of Pediatric Rheumatology. Elsevier; 2016. pp. 351-383.e18. [DOI: 10.1016/b978-0-323-24145-8.00026-0] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
559 Callewaert G, Da Cunha MMCM, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017;14:373-85. [PMID: 28374792 DOI: 10.1038/nrurol.2017.42] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
560 Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020;11:253. [PMID: 32265741 DOI: 10.3389/fphys.2020.00253] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
561 Formicola L, Marazzi G, Sassoon DA. The extraocular muscle stem cell niche is resistant to ageing and disease. Front Aging Neurosci 2014;6:328. [PMID: 25520657 DOI: 10.3389/fnagi.2014.00328] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
562 Siddiqui SH, Park J, Kang D, Khan M, Shim K. Cortisol differentially affects the viability and myogenesis of mono- and co-cultured porcine gluteal muscles satellite cells and fibroblasts. Tissue Cell 2021;73:101615. [PMID: 34419738 DOI: 10.1016/j.tice.2021.101615] [Reference Citation Analysis]
563 Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017;72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 7.6] [Reference Citation Analysis]
564 Bronisz-Budzyńska I, Chwalenia K, Mucha O, Podkalicka P, Karolina-Bukowska-Strakova, Józkowicz A, Łoboda A, Kozakowska M, Dulak J. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle 2019;9:22. [PMID: 31412923 DOI: 10.1186/s13395-019-0207-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
565 Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: Strategies to manage frailty. Redox Biol 2020;35:101513. [PMID: 32234291 DOI: 10.1016/j.redox.2020.101513] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
566 Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res 2020;1867:118742. [PMID: 32417255 DOI: 10.1016/j.bbamcr.2020.118742] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
567 Lim CL, Ling KH, Cheah PS. Isolation, cultivation and immunostaining of single myofibers: An improved approach to study the behavior of satellite cells. J Biol Methods 2018;5:e87. [PMID: 31453240 DOI: 10.14440/jbm.2018.219] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
568 Meyer GA, Farris AL, Sato E, Gibbons M, Lane JG, Ward SR, Engler AJ. Muscle progenitor cell regenerative capacity in the torn rotator cuff. J Orthop Res 2015;33:421-9. [PMID: 25410765 DOI: 10.1002/jor.22786] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
569 Gao Y, Zhang T, Zhu J, Xiao D, Zhang M, Sun Y, Li Y, Lin Y, Cai X. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. Mater Chem Front 2020;4:2731-43. [DOI: 10.1039/d0qm00329h] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
570 Zhang Y, Nishiyama T, Li H, Huang J, Atmanli A, Sanchez-Ortiz E, Wang Z, Mireault AA, Mammen PPA, Bassel-Duby R, Olson EN. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Mol Ther Methods Clin Dev 2021;22:122-32. [PMID: 34485599 DOI: 10.1016/j.omtm.2021.05.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
571 Zhang X, Yanagi Y, Sheng Z, Nagata K, Nakayama K, Taguchi T. Regeneration of diaphragm with bio-3D cellular patch. Biomaterials 2018;167:1-14. [DOI: 10.1016/j.biomaterials.2018.03.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
572 Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab. 2015;26:275-286. [PMID: 25818360 DOI: 10.1016/j.tem.2015.02.009] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 11.4] [Reference Citation Analysis]
573 Donati C, Cencetti F, Bruni P. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol. 2013;4:338. [PMID: 24324439 DOI: 10.3389/fphys.2013.00338] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
574 Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxidants & Redox Signaling 2021;34:1004-24. [DOI: 10.1089/ars.2020.8126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
575 Ahmad K, Lee EJ, Moon JS, Park SY, Choi I. Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells 2018;7:E148. [PMID: 30249008 DOI: 10.3390/cells7100148] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
576 Gross SM, Rotwein P. Live cell imaging reveals marked variability in myoblast proliferation and fate. Skelet Muscle 2013;3:10. [PMID: 23638706 DOI: 10.1186/2044-5040-3-10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
577 Juhas M, Engelmayr GC Jr, Fontanella AN, Palmer GM, Bursac N. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A 2014;111:5508-13. [PMID: 24706792 DOI: 10.1073/pnas.1402723111] [Cited by in Crossref: 138] [Cited by in F6Publishing: 129] [Article Influence: 17.3] [Reference Citation Analysis]
578 Murach KA, Walton RG, Fry CS, Michaelis SL, Groshong JS, Finlin BS, Kern PA, Peterson CA. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiol Rep 2016;4:e12973. [PMID: 27650251 DOI: 10.14814/phy2.12973] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
579 Daughtry MR, Berio E, Shen Z, Suess EJR, Shah N, Geiger AE, Berguson ER, Dalloul RA, Persia ME, Shi H, Gerrard DE. Satellite cell-mediated breast muscle regeneration decreases with broiler size. Poult Sci 2017;96:3457-64. [PMID: 28521021 DOI: 10.3382/ps/pex068] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
580 Birbrair A. Stem Cells Heterogeneity. Adv Exp Med Biol 2019;1123:1-3. [PMID: 31016591 DOI: 10.1007/978-3-030-11096-3_1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
581 Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014;5:148. [PMID: 24795643 DOI: 10.3389/fphys.2014.00148] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
582 Marmolejo-Martínez-Artesero S, Romeo-Guitart D, Venegas V, Marotta M, Casas C. NeuroHeal Improves Muscle Regeneration after Injury. Cells 2020;10:E22. [PMID: 33374379 DOI: 10.3390/cells10010022] [Reference Citation Analysis]
583 Saini J, McPhee JS, Al-Dabbagh S, Stewart CE, Al-Shanti N. Regenerative function of immune system: Modulation of muscle stem cells. Ageing Res Rev 2016;27:67-76. [PMID: 27039885 DOI: 10.1016/j.arr.2016.03.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
584 Gurriarán-Rodríguez U, Santos-Zas I, González-Sánchez J, Beiroa D, Moresi V, Mosteiro CS, Lin W, Viñuela JE, Señarís J, García-Caballero T, Casanueva FF, Nogueiras R, Gallego R, Renaud JM, Adamo S, Pazos Y, Camiña JP. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling. Mol Ther 2015;23:1003-21. [PMID: 25762009 DOI: 10.1038/mt.2015.40] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
585 Sancho-Muñoz A, Guitart M, Rodríguez DA, Gea J, Martínez-Llorens J, Barreiro E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J Cell Physiol 2021;236:3083-98. [PMID: 32989805 DOI: 10.1002/jcp.30073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
586 Byrne BJ, Corti M, Muntoni F. Considerations for Systemic Use of Gene Therapy. Mol Ther 2021;29:422-3. [PMID: 33485465 DOI: 10.1016/j.ymthe.2021.01.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
587 Manetti M, Tani A, Rosa I, Chellini F, Squecco R, Idrizaj E, Zecchi-Orlandini S, Ibba-Manneschi L, Sassoli C. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Sci Rep 2019;9:14515. [PMID: 31601891 DOI: 10.1038/s41598-019-51078-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
588 Squecco R, Tani A, Chellini F, Garella R, Idrizaj E, Rosa I, Zecchi-Orlandini S, Manetti M, Sassoli C. Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction. Int J Mol Sci 2021;22:3645. [PMID: 33807453 DOI: 10.3390/ijms22073645] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
589 Forcina L, Miano C, Musarò A. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases. Cytokine Growth Factor Rev 2018;41:1-9. [PMID: 29778303 DOI: 10.1016/j.cytogfr.2018.05.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
590 Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci 2016;73:4175-202. [PMID: 27271751 DOI: 10.1007/s00018-016-2285-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
591 Sassoli C, Pierucci F, Zecchi-Orlandini S, Meacci E. Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019;20:E5545. [PMID: 31703256 DOI: 10.3390/ijms20225545] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
592 Agley CC, Rowlerson AM, Velloso CP, Lazarus NR, Harridge SD. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. J Cell Sci 2013;126:5610-25. [PMID: 24101731 DOI: 10.1242/jcs.132563] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.7] [Reference Citation Analysis]
593 Das S, Browne KD, Laimo FA, Maggiore JC, Hilman MC, Kaisaier H, Aguilar CA, Ali ZS, Mourkioti F, Cullen DK. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Commun Biol 2020;3:330. [PMID: 32587337 DOI: 10.1038/s42003-020-1056-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
594 Takegahara Y, Yamanouchi K, Nakamura K, Nakano S, Nishihara M. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Experimental Cell Research 2014;324:105-14. [DOI: 10.1016/j.yexcr.2014.03.021] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
595 Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019;286:379-98. [PMID: 29239106 DOI: 10.1111/febs.14358] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
596 Riddle ES, Bender EL, Thalacker-Mercer AE. Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference. Am J Physiol Cell Physiol 2018;315:C643-52. [PMID: 30110562 DOI: 10.1152/ajpcell.00135.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
597 Farup J, Dalgas U, Keytsman C, Eijnde BO, Wens I. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients. Front Physiol 2016;7:193. [PMID: 27303309 DOI: 10.3389/fphys.2016.00193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
598 Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015;6:10123. [PMID: 26648529 DOI: 10.1038/ncomms10123] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
599 Howard JJ, Herzog W. Skeletal Muscle in Cerebral Palsy: From Belly to Myofibril. Front Neurol 2021;12:620852. [PMID: 33679586 DOI: 10.3389/fneur.2021.620852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
600 Ogura Y, Mishra V, Hindi SM, Kuang S, Kumar A. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways. J Biol Chem 2013;288:35159-69. [PMID: 24151074 DOI: 10.1074/jbc.M113.517300] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
601 Ly CH, Lynch GS, Ryall JG. A Metabolic Roadmap for Somatic Stem Cell Fate. Cell Metab 2020;31:1052-67. [PMID: 32433923 DOI: 10.1016/j.cmet.2020.04.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
602 Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells 2019;8:E232. [PMID: 30862132 DOI: 10.3390/cells8030232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
603 Park SH, Kim DS, Oh J, Geum JH, Kim JE, Choi SY, Kim JH, Cho JY. Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction. Am J Chin Med 2021;49:1493-514. [PMID: 34247561 DOI: 10.1142/S0192415X21500701] [Reference Citation Analysis]
604 Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021;20:429-57. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
605 Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier J, Kennedy L, Knockaert M, Gayraud-morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018;145:dev157339. [DOI: 10.1242/dev.157339] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
606 Kim KH, Qiu J, Kuang S. Isolation, Culture, and Differentiation of Primary Myoblasts Derived from Muscle Satellite Cells. Bio Protoc 2020;10:e3686. [PMID: 33659356 DOI: 10.21769/BioProtoc.3686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
607 Pirrò S, Spada F, Gadaleta E, Ferrentino F, Thorn GJ, Cesareni G, Chelala C. HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data. J Comput Biol 2020;27:1283-94. [PMID: 31855463 DOI: 10.1089/cmb.2019.0384] [Reference Citation Analysis]
608 Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014;141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Cited by in Crossref: 220] [Cited by in F6Publishing: 193] [Article Influence: 27.5] [Reference Citation Analysis]
609 Smith LR, Irianto J, Xia Y, Pfeifer CR, Discher DE. Constricted migration modulates stem cell differentiation. Mol Biol Cell 2019;30:1985-99. [PMID: 31188712 DOI: 10.1091/mbc.E19-02-0090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
610 Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2016;3:29-48. [PMID: 27854202 DOI: 10.3233/JND-150113] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
611 Trensz F, Lucien F, Couture V, Söllrald T, Drouin G, Rouleau AJ, Grandbois M, Lacraz G, Grenier G. Increased microenvironment stiffness in damaged myofibers promotes myogenic progenitor cell proliferation. Skelet Muscle 2015;5:5. [PMID: 25729564 DOI: 10.1186/s13395-015-0030-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
612 Thakur SS, Swiderski K, Chhen VL, James JL, Cranna NJ, Islam AMT, Ryall JG, Lynch GS. HSP70 drives myoblast fusion during C2C12 myogenic differentiation. Biol Open 2020;9:bio053918. [PMID: 32605905 DOI: 10.1242/bio.053918] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
613 Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci 2021;8:699081. [PMID: 34368284 DOI: 10.3389/fvets.2021.699081] [Reference Citation Analysis]
614 Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol. 2018;19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 28.0] [Reference Citation Analysis]
615 Yao L, Tichy ED, Zhong L, Mohanty S, Wang L, Ai E, Yang S, Mourkioti F, Qin L. Gli1 Defines a Subset of Fibro-adipogenic Progenitors that Promote Skeletal Muscle Regeneration With Less Fat Accumulation. J Bone Miner Res 2021;36:1159-73. [PMID: 33529374 DOI: 10.1002/jbmr.4265] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
616 Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21:854-862. [PMID: 26248268 DOI: 10.1038/nm.3918] [Cited by in Crossref: 229] [Cited by in F6Publishing: 193] [Article Influence: 32.7] [Reference Citation Analysis]
617 Maggio I, Chen X, Gonçalves MA. The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med 2016;8:59. [PMID: 27215286 DOI: 10.1186/s13073-016-0316-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
618 O'Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018;11:810-21. [PMID: 30524716 DOI: 10.1093/ckj/sfy052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
619 Theret M, Gsaier L, Ben Larbi S, Weiss-Gayet M, Mounier R. Analysis of Muscle Stem Cell Fate Through Modulation of AMPK Activity. Methods Mol Biol 2018;1732:539-49. [PMID: 29480498 DOI: 10.1007/978-1-4939-7598-3_34] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
620 Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021;22:5929. [PMID: 34072959 DOI: 10.3390/ijms22115929] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
621 Wu R, Huang C, Wu Q, Jia X, Liu M, Xue Z, Qiu Y, Niu X, Wang Y. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res Ther 2019;10:80. [PMID: 30849996 DOI: 10.1186/s13287-019-1182-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
622 Nair N, Gongora E. Stem cell therapy in heart failure: Where do we stand today? Biochim Biophys Acta Mol Basis Dis. 2020;1866:165489. [PMID: 31199998 DOI: 10.1016/j.bbadis.2019.06.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
623 Nederveen JP, Joanisse S, Snijders T, Parise G. The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells. Curr Stem Cell Rep 2017;3:192-201. [DOI: 10.1007/s40778-017-0089-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
624 Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res 2019;375:575-88. [DOI: 10.1007/s00441-018-2955-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 15.5] [Reference Citation Analysis]
625 Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019;20:E5760. [PMID: 31744081 DOI: 10.3390/ijms20225760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
626 Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. Cell Regen 2021;10:11. [PMID: 33791915 DOI: 10.1186/s13619-020-00072-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
627 Wong A, Pomerantz JH. The Role of Muscle Stem Cells in Regeneration and Recovery after Denervation: A Review. Plast Reconstr Surg 2019;143:779-88. [PMID: 30817650 DOI: 10.1097/PRS.0000000000005370] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
628 Vojnits K, Pan H, Dai X, Sun H, Tong Q, Darabi R, Huard J, Li Y. Functional Neuronal Differentiation of Injury-Induced Muscle-Derived Stem Cell-Like Cells with Therapeutic Implications. Sci Rep 2017;7:1177. [PMID: 28446779 DOI: 10.1038/s41598-017-01311-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
629 Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD: Journal of Chronic Obstructive Pulmonary Disease 2018;15:536-56. [DOI: 10.1080/15412555.2018.1536116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
630 Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol. 2019;378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
631 Zhu H, Xiao F, Wang G, Wei X, Jiang L, Chen Y, Zhu L, Wang H, Diao Y, Wang H, Ip N, Cheung T, Wu Z. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Reports 2016;16:2102-15. [DOI: 10.1016/j.celrep.2016.07.041] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
632 Kim J, Yoon JH. Does Obesity Affect the Severity of Exercise-Induced Muscle Injury? J Obes Metab Syndr 2021;30:132-40. [PMID: 33820879 DOI: 10.7570/jomes20100] [Reference Citation Analysis]
633 Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Sci Rep 2016;6:22288. [PMID: 26924503 DOI: 10.1038/srep22288] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
634 Qi X, Hu M, Xiang Y, Wang D, Xu Y, Hou Y, Zhou H, Luan Y, Wang Z, Zhang W, Li X, Zhao S, Zhao Y. LncRNAs are regulated by chromatin states and affect the skeletal muscle cell differentiation. Cell Prolif 2020;53:e12879. [PMID: 32770602 DOI: 10.1111/cpr.12879] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
635 Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. J Biomater Sci Polym Ed 2021;:1-26. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Reference Citation Analysis]
636 Addicks GC, Brun CE, Sincennes MC, Saber J, Porter CJ, Francis Stewart A, Ernst P, Rudnicki MA. MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nat Commun 2019;10:4256. [PMID: 31534153 DOI: 10.1038/s41467-019-12086-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
637 Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 2016;26:434-44. [PMID: 26948993 DOI: 10.1016/j.tcb.2016.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 11.7] [Reference Citation Analysis]
638 Monge C, DiStasio N, Rossi T, Sébastien M, Sakai H, Kalman B, Boudou T, Tajbakhsh S, Marty I, Bigot A, Mouly V, Picart C. Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films. Stem Cell Res Ther 2017;8:104. [PMID: 28464938 DOI: 10.1186/s13287-017-0556-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
639 Shirasawa H, Matsumura N, Shimoda M, Oki S, Yoda M, Tohmonda T, Kanai Y, Matsumoto M, Nakamura M, Horiuchi K. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Sci Rep 2017;7:41552. [PMID: 28139720 DOI: 10.1038/srep41552] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
640 Nascimento TL, Silva MT, Miyabara EH. BGP-15 improves contractile function of regenerating soleus muscle. J Muscle Res Cell Motil 2018;39:25-34. [PMID: 29948663 DOI: 10.1007/s10974-018-9495-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
641 Lieber RL, Ward SR. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol 2013;305:C241-52. [PMID: 23761627 DOI: 10.1152/ajpcell.00173.2013] [Cited by in Crossref: 156] [Cited by in F6Publishing: 160] [Article Influence: 17.3] [Reference Citation Analysis]
642 Dogan SA, Cerutti R, Benincá C, Brea-Calvo G, Jacobs HT, Zeviani M, Szibor M, Viscomi C. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metab 2018;28:764-775.e5. [PMID: 30122554 DOI: 10.1016/j.cmet.2018.07.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
643 Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015;84:188-97. [PMID: 25271446 DOI: 10.1016/j.addr.2014.09.008] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 9.6] [Reference Citation Analysis]
644 Whitely ME, Collins PB, Iwamoto M, Wenke JC. Administration of a selective retinoic acid receptor-γ agonist improves neuromuscular strength in a rodent model of volumetric muscle loss. J Exp Orthop 2021;8:58. [PMID: 34383202 DOI: 10.1186/s40634-021-00378-3] [Reference Citation Analysis]
645 Escobar H, Krause A, Keiper S, Kieshauer J, Müthel S, de Paredes MG, Metzler E, Kühn R, Heyd F, Spuler S. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight 2021;6:145994. [PMID: 33848270 DOI: 10.1172/jci.insight.145994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
646 Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J. Protein Expression Landscape Defines the Differentiation Potential Specificity of Adipogenic and Myogenic Precursors in the Skeletal Muscle. J Proteome Res 2018;17:3853-65. [DOI: 10.1021/acs.jproteome.8b00530] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
647 Scott RW, Arostegui M, Schweitzer R, Rossi FMV, Underhill TM. Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell. 2019;25:797-813.e9. [PMID: 31809738 DOI: 10.1016/j.stem.2019.11.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 24.5] [Reference Citation Analysis]
648 D'Lugos AC, Fry CS, Ormsby JC, Sweeney KR, Brightwell CR, Hale TM, Gonzales RJ, Angadi SS, Carroll CC, Dickinson JM. Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscle-specific manner. Physiol Rep 2019;7:e14052. [PMID: 30963722 DOI: 10.14814/phy2.14052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
649 Pietrangelo T, Di Filippo ES, Locatelli M, Piacenza F, Farina M, Pavoni E, Di Donato A, Innosa D, Provinciali M, Fulle S. Extracellular Guanosine 5'-Triphosphate Induces Human Muscle Satellite Cells to Release Exosomes Stuffed With Guanosine. Front Pharmacol 2018;9:152. [PMID: 29615899 DOI: 10.3389/fphar.2018.00152] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
650 Du H, Shih CH, Wosczyna MN, Mueller AA, Cho J, Aggarwal A, Rando TA, Feldman BJ. Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat Commun 2017;8:669. [PMID: 28939843 DOI: 10.1038/s41467-017-00522-7] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 8.6] [Reference Citation Analysis]
651 Mohiuddin M, Lee NH, Moon JY, Han WM, Anderson SE, Choi JJ, Shin E, Nakhai SA, Tran T, Aliya B, Kim DY, Gerold A, Hansen LM, Taylor WR, Jang YC. Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. Sci Rep 2019;9:9551. [PMID: 31266969 DOI: 10.1038/s41598-019-45923-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
652 Choi KH, Yoon JW, Kim M, Jeong J, Ryu M, Park S, Jo C, Lee CK. Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro. Food Sci Anim Resour 2020;40:659-67. [PMID: 32734272 DOI: 10.5851/kosfa.2020.e39] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
653 Skrivergaard S, Rasmussen MK, Therkildsen M, Young JF. Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production. Int J Mol Sci 2021;22:8376. [PMID: 34445082 DOI: 10.3390/ijms22168376] [Reference Citation Analysis]
654 Geiger A, Daughtry M, Gow C, Siegel P, Shi H, Gerrard D. Long-term selection of chickens for body weight alters muscle satellite cell behaviors. Poultry Science 2018;97:2557-67. [DOI: 10.3382/ps/pey050] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
655 Petrany MJ, Song T, Sadayappan S, Millay DP. Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 2020;5:136095. [PMID: 32310830 DOI: 10.1172/jci.insight.136095] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
656 Orssatto LBDR, Wiest MJ, Diefenthaeler F. Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 2018;175:17-23. [PMID: 29997056 DOI: 10.1016/j.mad.2018.06.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
657 Tsuchiya Y, Bayer ML, Schjerling P, Soendenbroe C, Kjaer M. CRediT author statement (Author contributions)Yoshifumi Tsuchiya: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Visualization, Supervision, Project administration, Funding acquisition. Monika Lucia Bayer: Investigation, Resources. Peter Schjerling: Investigation, Writing – review & editing. . Casper Soendenbroe: Validation, Writing – review & editing. Michael Kjaer: Writing – review & editing, Supervision, Project administration, Funding acquisition acquisition.Human derived tendon cells contribute to myotube formation in vitro. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113164] [Reference Citation Analysis]
658 Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018;9:1130. [PMID: 30246791 DOI: 10.3389/fphys.2018.01130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
659 Singh A, Raghav A, Shiekh PA, Kumar A. Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioact Mater 2021;6:2231-49. [PMID: 33553812 DOI: 10.1016/j.bioactmat.2021.01.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
660 Luo Z, Sun Y, Lin J, Qi B, Chen J. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. WJSC 2021;13:1765-85. [DOI: 10.4252/wjsc.v13.i11.1765] [Reference Citation Analysis]
661 Simon L, LeCapitaine N, Berner P, Vande Stouwe C, Mussell JC, Allerton T, Primeaux SD, Dufour J, Nelson S, Bagby GJ, Cefalu W, Molina PE. Chronic binge alcohol consumption alters myogenic gene expression and reduces in vitro myogenic differentiation potential of myoblasts from rhesus macaques. Am J Physiol Regul Integr Comp Physiol 2014;306:R837-44. [PMID: 24671243 DOI: 10.1152/ajpregu.00502.2013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
662 Mnatsakanyan H, Serra RSI, Rico P, Salmerón-Sánchez M. Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Sci Rep 2018;8:13642. [PMID: 30206294 DOI: 10.1038/s41598-018-32067-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
663 Gautam J, Yao Y. Pericytes in Skeletal Muscle. Adv Exp Med Biol 2019;1122:59-72. [PMID: 30937863 DOI: 10.1007/978-3-030-11093-2_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
664 Smith LR. Influencing the secretion of myogenic factors from mesenchymal stem cells. Stem Cell Res Ther 2014;5:96. [PMID: 25157834 DOI: 10.1186/scrt485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
665 Stauber T, Blache U, Snedeker JG. Tendon tissue microdamage and the limits of intrinsic repair. Matrix Biol 2020;85-86:68-79. [PMID: 31325483 DOI: 10.1016/j.matbio.2019.07.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
666 Attia M, Maurer M, Robinet M, Le Grand F, Fadel E, Le Panse R, Butler-browne G, Berrih-aknin S. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathol 2017;134:869-88. [DOI: 10.1007/s00401-017-1754-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
667 Yamamoto M, Legendre NP, Biswas AA, Lawton A, Yamamoto S, Tajbakhsh S, Kardon G, Goldhamer DJ. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration. Stem Cell Reports 2018;10:956-69. [PMID: 29478898 DOI: 10.1016/j.stemcr.2018.01.027] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 12.0] [Reference Citation Analysis]
668 Kurosaka M, Ogura Y, Funabashi T, Akema T. Early Growth Response 3 (Egr3) Contributes a Maintenance of C2C12 Myoblast Proliferation. J Cell Physiol 2017;232:1114-22. [PMID: 27576048 DOI: 10.1002/jcp.25574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
669 Osana S, Kitajima Y, Suzuki N, Nunomiya A, Takada H, Kubota T, Murayama K, Nagatomi R. Puromycin-sensitive aminopeptidase is required for C2C12 myoblast proliferation and differentiation. J Cell Physiol 2021;236:5293-305. [PMID: 33378552 DOI: 10.1002/jcp.30237] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
670 Bae JH, Hong M, Jeong HJ, Kim H, Lee SJ, Ryu D, Bae GU, Cho SC, Lee YS, Krauss RS, Kang JS. Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration. J Cachexia Sarcopenia Muscle 2020;11:1089-103. [PMID: 32103583 DOI: 10.1002/jcsm.12563] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
671 Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 2013;280:4131-48. [PMID: 23663276 DOI: 10.1111/febs.12338] [Cited by in Crossref: 329] [Cited by in F6Publishing: 318] [Article Influence: 36.6] [Reference Citation Analysis]
672 Pirkmajer S, Bezjak K, Matkovič U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV. Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 2020;11:566584. [PMID: 33101052 DOI: 10.3389/fphys.2020.566584] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
673 Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020;117:29691-701. [PMID: 33148801 DOI: 10.1073/pnas.2018391117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
674 Han WM, Jang YC, García AJ. Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biol 2017;60-61:96-109. [PMID: 27269735 DOI: 10.1016/j.matbio.2016.06.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
675 Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One 2014;9:e92363. [PMID: 24647690 DOI: 10.1371/journal.pone.0092363] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
676 Théret M, Chazaud B, Mounier R. [When regulation of cell energy meets regulation of inflammation: AMPK triggers skewing of macrophage phenotype during skeletal muscle regeneration]. Med Sci (Paris) 2014;30:35-8. [PMID: 24472457 DOI: 10.1051/medsci/20143001011] [Reference Citation Analysis]
677 Konagaya Y, Takakura K, Sogabe M, Bisaria A, Liu C, Meyer T, Sehara-Fujisawa A, Matsuda M, Terai K. Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle 2020;19:3167-81. [PMID: 33131406 DOI: 10.1080/15384101.2020.1838779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
678 Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K. The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Engineering Part A 2019;25:1001-12. [DOI: 10.1089/ten.tea.2018.0200] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
679 Rigillo G, Basile V, Belluti S, Ronzio M, Sauta E, Ciarrocchi A, Latella L, Saclier M, Molinari S, Vallarola A, Messina G, Mantovani R, Dolfini D, Imbriano C. The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nat Commun 2021;12:6013. [PMID: 34650038 DOI: 10.1038/s41467-021-26293-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
680 Belli R, Bonato A, De Angelis L, Mirabilii S, Ricciardi MR, Tafuri A, Molfino A, Gorini S, Leigheb M, Costelli P, Caruso M, Muscaritoli M, Ferraro E. Metabolic Reprogramming Promotes Myogenesis During Aging. Front Physiol 2019;10:897. [PMID: 31354530 DOI: 10.3389/fphys.2019.00897] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
681 Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021;13:729. [PMID: 33668846 DOI: 10.3390/nu13030729] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
682 Priftis A, Goutzourelas N, Halabalaki M, Ntasi G, Stagos D, Amoutzias GD, Skaltsounis LA, Kouretas D. Effect of polyphenols from coffee and grape on gene expression in myoblasts. Mech Ageing Dev 2018;172:115-22. [PMID: 29174054 DOI: 10.1016/j.mad.2017.11.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
683 Howard JJ, Graham K, Shortland AP. Understanding skeletal muscle in cerebral palsy: a path to personalized medicine? Dev Med Child Neurol 2021. [PMID: 34499350 DOI: 10.1111/dmcn.15018] [Reference Citation Analysis]
684 Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020;69:565-98. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Reference Citation Analysis]
685 Kosan C, Heidel FH, Godmann M, Bierhoff H. Epigenetic Erosion in Adult Stem Cells: Drivers and Passengers of Aging. Cells 2018;7:E237. [PMID: 30501028 DOI: 10.3390/cells7120237] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
686 Alonso-Martin S, Auradé F, Mademtzoglou D, Rochat A, Zammit PS, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. Elife 2018;7:e26039. [PMID: 29882512 DOI: 10.7554/eLife.26039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
687 Jensen KY, Nielsen JL, Schrøder HD, Jacobsen M, Boyle E, Jørgensen AN, Bech RD, Frandsen U, Aagaard P, Diederichsen LP. Lack of muscle stem cell proliferation and myocellular hypertrophy in sIBM patients following blood-flow restricted resistance training. Neuromuscular Disorders 2022. [DOI: 10.1016/j.nmd.2022.04.006] [Reference Citation Analysis]
688 Qu R, Gupta K, Dong D, Jiang Y, Landa B, Saez C, Strickland G, Levinsohn J, Weng PL, Taketo MM, Kluger Y, Myung P. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Dev Cell 2022:S1534-5807(22)00205-2. [PMID: 35421372 DOI: 10.1016/j.devcel.2022.03.011] [Reference Citation Analysis]
689 Dahlqvist JR, Vissing J. Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders. J Mol Neurosci 2016;58:388-93. [PMID: 26585990 DOI: 10.1007/s12031-015-0686-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
690 Kaczmarek A, Kaczmarek M, Ciałowicz M, Clemente FM, Wolański P, Badicu G, Murawska-Ciałowicz E. The Role of Satellite Cells in Skeletal Muscle Regeneration-The Effect of Exercise and Age. Biology (Basel) 2021;10:1056. [PMID: 34681155 DOI: 10.3390/biology10101056] [Reference Citation Analysis]
691 Oishi Y, Roy RR, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration: MyHC Phenotype in Heat Stress. Muscle Nerve 2015;52:1047-56. [DOI: 10.1002/mus.24686] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
692 Gauvin MC, Pillai SM, Reed SA, Stevens JR, Hoffman ML, Jones AK, Zinn SA, Govoni KE. Poor maternal nutrition during gestation in sheep alters prenatal muscle growth and development in offspring. J Anim Sci 2020;98:skz388. [PMID: 31875422 DOI: 10.1093/jas/skz388] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
693 Ramalingam V, Harshavardhan M, Hwang I. Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorganic Chemistry 2020;105:104459. [DOI: 10.1016/j.bioorg.2020.104459] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
694 Kurosaka M, Ogura Y, Funabashi T, Akema T. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion. J Cell Physiol 2016;231:2275-85. [PMID: 26892397 DOI: 10.1002/jcp.25345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
695 Scimeca M, Bonanno E, Piccirilli E, Baldi J, Mauriello A, Orlandi A, Tancredi V, Gasbarra E, Tarantino U. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients. Stem Cells Int 2015;2015:469459. [PMID: 26101529 DOI: 10.1155/2015/469459] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
696 Yablonka-Reuveni Z, Danoviz ME, Phelps M, Stuelsatz P. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front Aging Neurosci 2015;7:85. [PMID: 26074812 DOI: 10.3389/fnagi.2015.00085] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
697 San Emeterio CL, Olingy CE, Chu Y, Botchwey EA. Selective recruitment of non-classical monocytes promotes skeletal muscle repair. Biomaterials 2017;117:32-43. [PMID: 27930948 DOI: 10.1016/j.biomaterials.2016.11.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
698 Daou N, Hassani M, Matos E, De Castro GS, Costa RGF, Seelaender M, Moresi V, Rocchi M, Adamo S, Li Z, Agbulut O, Coletti D. Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. Int J Mol Sci 2020;21:E1092. [PMID: 32041358 DOI: 10.3390/ijms21031092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
699 Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016;116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
700 Fongy A, Falcone S, Lainé J, Prudhon B, Martins-Bach A, Bitoun M. Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model. Sci Rep 2019;9:1580. [PMID: 30733559 DOI: 10.1038/s41598-018-38184-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
701 Tierney MT, Stec MJ, Sacco A. Assessing Muscle Stem Cell Clonal Complexity During Aging. Methods Mol Biol 2019;2045:1-11. [PMID: 29845579 DOI: 10.1007/7651_2018_139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
702 Barreiro E, Sznajder JI, Nader GA, Budinger GR. Muscle dysfunction in patients with lung diseases: a growing epidemic. Am J Respir Crit Care Med 2015;191:616-9. [PMID: 25767924 DOI: 10.1164/rccm.201412-2189OE] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
703 Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. Elife 2020;9:e46981. [PMID: 32011235 DOI: 10.7554/eLife.46981] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
704 Hosseini S, Taghiyar L, Safari F, Baghaban Eslaminejad M. Regenerative Medicine Applications of Mesenchymal Stem Cells. Adv Exp Med Biol 2018;1089:115-41. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
705 Castanieto A, Johnston MJ, Nystul TG. EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells. Elife 2014;3. [PMID: 25437306 DOI: 10.7554/eLife.04437] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
706 Rahman MM, Ghosh M, Subramani J, Fong GH, Carlson ME, Shapiro LH. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 2014;32:1564-77. [PMID: 24307555 DOI: 10.1002/stem.1610] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
707 Pipalia TG, Koth J, Roy SD, Hammond CL, Kawakami K, Hughes SM. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 2016;9:671-84. [PMID: 27149989 DOI: 10.1242/dmm.022251] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
708 Nederveen JP, Betz MW, Snijders T, Parise G. The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exerc Sport Sci Rev 2021