BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garriga J, Bhattacharya S, Calbó J, Marshall RM, Truongcao M, Haines DS, Graña X. CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol 2003;23:5165-73. [PMID: 12861003 DOI: 10.1128/MCB.23.15.5165-5173.2003] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Kumar D, Sukapaka M, Babu GD, Padwad Y. Chemical Composition and In Vitro Cytotoxicity of Essential Oils from Leaves and Flowers of Callistemon citrinus from Western Himalayas. PLoS One 2015;10:e0133823. [PMID: 26308916 DOI: 10.1371/journal.pone.0133823] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
2 Jing L, Tang Y, Goto M, Lee KH, Xiao Z. SAR study on N2,N4-disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents. RSC Adv 2018;8:11871-85. [PMID: 29682280 DOI: 10.1039/c8ra01440j] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
3 Liou LY, Herrmann CH, Rice AP. Human immunodeficiency virus type 1 infection induces cyclin T1 expression in macrophages. J Virol 2004;78:8114-9. [PMID: 15254183 DOI: 10.1128/JVI.78.15.8114-8119.2004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
4 Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021;11:678559. [PMID: 34041038 DOI: 10.3389/fonc.2021.678559] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bathe F, Kempf C, Osmani SA, Osmani AH, Hettinger S, Wohlmann E, Fischer R. Functional characterization of a new member of the Cdk9 family in Aspergillus nidulans. Eukaryot Cell 2010;9:1901-12. [PMID: 20952582 DOI: 10.1128/EC.00384-09] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
6 Garriga J, Xie H, Obradovic Z, Graña X. Selective control of gene expression by CDK9 in human cells. J Cell Physiol 2010;222:200-8. [PMID: 19780058 DOI: 10.1002/jcp.21938] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.1] [Reference Citation Analysis]
7 Ouni I, Flick K, Kaiser P. A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Mol Cell 2010;40:954-64. [PMID: 21172660 DOI: 10.1016/j.molcel.2010.11.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
8 Tang W, Wang W, Zhao Y, Zhao Z. MicroRNA-874 inhibits cell proliferation and invasion by targeting cyclin-dependent kinase 9 in osteosarcoma. Oncol Lett 2018;15:7649-54. [PMID: 29725464 DOI: 10.3892/ol.2018.8294] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
9 Yang Z, He N, Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol Cell Biol. 2008;28:967-976. [PMID: 18039861 DOI: 10.1128/mcb.01020-07] [Cited by in Crossref: 236] [Cited by in F6Publishing: 167] [Article Influence: 16.9] [Reference Citation Analysis]
10 Mikolcevic P, Rainer J, Geley S. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 2012;11:3758-68. [PMID: 22895054 DOI: 10.4161/cc.21592] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
11 Fujita T, Ryser S, Piuz I, Schlegel W. Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. Mol Cell Biol 2008;28:1630-43. [PMID: 18086894 DOI: 10.1128/MCB.01767-07] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
12 Zhang H, Pandey S, Travers M, Sun H, Morton G, Madzo J, Chung W, Khowsathit J, Perez-Leal O, Barrero CA, Merali C, Okamoto Y, Sato T, Pan J, Garriga J, Bhanu NV, Simithy J, Patel B, Huang J, Raynal NJ, Garcia BA, Jacobson MA, Kadoch C, Merali S, Zhang Y, Childers W, Abou-Gharbia M, Karanicolas J, Baylin SB, Zahnow CA, Jelinek J, Graña X, Issa JJ. Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell 2018;175:1244-1258.e26. [PMID: 30454645 DOI: 10.1016/j.cell.2018.09.051] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 25.7] [Reference Citation Analysis]
13 Stetz G, Tse A, Verkhivker GM. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. PLoS One 2017;12:e0186089. [PMID: 29095844 DOI: 10.1371/journal.pone.0186089] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
14 Kim Y, Kipreos ET. The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB-1 complex. Mol Cell Biol 2007;27:1394-406. [PMID: 17145765 DOI: 10.1128/MCB.00736-06] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 2.5] [Reference Citation Analysis]
15 Weinberger LS, Shenk T. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biol 2007;5:e9. [PMID: 17194214 DOI: 10.1371/journal.pbio.0050009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 4.0] [Reference Citation Analysis]
16 O'Brien SK, Cao H, Nathans R, Ali A, Rana TM. P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 2010;285:29713-20. [PMID: 20551309 DOI: 10.1074/jbc.M110.125997] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
17 Shao H, Shi S, Huang S, Hole AJ, Abbas AY, Baumli S, Liu X, Lam F, Foley DW, Fischer PM, Noble M, Endicott JA, Pepper C, Wang S. Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities. J Med Chem 2013;56:640-59. [PMID: 23301767 DOI: 10.1021/jm301475f] [Cited by in Crossref: 88] [Cited by in F6Publishing: 71] [Article Influence: 11.0] [Reference Citation Analysis]
18 Cojocaru M, Bouchard A, Cloutier P, Cooper JJ, Varzavand K, Price DH, Coulombe B. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J Biol Chem 2011;286:5012-22. [PMID: 21127351 DOI: 10.1074/jbc.M110.176628] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
19 Shiozaki Y, Okamura K, Kohno S, Keenan AL, Williams K, Zhao X, Chick WS, Miyazaki-Anzai S, Miyazaki M. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP. J Biol Chem 2018;293:17008-20. [PMID: 30209133 DOI: 10.1074/jbc.RA118.004706] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
20 Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, Henault M, Mostacci N, Farmer P, Renner S, Ihry R, Mansur L, Keller CG, McAllister G, Hild M, Jenkins J, Kaykas A. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun 2018;9:4307. [PMID: 30333485 DOI: 10.1038/s41467-018-06500-x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
21 Wang K, Hampson P, Hazeldine J, Krystof V, Strnad M, Pechan P, M J. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis. PLoS One 2012;7:e30128. [PMID: 22276149 DOI: 10.1371/journal.pone.0030128] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
22 Sotillo E, Garriga J, Padgaonkar A, Kurimchak A, Cook JG, Graña X. Coordinated activation of the origin licensing factor CDC6 and CDK2 in resting human fibroblasts expressing SV40 small T antigen and cyclin E. J Biol Chem 2009;284:14126-35. [PMID: 19321444 DOI: 10.1074/jbc.M900687200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
23 Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008;8:438-49. [PMID: 18500245 DOI: 10.1038/nrc2396] [Cited by in Crossref: 627] [Cited by in F6Publishing: 619] [Article Influence: 48.2] [Reference Citation Analysis]
24 Lam F, Abbas AY, Shao H, Teo T, Adams J, Li P, Bradshaw TD, Fischer PM, Walsby E, Pepper C, Chen Y, Ding J, Wang S. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget 2014;5:7691-704. [PMID: 25277198 DOI: 10.18632/oncotarget.2296] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
25 Yik JH, Chen R, Pezda AC, Samford CS, Zhou Q. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 2004;24:5094-105. [PMID: 15169877 DOI: 10.1128/MCB.24.12.5094-5105.2004] [Cited by in Crossref: 89] [Cited by in F6Publishing: 60] [Article Influence: 5.2] [Reference Citation Analysis]
26 Krueger BJ, Jeronimo C, Roy BB, Bouchard A, Barrandon C, Byers SA, Searcey CE, Cooper JJ, Bensaude O, Cohen EA, Coulombe B, Price DH. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 2008;36:2219-29. [PMID: 18281698 DOI: 10.1093/nar/gkn061] [Cited by in Crossref: 157] [Cited by in F6Publishing: 162] [Article Influence: 12.1] [Reference Citation Analysis]
27 Salerno D, Hasham MG, Marshall R, Garriga J, Tsygankov AY, Graña X. Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene 2007;405:65-78. [PMID: 17949927 DOI: 10.1016/j.gene.2007.09.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
28 Barboric M, Zhang F, Besenicar M, Plemenitas A, Peterlin BM. Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation. J Virol 2005;79:11135-41. [PMID: 16103164 DOI: 10.1128/JVI.79.17.11135-11141.2005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
29 Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, Wimmers K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front Genet 2019;10:117. [PMID: 30838035 DOI: 10.3389/fgene.2019.00117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
30 Katona BW, Glynn RA, Paulosky KE, Feng Z, Davis CI, Ma J, Berry CT, Szigety KM, Matkar S, Liu Y, Wang H, Wu Y, He X, Freedman BD, Brady DC, Hua X. Combined Menin and EGFR Inhibitors Synergize to Suppress Colorectal Cancer via EGFR-Independent and Calcium-Mediated Repression of SKP2 Transcription. Cancer Res 2019;79:2195-207. [PMID: 30877106 DOI: 10.1158/0008-5472.CAN-18-2133] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
31 Egloff S. CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021;78:5543-67. [PMID: 34146121 DOI: 10.1007/s00018-021-03878-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B. Use of ATP analogs to inhibit HIV-1 transcription. Virology. 2012;432:219-231. [PMID: 22771113 DOI: 10.1016/j.virol.2012.06.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006;70:646-59. [PMID: 16959964 DOI: 10.1128/MMBR.00011-06] [Cited by in Crossref: 197] [Cited by in F6Publishing: 144] [Article Influence: 13.1] [Reference Citation Analysis]
34 Medina-Moreno S, Dowling TC, Zapata JC, Le NM, Sausville E, Bryant J, Redfield RR, Heredia A. Targeting of CDK9 with indirubin 3'-monoxime safely and durably reduces HIV viremia in chronically infected humanized mice. PLoS One 2017;12:e0183425. [PMID: 28817720 DOI: 10.1371/journal.pone.0183425] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
35 Anand K, Schulte A, Fujinaga K, Scheffzek K, Geyer M. Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 2007;370:826-36. [PMID: 17540406 DOI: 10.1016/j.jmb.2007.04.077] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
36 Sotillo E, Garriga J, Kurimchak A, Graña X. Cyclin E and SV40 small T antigen cooperate to bypass quiescence and contribute to transformation by activating CDK2 in human fibroblasts. J Biol Chem 2008;283:11280-92. [PMID: 18276582 DOI: 10.1074/jbc.M709055200] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
37 Zhu H, Doherty JR, Kuliyev E, Mead PE. CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev Dyn 2009;238:1346-57. [PMID: 19347956 DOI: 10.1002/dvdy.21920] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
38 Baek K, Brown RS, Birrane G, Ladias JA. Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J Mol Biol 2007;366:563-73. [PMID: 17169370 DOI: 10.1016/j.jmb.2006.11.057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]