BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: García-prat L, Sousa-victor P, Muñoz-cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013;280:4051-62. [DOI: 10.1111/febs.12221] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MV, Bernardini S, Madeddu P, Cesareni G, Seliktar D, Rizzi R, Bearzi C, Cannata SM, Spinetti G, Gargioli C. 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 2014;5:203. [PMID: 24910618 DOI: 10.3389/fphys.2014.00203] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
2 Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022;73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 García-Prat L, Muñoz-Cánoves P. Aging, metabolism and stem cells: Spotlight on muscle stem cells. Mol Cell Endocrinol 2017;445:109-17. [PMID: 27531569 DOI: 10.1016/j.mce.2016.08.021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
4 Wen X, Klionsky DJ. Autophagy is a key factor in maintaining the regenerative capacity of muscle stem cells by promoting quiescence and preventing senescence. Autophagy 2016;12:617-8. [PMID: 27050452 DOI: 10.1080/15548627.2016.1158373] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
5 Lorenzi M, Bonassi S, Lorenzi T, Giovannini S, Bernabei R, Onder G. A review of telomere length in sarcopenia and frailty. Biogerontology 2018;19:209-21. [PMID: 29549539 DOI: 10.1007/s10522-018-9749-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
6 Fanzani A, Monti E, Donato R, Sorci G. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 2013;19:546-54. [PMID: 23890422 DOI: 10.1016/j.molmed.2013.07.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
7 Campbell JM, Mahbub S, Habibalahi A, Paton S, Gronthos S, Goldys E. Ageing human bone marrow mesenchymal stem cells have depleted NAD(P)H and distinct multispectral autofluorescence. Geroscience 2021;43:859-68. [PMID: 32789662 DOI: 10.1007/s11357-020-00250-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Qian L, Zhang H, Gu Y, Li D, He S, Wang H, Cheng Y, Yang W, Yu H, Zhao X, Cai W, Meng L, Jin M, Wang Y, Zhang Y. Reduced production of laminin by hepatic stellate cells contributes to impairment in oval cell response to liver injury in aged mice. Aging (Albany NY) 2018;10:3713-35. [PMID: 30513510 DOI: 10.18632/aging.101665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
9 Teo WH, Lo JF, Fan YN, Huang CY, Huang TF. Ganoderma microsporum immunomodulatory protein, GMI, promotes C2C12 myoblast differentiation in vitro via upregulation of Tid1 and STAT3 acetylation. PLoS One 2020;15:e0244791. [PMID: 33382817 DOI: 10.1371/journal.pone.0244791] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sousa-Franco A, Rebelo K, da Rocha ST, Bernardes de Jesus B. LncRNAs regulating stemness in aging. Aging Cell 2019;18:e12870. [PMID: 30456884 DOI: 10.1111/acel.12870] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
11 Sambasivan R, Tajbakhsh S. Adult skeletal muscle stem cells. Results Probl Cell Differ 2015;56:191-213. [PMID: 25344672 DOI: 10.1007/978-3-662-44608-9_9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
12 Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle 2016;6:1. [PMID: 26783424 DOI: 10.1186/s13395-016-0072-z] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 12.2] [Reference Citation Analysis]
13 Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MR, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2015;93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
14 Lee Y, Kim J, Kim KI, Ki S, Chung SW. Effect of Fatty Acid–Binding Protein 4 Inhibition on Rotator Cuff Muscle Quality: Histological, Biomechanical, and Biomolecular Analysis. Am J Sports Med 2019;47:3089-99. [DOI: 10.1177/0363546519873856] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hengevoss J, Piechotta M, Müller D, Hanft F, Parr MK, Schänzer W, Diel P. Combined effects of androgen anabolic steroids and physical activity on the hypothalamic-pituitary-gonadal axis. J Steroid Biochem Mol Biol 2015;150:86-96. [PMID: 25797375 DOI: 10.1016/j.jsbmb.2015.03.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
16 Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells 2020;9:E1385. [PMID: 32498474 DOI: 10.3390/cells9061385] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
17 Pardo PS, Hajira A, Boriek AM, Mohamed JS. MicroRNA-434-3p regulates age-related apoptosis through eIF5A1 in the skeletal muscle. Aging (Albany NY) 2017;9:1012-29. [PMID: 28331100 DOI: 10.18632/aging.101207] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
18 Sousa-victor P, García-prat L, Serrano AL, Perdiguero E, Muñoz-cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology & Metabolism 2015;26:287-96. [DOI: 10.1016/j.tem.2015.03.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 11.7] [Reference Citation Analysis]
19 Bentzinger CF, Rudnicki MA. Rejuvenating aged muscle stem cells. Nat Med 2014;20:234-5. [PMID: 24603790 DOI: 10.1038/nm.3499] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
20 García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P. Autophagy maintains stemness by preventing senescence. Nature 2016;529:37-42. [PMID: 26738589 DOI: 10.1038/nature16187] [Cited by in F6Publishing: 603] [Reference Citation Analysis]
21 Lacraz G, Rouleau AJ, Couture V, Söllrald T, Drouin G, Veillette N, Grandbois M, Grenier G. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity. PLoS One 2015;10:e0136217. [PMID: 26295702 DOI: 10.1371/journal.pone.0136217] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
22 Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019;20:E2158. [PMID: 31052375 DOI: 10.3390/ijms20092158] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
23 Mária J, Ingrid Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 2017;8:2394-418. [DOI: 10.1039/c7fo00161d] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 6.8] [Reference Citation Analysis]
24 Khademi-Shirvan M, Ghorbaninejad M, Hosseini S, Baghaban Eslaminejad M. The Importance of Stem Cell Senescence in Regenerative Medicine. Adv Exp Med Biol. 2020;. [PMID: 32026416 DOI: 10.1007/5584_2020_489] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development. Cell Transplant. 2017;26:1520-1529. [PMID: 29113463 DOI: 10.1177/0963689717721201] [Cited by in Crossref: 90] [Cited by in F6Publishing: 89] [Article Influence: 22.5] [Reference Citation Analysis]
26 Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada S, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells 2015;33:2456-68. [PMID: 25917344 DOI: 10.1002/stem.2045] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
27 Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, Rota P, Ghiroldi A, Monasky MM, Ciconte G, Pappone C, Graziani A, Anastasia L. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol 2020;8:593508. [PMID: 33262987 DOI: 10.3389/fcell.2020.593508] [Reference Citation Analysis]
28 Schutt C, Hallmann A, Hachim S, Klockner I, Valussi M, Atzberger A, Graumann J, Braun T, Boettger T. Linc-MYH configures INO80 to regulate muscle stem cell numbers and skeletal muscle hypertrophy. EMBO J 2020;39:e105098. [PMID: 32960481 DOI: 10.15252/embj.2020105098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017;37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
30 Dessauge F, Schleder C, Perruchot MH, Rouger K. 3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct. Vet Res 2021;52:72. [PMID: 34011392 DOI: 10.1186/s13567-021-00942-w] [Reference Citation Analysis]
31 Matsubara Y, Furuyama T, Nakayama K, Yoshiya K, Inoue K, Morisaki K, Kume M, Maehara Y. High intramuscular adipose tissue content as a precondition of sarcopenia in patients with aortic aneurysm. Surg Today 2018;48:1052-9. [DOI: 10.1007/s00595-018-1697-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
32 Riddle ES, Bender EL, Thalacker-Mercer AE. Transcript profile distinguishes variability in human myogenic progenitor cell expansion capacity. Physiol Genomics 2018;50:817-27. [PMID: 30004837 DOI: 10.1152/physiolgenomics.00041.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
33 Ho YH, Méndez-Ferrer S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 2020;105:38-46. [PMID: 31806690 DOI: 10.3324/haematol.2018.211334] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 11.7] [Reference Citation Analysis]
34 Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6:197-207. [PMID: 26401465 DOI: 10.1002/jcsm.12043] [Cited by in Crossref: 193] [Cited by in F6Publishing: 182] [Article Influence: 27.6] [Reference Citation Analysis]
35 Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015;7:36. [PMID: 25904863 DOI: 10.3389/fnagi.2015.00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
36 Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014;6:246. [PMID: 25295003 DOI: 10.3389/fnagi.2014.00246] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
37 Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255-264. [PMID: 24531378 DOI: 10.1038/nm.3464] [Cited by in Crossref: 381] [Cited by in F6Publishing: 353] [Article Influence: 47.6] [Reference Citation Analysis]
38 García-Prat L, Martínez-Vicente M, Muñoz-Cánoves P. Methods for Mitochondria and Mitophagy Flux Analyses in Stem Cells of Resting and Regenerating Skeletal Muscle. Methods Mol Biol 2016;1460:223-40. [PMID: 27492176 DOI: 10.1007/978-1-4939-3810-0_16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
39 Grigorian Shamagian L, Madonna R, Taylor D, Climent AM, Prosper F, Bras-Rosario L, Bayes-Genis A, Ferdinandy P, Fernández-Avilés F, Izpisua Belmonte JC, Fuster V, Bolli R. Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circ Res 2019;124:938-51. [PMID: 30870121 DOI: 10.1161/CIRCRESAHA.118.313795] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
40 Tarantino U, Scimeca M, Piccirilli E, Tancredi V, Baldi J, Gasbarra E, Bonanno E. Sarcopenia: a histological and immunohistochemical study on age-related muscle impairment. Aging Clin Exp Res 2015;27 Suppl 1:S51-60. [PMID: 26197719 DOI: 10.1007/s40520-015-0427-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
41 Ogura Y, Sato S, Kurosaka M, Kotani T, Fujiya H, Funabashi T. Age-related decrease in muscle satellite cells is accompanied with diminished expression of early growth response 3 in mice. Mol Biol Rep 2020;47:977-86. [PMID: 31734897 DOI: 10.1007/s11033-019-05189-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
42 Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol 2017;31:203-17. [PMID: 29224697 DOI: 10.1016/j.berh.2017.09.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
43 Sousa-victor P, Muñoz-cánoves P. Regenerative decline of stem cells in sarcopenia. Molecular Aspects of Medicine 2016;50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 9.3] [Reference Citation Analysis]
44 Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G. Autophagy and genomic integrity. Cell Death Differ 2013;20:1444-54. [PMID: 23933813 DOI: 10.1038/cdd.2013.103] [Cited by in Crossref: 114] [Cited by in F6Publishing: 100] [Article Influence: 12.7] [Reference Citation Analysis]
45 Sun XL, Hao QK, Tang RJ, Xiao C, Ge ML, Dong BR. Frailty and Rejuvenation with Stem Cells: Therapeutic Opportunities and Clinical Challenges. Rejuvenation Res 2019;22:484-97. [PMID: 30693831 DOI: 10.1089/rej.2017.2048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
46 Liu C, Guo Q, Li J, Wang S, Wang Y, Li B, Yang H. Identification of rabbit annulus fibrosus-derived stem cells. PLoS One 2014;9:e108239. [PMID: 25259600 DOI: 10.1371/journal.pone.0108239] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
47 Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21:854-862. [PMID: 26248268 DOI: 10.1038/nm.3918] [Cited by in Crossref: 229] [Cited by in F6Publishing: 193] [Article Influence: 32.7] [Reference Citation Analysis]
48 Oberlohr V, Lengel H, Hambright WS, Whitney KE, Evans TA, Huard J. Biologics for Skeletal Muscle Healing: The Role of Senescence and Platelet-Based Treatment Modalities. Operative Techniques in Sports Medicine 2020;28:150754. [DOI: 10.1016/j.otsm.2020.150754] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Larijani B, Foroughi-Heravani N, Alaei S, Rezaei-Tavirani M, Alavi-Moghadam S, Payab M, Goodarzi P, Tayanloo-Beik A, Aghayan HR, Arjmand B. Opportunities and Challenges in Stem Cell Aging. Adv Exp Med Biol 2021;1341:143-75. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Szentesi P, Csernoch L, Dux L, Keller-Pintér A. Changes in Redox Signaling in the Skeletal Muscle with Aging. Oxid Med Cell Longev 2019;2019:4617801. [PMID: 30800208 DOI: 10.1155/2019/4617801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
51 Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021;10:1307. [PMID: 34074012 DOI: 10.3390/cells10061307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
52 Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) 2014;6:820-34. [PMID: 25361036 DOI: 10.18632/aging.100696] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
53 Segalés J, Perdiguero E, Muñoz-Cánoves P. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Front Cell Dev Biol 2016;4:91. [PMID: 27626031 DOI: 10.3389/fcell.2016.00091] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 14.7] [Reference Citation Analysis]
54 Donati C, Cencetti F, Bruni P. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol. 2013;4:338. [PMID: 24324439 DOI: 10.3389/fphys.2013.00338] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
55 Ono Y, Urata Y, Goto S, Nakagawa S, Humbert PO, Li TS, Zammit PS. Muscle stem cell fate is controlled by the cell-polarity protein Scrib. Cell Rep 2015;10:1135-48. [PMID: 25704816 DOI: 10.1016/j.celrep.2015.01.045] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
56 Billin AN, Bantscheff M, Drewes G, Ghidelli-Disse S, Holt JA, Kramer HF, McDougal AJ, Smalley TL, Wells CI, Zuercher WJ, Henke BR. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle. ACS Chem Biol 2016;11:518-29. [PMID: 26696218 DOI: 10.1021/acschembio.5b00772] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
57 Formicola L, Marazzi G, Sassoon DA. The extraocular muscle stem cell niche is resistant to ageing and disease. Front Aging Neurosci 2014;6:328. [PMID: 25520657 DOI: 10.3389/fnagi.2014.00328] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
58 Mistriotis P, Bajpai VK, Wang X, Rong N, Shahini A, Asmani M, Liang MS, Wang J, Lei P, Liu S, Zhao R, Andreadis ST. NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells 2017;35:207-21. [PMID: 27350449 DOI: 10.1002/stem.2452] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
59 Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnall AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, Jimi E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem 2017;292:12885-94. [PMID: 28607151 DOI: 10.1074/jbc.M116.774570] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
60 Domingues-Faria C, Chanet A, Salles J, Berry A, Giraudet C, Patrac V, Denis P, Bouton K, Goncalves-Mendes N, Vasson MP, Boirie Y, Walrand S. Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats. Nutr Metab (Lond) 2014;11:47. [PMID: 25317198 DOI: 10.1186/1743-7075-11-47] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
61 Mahindran E, Law JX, Ng MH, Nordin F. Mesenchymal Stem Cell Transplantation for the Treatment of Age-Related Musculoskeletal Frailty. Int J Mol Sci 2021;22:10542. [PMID: 34638883 DOI: 10.3390/ijms221910542] [Reference Citation Analysis]
62 Alway SE, Mohamed JS, Myers MJ. Mitochondria Initiate and Regulate Sarcopenia. Exerc Sport Sci Rev 2017;45:58-69. [PMID: 28098577 DOI: 10.1249/JES.0000000000000101] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
63 Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradère JP, Le Gonidec S, Dortignac A, Geoffre N, Pereira O, Karaz S, Lee U, Camus M, Chaoui K, Mouisel E, Bigot A, Mouly V, Vigneau M, Pagano AF, Chopard A, Pillard F, Guyonnet S, Cesari M, Burlet-Schiltz O, Pahor M, Feige JN, Vellas B, Valet P, Dray C. The exerkine apelin reverses age-associated sarcopenia. Nat Med 2018;24:1360-71. [PMID: 30061698 DOI: 10.1038/s41591-018-0131-6] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 24.3] [Reference Citation Analysis]
64 Scimeca M, Bonanno E, Piccirilli E, Baldi J, Mauriello A, Orlandi A, Tancredi V, Gasbarra E, Tarantino U. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients. Stem Cells Int 2015;2015:469459. [PMID: 26101529 DOI: 10.1155/2015/469459] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
65 Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell 2020;19:e13223. [PMID: 32857472 DOI: 10.1111/acel.13223] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
66 Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020;13:157. [PMID: 33228751 DOI: 10.1186/s13045-020-00994-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Lo JH, U KP, Yiu T, Ong MT, Lee WY. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat 2020;23:38-52. [PMID: 32489859 DOI: 10.1016/j.jot.2020.04.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
68 Cisterna B, Giagnacovo M, Costanzo M, Fattoretti P, Zancanaro C, Pellicciari C, Malatesta M. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. J Anat 2016;228:771-83. [PMID: 26739770 DOI: 10.1111/joa.12429] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
69 Chen W, Datzkiw D, Rudnicki MA. Satellite cells in ageing: use it or lose it. Open Biol 2020;10:200048. [PMID: 32428419 DOI: 10.1098/rsob.200048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
70 Carrió E, Magli A, Muñoz M, Peinado MA, Perlingeiro R, Suelves M. Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation. BMC Biol 2016;14:30. [PMID: 27075038 DOI: 10.1186/s12915-016-0250-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
71 Sousounis K, Baddour JA, Tsonis PA. Aging and regeneration in vertebrates. Curr Top Dev Biol. 2014;108:217-246. [PMID: 24512711 DOI: 10.1016/B978-0-12-391498-9.00008-5] [Cited by in Crossref: 56] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
72 Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau KHW. Effect of aging on stem cells. World J Exp Med 2017; 7(1): 1-10 [PMID: 28261550 DOI: 10.5493/wjem.v7.i1.1] [Cited by in CrossRef: 70] [Cited by in F6Publishing: 53] [Article Influence: 14.0] [Reference Citation Analysis]
73 Patsalos A, Simandi Z, Hays TT, Peloquin M, Hajian M, Restrepo I, Coen PM, Russell AJ, Nagy L. In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. Aging Cell 2018;17:e12815. [PMID: 30003692 DOI: 10.1111/acel.12815] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
74 He Y, Xie W, Li H, Jin H, Zhang Y, Li Y. Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Front Cell Dev Biol 2021;9:793088. [PMID: 35083219 DOI: 10.3389/fcell.2021.793088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015;21:76-80. [PMID: 25501907 DOI: 10.1038/nm.3710] [Cited by in Crossref: 234] [Cited by in F6Publishing: 225] [Article Influence: 29.3] [Reference Citation Analysis]
76 Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 2016;26:22-36. [PMID: 26690801 DOI: 10.1016/j.arr.2015.12.004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 10.5] [Reference Citation Analysis]
77 Bengal E, Odeh M. Rejuvenating Stem Cells to Restore Muscle Regeneration in Aging. In: Duscher D, Shiffman MA, editors. Regenerative Medicine and Plastic Surgery. Cham: Springer International Publishing; 2019. pp. 311-24. [DOI: 10.1007/978-3-030-19962-3_22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 2014;13:3183-90. [PMID: 25485497 DOI: 10.4161/15384101.2014.965072] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
79 Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 2014;506:316-21. [PMID: 24522534 DOI: 10.1038/nature13013] [Cited by in F6Publishing: 488] [Reference Citation Analysis]
80 García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell 2017;20:593-608. [PMID: 28475885 DOI: 10.1016/j.stem.2017.04.011] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 17.8] [Reference Citation Analysis]