BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kannan N, Neuwald AF. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 2004;13:2059-77. [PMID: 15273306 DOI: 10.1110/ps.04637904] [Cited by in Crossref: 95] [Cited by in F6Publishing: 92] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Zhang T, Chen K, Shen S, Ruan J, Kurgan L. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins 2009;76:617-36. [DOI: 10.1002/prot.22375] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 4.9] [Reference Citation Analysis]
2 Cayla M, Rachidi N, Leclercq O, Schmidt-Arras D, Rosenqvist H, Wiese M, Späth GF. Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability. PLoS Pathog 2014;10:e1004347. [PMID: 25232945 DOI: 10.1371/journal.ppat.1004347] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
3 Walker C, Wang Y, Olivieri C, Karamafrooz A, Casby J, Bathon K, Calebiro D, Gao J, Bernlohr DA, Taylor SS, Veglia G. Cushing's syndrome driver mutation disrupts protein kinase A allosteric network, altering both regulation and substrate specificity. Sci Adv 2019;5:eaaw9298. [PMID: 31489371 DOI: 10.1126/sciadv.aaw9298] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
4 Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan PG, Rao A. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 2006;441:646-50. [PMID: 16511445 DOI: 10.1038/nature04631] [Cited by in Crossref: 281] [Cited by in F6Publishing: 262] [Article Influence: 18.7] [Reference Citation Analysis]
5 Jiang YY, Maier W, Baumeister R, Minevich G, Joachimiak E, Ruan Z, Kannan N, Clarke D, Frankel J, Gaertig J. The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate Tetrahymena. Genetics 2017;206:873-88. [PMID: 28413159 DOI: 10.1534/genetics.117.200766] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
6 Kannan N, Neuwald AF. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 2005;351:956-72. [PMID: 16051269 DOI: 10.1016/j.jmb.2005.06.057] [Cited by in Crossref: 114] [Cited by in F6Publishing: 113] [Article Influence: 7.1] [Reference Citation Analysis]
7 Murugesan S, Murugesan J, Palaniappan S, Palaniappan S, Murugan T, Siddiqui SS, Loganathan S. Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment: A Comprehensive Analysis. Curr Cancer Drug Targets 2021;21:55-69. [PMID: 33038912 DOI: 10.2174/1568009620666201009130008] [Reference Citation Analysis]
8 Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput Struct Biotechnol J 2013;5:e201302011. [PMID: 24688704 DOI: 10.5936/csbj.201302011] [Cited by in Crossref: 117] [Cited by in F6Publishing: 92] [Article Influence: 14.6] [Reference Citation Analysis]
9 Rothweiler U, Stensen W, Brandsdal BO, Isaksson J, Leeson FA, Engh RA, Svendsen JSM. Probing the ATP-Binding Pocket of Protein Kinase DYRK1A with Benzothiazole Fragment Molecules. J Med Chem 2016;59:9814-24. [DOI: 10.1021/acs.jmedchem.6b01086] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
10 Talevich E, Mirza A, Kannan N. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 2011;11:321. [PMID: 22047078 DOI: 10.1186/1471-2148-11-321] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
11 Chen Y, Jirage D, Caridha D, Kathcart AK, Cortes EA, Dennull RA, Geyer JA, Prigge ST, Waters NC. Identification of an effector protein and gain-of-function mutants that activate Pfmrk, a malarial cyclin-dependent protein kinase. Molecular and Biochemical Parasitology 2006;149:48-57. [DOI: 10.1016/j.molbiopara.2006.04.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
12 Aoto PC, Martin BT, Wright PE. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ. Sci Rep 2016;6:28655. [PMID: 27353957 DOI: 10.1038/srep28655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
13 Ochoa D, Bradley D, Beltrao P. Evolution, dynamics and dysregulation of kinase signalling. Current Opinion in Structural Biology 2018;48:133-40. [DOI: 10.1016/j.sbi.2017.12.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhu G, Fujii K, Belkina N, Liu Y, James M, Herrero J, Shaw S. Exceptional Disfavor for Proline at the P+1 Position among AGC and CAMK Kinases Establishes Reciprocal Specificity between Them and the Proline-directed Kinases. Journal of Biological Chemistry 2005;280:10743-8. [DOI: 10.1074/jbc.m413159200] [Cited by in Crossref: 42] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
15 Ohe K, Hagiwara M. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases. ACS Chem Biol 2015;10:914-24. [PMID: 25560473 DOI: 10.1021/cb500697f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
16 Brameier M, Haan J, Krings A, MacCallum RM. Automatic discovery of cross-family sequence features associated with protein function. BMC Bioinformatics 2006;7:16. [PMID: 16409628 DOI: 10.1186/1471-2105-7-16] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
17 Craven GB, Affron DP, Allen CE, Matthies S, Greener JG, Morgan RML, Tate EW, Armstrong A, Mann DJ. High-Throughput Kinetic Analysis for Target-Directed Covalent Ligand Discovery. Angew Chem Int Ed Engl 2018;57:5257-61. [PMID: 29480525 DOI: 10.1002/anie.201711825] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 12.3] [Reference Citation Analysis]
18 Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017;9:1326-51. [DOI: 10.1039/c7mt00203c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
19 Horjales S, Schmidt-arras D, Limardo R, Leclercq O, Obal G, Prina E, Turjanski A, Späth G, Buschiazzo A. The Crystal Structure of the MAP Kinase LmaMPK10 from Leishmania Major Reveals Parasite-Specific Features and Regulatory Mechanisms. Structure 2012;20:1649-60. [DOI: 10.1016/j.str.2012.07.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
20 Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev. 2011;25:801-813. [PMID: 21498570 DOI: 10.1101/gad.2034211] [Cited by in Crossref: 152] [Cited by in F6Publishing: 143] [Article Influence: 15.2] [Reference Citation Analysis]
21 Rakshambikai R, Manoharan M, Gnanavel M, Srinivasan N. Typical and atypical domain combinations in human protein kinases: functions, disease causing mutations and conservation in other primates. RSC Adv 2015;5:25132-48. [DOI: 10.1039/c4ra11685b] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
22 Becker W, Sippl W. Activation, regulation, and inhibition of DYRK1A. FEBS J 2011;278:246-56. [PMID: 21126318 DOI: 10.1111/j.1742-4658.2010.07956.x] [Cited by in Crossref: 131] [Cited by in F6Publishing: 120] [Article Influence: 11.9] [Reference Citation Analysis]
23 Chiu JC, Ko HW, Edery I. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 2011;145:357-70. [PMID: 21514639 DOI: 10.1016/j.cell.2011.04.002] [Cited by in Crossref: 126] [Cited by in F6Publishing: 116] [Article Influence: 12.6] [Reference Citation Analysis]
24 Bermingham DP, Hardaway JA, Refai O, Marks CR, Snider SL, Sturgeon SM, Spencer WC, Colbran RJ, Miller DM 3rd, Blakely RD. The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism. J Neurosci 2017;37:9288-304. [PMID: 28842414 DOI: 10.1523/JNEUROSCI.1582-17.2017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
25 Kalaivani R, Reema R, Srinivasan N. Recognition of sites of functional specialisation in all known eukaryotic protein kinase families. PLoS Comput Biol 2018;14:e1005975. [PMID: 29438395 DOI: 10.1371/journal.pcbi.1005975] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wengier DL, Lampard GR, Bergmann DC. Dissection of MAPK signaling specificity through protein engineering in a developmental context. BMC Plant Biol 2018;18:60. [PMID: 29636017 DOI: 10.1186/s12870-018-1274-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Dissmeyer N, Schnittger A. The age of protein kinases. Methods Mol Biol 2011;779:7-52. [PMID: 21837559 DOI: 10.1007/978-1-61779-264-9_2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
28 Kannan N, Neuwald AF, Taylor SS. Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Biochim Biophys Acta 2008;1784:27-32. [PMID: 17977811 DOI: 10.1016/j.bbapap.2007.09.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
29 Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020;12:E2106. [PMID: 32751160 DOI: 10.3390/cancers12082106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
30 Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. J Biol Chem 2014;289:23546-56. [PMID: 25006254 DOI: 10.1074/jbc.M114.578237] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 4.1] [Reference Citation Analysis]
31 Bradley D, Beltrao P. Evolution of protein kinase substrate recognition at the active site. PLoS Biol 2019;17:e3000341. [PMID: 31233486 DOI: 10.1371/journal.pbio.3000341] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
32 Zeke A, Misheva M, Reményi A, Bogoyevitch MA. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016;80:793-835. [DOI: 10.1128/mmbr.00043-14] [Cited by in Crossref: 189] [Cited by in F6Publishing: 124] [Article Influence: 37.8] [Reference Citation Analysis]
33 Niefind K, Yde CW, Ermakova I, Issinger O. Evolved to Be Active: Sulfate Ions Define Substrate Recognition Sites of CK2α and Emphasise its Exceptional Role within the CMGC Family of Eukaryotic Protein Kinases. Journal of Molecular Biology 2007;370:427-38. [DOI: 10.1016/j.jmb.2007.04.068] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
34 Neuwald AF, Altschul SF. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations. PLoS Comput Biol 2016;12:e1005294. [PMID: 28002465 DOI: 10.1371/journal.pcbi.1005294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
35 Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019;127:210-22. [PMID: 30831192 DOI: 10.1016/j.nbd.2019.02.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
36 Coleman RG, Salzberg AC, Cheng AC. Structure-Based Identification of Small Molecule Binding Sites Using a Free Energy Model. J Chem Inf Model 2006;46:2631-7. [DOI: 10.1021/ci600229z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.7] [Reference Citation Analysis]
37 Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014;7:46. [PMID: 24904272 DOI: 10.3389/fnmol.2014.00046] [Cited by in Crossref: 93] [Cited by in F6Publishing: 169] [Article Influence: 13.3] [Reference Citation Analysis]
38 Noble M, Barrett P, Endicott J, Johnson L, Mcdonnell J, Robertson G, Zawaira A. Exploiting structural principles to design cyclin-dependent kinase inhibitors. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2005;1754:58-64. [DOI: 10.1016/j.bbapap.2005.08.019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.5] [Reference Citation Analysis]
39 Mirza A, Mustafa M, Talevich E, Kannan N. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. PLoS One 2010;5:e14310. [PMID: 21179209 DOI: 10.1371/journal.pone.0014310] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
40 Slepak TI, Salay LD, Lemmon VP, Bixby JL. Dyrk kinases regulate phosphorylation of doublecortin, cytoskeletal organization, and neuronal morphology. Cytoskeleton (Hoboken) 2012;69:514-27. [PMID: 22359282 DOI: 10.1002/cm.21021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
41 Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021;296:100233. [PMID: 33376136 DOI: 10.1074/jbc.REV120.015217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
42 Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015;6:51-72. [PMID: 26184557 DOI: 10.1016/j.redox.2015.06.019] [Cited by in Crossref: 326] [Cited by in F6Publishing: 304] [Article Influence: 54.3] [Reference Citation Analysis]
43 Rath SL, Senapati S. Molecular basis of differential selectivity of cyclobutyl-substituted imidazole inhibitors against CDKs: insights for rational drug design. PLoS One 2013;8:e73836. [PMID: 24058495 DOI: 10.1371/journal.pone.0073836] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
44 Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021;34:108602. [PMID: 33440154 DOI: 10.1016/j.celrep.2020.108602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Substrate and docking interactions in serine/threonine protein kinases. Chem Rev 2007;107:5065-81. [PMID: 17949044 DOI: 10.1021/cr068221w] [Cited by in Crossref: 100] [Cited by in F6Publishing: 80] [Article Influence: 7.1] [Reference Citation Analysis]
46 Nguyen T, Ruan Z, Oruganty K, Kannan N. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. PLoS One 2015;10:e0119636. [PMID: 25799139 DOI: 10.1371/journal.pone.0119636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
47 Rath SL, Senapati S. Why are the truncated cyclin Es more effective CDK2 activators than the full-length isoforms? Biochemistry. 2014;53:4612-4624. [PMID: 24947816 DOI: 10.1021/bi5004052] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
48 Bhat RV, Andersson U, Andersson S, Knerr L, Bauer U, Sundgren-andersson AK, Perry G, Avila J, Moreira P, Sorensen A, Tabaton M. The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning? JAD 2018;64:S547-54. [DOI: 10.3233/jad-179934] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
49 Yeung W, Kwon A, Taujale R, Bunn C, Venkat A, Kannan N. Evolution of functional diversity in the holozoan tyrosine kinome. Mol Biol Evol 2021:msab272. [PMID: 34515793 DOI: 10.1093/molbev/msab272] [Reference Citation Analysis]
50 Eyers PA, Keeshan K, Kannan N. Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends Cell Biol 2017;27:284-98. [PMID: 27908682 DOI: 10.1016/j.tcb.2016.11.002] [Cited by in Crossref: 91] [Cited by in F6Publishing: 91] [Article Influence: 18.2] [Reference Citation Analysis]
51 Crisan L, Avram S, Pacureanu L. Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Mol Divers 2017;21:385-405. [PMID: 28108896 DOI: 10.1007/s11030-016-9724-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
52 Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (TH) cell Development, TH2 Differentiation and Allergic Asthma. J Clin Cell Immunol 2012;Suppl 12:11. [PMID: 24116341 DOI: 10.4172/2155-9899.S12-011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
53 Peng J, Dong W, Chen Y, Mo R, Cheng JF, Hui CC, Mohandas N, Huang CH. Dusty protein kinases: primary structure, gene evolution, tissue specific expression and unique features of the catalytic domain. Biochim Biophys Acta 2006;1759:562-72. [PMID: 17123648 DOI: 10.1016/j.bbaexp.2006.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
54 Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020;9:E857. [PMID: 32252279 DOI: 10.3390/cells9040857] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 31.0] [Reference Citation Analysis]
55 Kim H, Lee KS, Kim AK, Choi M, Choi K, Kang M, Chi SW, Lee MS, Lee JS, Lee SY, Song WJ, Yu K, Cho S. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech 2016;9:839-48. [PMID: 27483355 DOI: 10.1242/dmm.025668] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
56 Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and functional diversity of the microbial kinome. PLoS Biol 2007;5:e17. [PMID: 17355172 DOI: 10.1371/journal.pbio.0050017] [Cited by in Crossref: 196] [Cited by in F6Publishing: 184] [Article Influence: 14.0] [Reference Citation Analysis]
57 Zhang Z, Tian S, Wu C, Yan L, Wan J, Zhang J, Liu X, Zhang W. Comprehensive bioinformatics analysis reveals kinase activity profiling associated with heart failure. J Cell Biochem 2021. [PMID: 33899242 DOI: 10.1002/jcb.29935] [Reference Citation Analysis]
58 Karpov P, Raevsky A, Korablyov M, Blume Y. Identification of Plant Homologues of Dual Specificity Yak1-Related Kinases. Computational Biology Journal 2014;2014:1-14. [DOI: 10.1155/2014/909268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
59 Talevich E, Kannan N. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. BMC Evol Biol 2013;13:117. [PMID: 23742205 DOI: 10.1186/1471-2148-13-117] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
60 Menon VR, Ananthapadmanabhan V, Swanson S, Saini S, Sesay F, Yakovlev V, Florens L, DeCaprio JA, Washburn MP, Dozmorov M, Litovchick L. DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169. Cell Cycle 2019;18:531-51. [PMID: 30773093 DOI: 10.1080/15384101.2019.1577525] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
61 Lee SB, Ko A, Oh YT, Shi P, D'Angelo F, Frangaj B, Koller A, Chen EI, Cardozo T, Iavarone A, Lasorella A. Proline Hydroxylation Primes Protein Kinases for Autophosphorylation and Activation. Mol Cell 2020;79:376-389.e8. [PMID: 32640193 DOI: 10.1016/j.molcel.2020.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
62 Neuwald AF, Liu JS. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model. BMC Bioinformatics 2004;5:157. [PMID: 15504234 DOI: 10.1186/1471-2105-5-157] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.4] [Reference Citation Analysis]
63 Braconi Quintaje S, Orchard S. The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: one small step in manual annotation, one giant leap for full comprehension of genomes. Mol Cell Proteomics 2008;7:1409-19. [PMID: 18436524 DOI: 10.1074/mcp.R700001-MCP200] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
64 Neupane A, Nepal MP, Piya S, Subramanian S, Rohila JS, Reese RN, Benson BV. Identification, nomenclature, and evolutionary relationships of mitogen-activated protein kinase (MAPK) genes in soybean. Evol Bioinform Online 2013;9:363-86. [PMID: 24137047 DOI: 10.4137/EBO.S12526] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
65 Jenardhanan P, Panneerselvam M, Mathur PP. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Curr Top Med Chem 2019;19:467-85. [PMID: 31184298 DOI: 10.2174/1568026619666190304155711] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
66 Oruganty K, Kannan N. Design principles underpinning the regulatory diversity of protein kinases. Philos Trans R Soc Lond B Biol Sci 2012;367:2529-39. [PMID: 22889905 DOI: 10.1098/rstb.2012.0015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
67 Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P Jr, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R. The Cryptosporidium parvum kinome. BMC Genomics 2011;12:478. [PMID: 21962082 DOI: 10.1186/1471-2164-12-478] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
68 Biswal DK, Roychowdhury T, Pandey P, Tandon V. De novo genome and transcriptome analyses provide insights into the biology of the trematode human parasite Fasciolopsis buski. PLoS One 2018;13:e0205570. [PMID: 30325945 DOI: 10.1371/journal.pone.0205570] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
69 Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021;901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Reference Citation Analysis]
70 Craven GB, Affron DP, Allen CE, Matthies S, Greener JG, Morgan RML, Tate EW, Armstrong A, Mann DJ. High-Throughput Kinetic Analysis for Target-Directed Covalent Ligand Discovery. Angew Chem 2018;130:5355-9. [DOI: 10.1002/ange.201711825] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
71 Lukasiewicz R, Nolen B, Adams JA, Ghosh G. The RGG domain of Npl3p recruits Sky1p through docking interactions. J Mol Biol 2007;367:249-61. [PMID: 17239901 DOI: 10.1016/j.jmb.2006.12.031] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
72 Zhou Z, Fu XD. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013;122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Cited by in Crossref: 244] [Cited by in F6Publishing: 219] [Article Influence: 30.5] [Reference Citation Analysis]
73 Maddika S, Chen J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol 2009;11:409-19. [PMID: 19287380 DOI: 10.1038/ncb1848] [Cited by in Crossref: 123] [Cited by in F6Publishing: 122] [Article Influence: 10.3] [Reference Citation Analysis]
74 Murphy JM. The long-awaited structure of HIPK2. J Biol Chem 2019;294:13560-1. [PMID: 31519758 DOI: 10.1074/jbc.H119.010675] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Cayla M, McDonald L, MacGregor P, Matthews K. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. Elife 2020;9:e51620. [PMID: 32213288 DOI: 10.7554/eLife.51620] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
76 Bártová I, Koca J, Otyepka M. Functional flexibility of human cyclin-dependent kinase-2 and its evolutionary conservation. Protein Sci 2008;17:22-33. [PMID: 18042686 DOI: 10.1110/ps.072951208] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
77 Bártová I, Koca J, Otyepka M. Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. J Mol Model 2008;14:761-8. [PMID: 18470542 DOI: 10.1007/s00894-008-0312-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
78 Rocha VPC, Dacher M, Young SA, Kolokousi F, Efstathiou A, Späth GF, Soares MBP, Smirlis D. Leishmania dual-specificity tyrosine-regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype. Mol Microbiol 2020;113:983-1002. [PMID: 31975452 DOI: 10.1111/mmi.14464] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
79 Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019;294:13545-59. [PMID: 31341017 DOI: 10.1074/jbc.RA119.009725] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
80 Alexeeva M, Åberg E, Engh RA, Rothweiler U. The structure of a dual-specificity tyrosine phosphorylation-regulated kinase 1A–PKC412 complex reveals disulfide-bridge formation with the anomalous catalytic loop HRD(HCD) cysteine. Acta Crystallogr D Biol Crystallogr 2015;71:1207-15. [DOI: 10.1107/s1399004715005106] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
81 McSkimming DI, Dastgheib S, Baffi TR, Byrne DP, Ferries S, Scott ST, Newton AC, Eyers CE, Kochut KJ, Eyers PA, Kannan N. KinView: a visual comparative sequence analysis tool for integrated kinome research. Mol Biosyst 2016;12:3651-65. [PMID: 27731453 DOI: 10.1039/c6mb00466k] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 8.8] [Reference Citation Analysis]
82 Dusik V, Senthilan PR, Mentzel B, Hartlieb H, Wülbeck C, Yoshii T, Raabe T, Helfrich-Förster C. The MAP kinase p38 is part of Drosophila melanogaster's circadian clock. PLoS Genet 2014;10:e1004565. [PMID: 25144774 DOI: 10.1371/journal.pgen.1004565] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
83 Chiu JC, Vanselow JT, Kramer A, Edery I. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev 2008;22:1758-72. [PMID: 18593878 DOI: 10.1101/gad.1682708] [Cited by in Crossref: 104] [Cited by in F6Publishing: 101] [Article Influence: 8.0] [Reference Citation Analysis]
84 Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011;25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Cited by in Crossref: 187] [Cited by in F6Publishing: 175] [Article Influence: 17.0] [Reference Citation Analysis]
85 Mahesh G, Jeong E, Ng FS, Liu Y, Gunawardhana K, Houl JH, Yildirim E, Amunugama R, Jones R, Allen DL, Edery I, Kim EY, Hardin PE. Phosphorylation of the transcription activator CLOCK regulates progression through a ∼ 24-h feedback loop to influence the circadian period in Drosophila. J Biol Chem 2014;289:19681-93. [PMID: 24872414 DOI: 10.1074/jbc.M114.568493] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
86 Yousafzai FK, Al-Kaff N, Moore G. The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Funct Integr Genomics 2010;10:147-56. [PMID: 20422242 DOI: 10.1007/s10142-010-0171-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
87 Walte A, Rüben K, Birner-Gruenberger R, Preisinger C, Bamberg-Lemper S, Hilz N, Bracher F, Becker W. Mechanism of dual specificity kinase activity of DYRK1A. FEBS J 2013;280:4495-511. [PMID: 23809146 DOI: 10.1111/febs.12411] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
88 Georges A, Benayoun BA, Marongiu M, Dipietromaria A, L'Hôte D, Todeschini AL, Auer J, Crisponi L, Veitia RA. SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies. PLoS One 2011;6:e25463. [PMID: 22022399 DOI: 10.1371/journal.pone.0025463] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
89 Neuwald AF. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences. Bioinformatics 2009;25:1869-75. [PMID: 19505947 DOI: 10.1093/bioinformatics/btp342] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
90 Park HJ, Zheng H, Kulkarni D, Kerrigan J, Pungaliya P, Saleem A, Rubin EH. Identification of phosphorylation sites of TOPORS and a role for serine 98 in the regulation of ubiquitin but not SUMO E3 ligase activity. Biochemistry 2008;47:13887-96. [PMID: 19053840 DOI: 10.1021/bi801904q] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
91 Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021;9:691. [PMID: 33801655 DOI: 10.3390/microorganisms9040691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Ko HW, Kim EY, Chiu J, Vanselow JT, Kramer A, Edery I. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J Neurosci 2010;30:12664-75. [PMID: 20861372 DOI: 10.1523/JNEUROSCI.1586-10.2010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 54] [Article Influence: 6.8] [Reference Citation Analysis]