BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ, Harper JW. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 2003;17:3062-74. [PMID: 14681206 DOI: 10.1101/gad.1157503] [Cited by in Crossref: 253] [Cited by in F6Publishing: 243] [Article Influence: 14.1] [Reference Citation Analysis]
Number Citing Articles
1 Lee TH, Perrem K, Harper JW, Lu KP, Zhou XZ. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 2006;281:759-68. [PMID: 16275645 DOI: 10.1074/jbc.M509855200] [Cited by in Crossref: 75] [Cited by in F6Publishing: 52] [Article Influence: 4.7] [Reference Citation Analysis]
2 Li L, Zou L. Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 2005;94:298-306. [PMID: 15578575 DOI: 10.1002/jcb.20355] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 4.5] [Reference Citation Analysis]
3 Li Y, Kumar KG, Tang W, Spiegelman VS, Fuchs SY. Negative regulation of prolactin receptor stability and signaling mediated by SCF(beta-TrCP) E3 ubiquitin ligase. Mol Cell Biol 2004;24:4038-48. [PMID: 15082796 DOI: 10.1128/MCB.24.9.4038-4048.2004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
4 Hansen DV, Loktev AV, Ban KH, Jackson PK. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell. 2004;15:5623-5634. [PMID: 15469984 DOI: 10.1091/mbc.e04-07-0598] [Cited by in Crossref: 146] [Cited by in F6Publishing: 108] [Article Influence: 8.6] [Reference Citation Analysis]
5 Melixetian M, Klein DK, Sørensen CS, Helin K. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 2009;11:1247-53. [PMID: 19734889 DOI: 10.1038/ncb1969] [Cited by in Crossref: 89] [Cited by in F6Publishing: 85] [Article Influence: 7.4] [Reference Citation Analysis]
6 Kudo Y, Guardavaccaro D, Santamaria PG, Koyama-Nasu R, Latres E, Bronson R, Yamasaki L, Pagano M. Role of F-box protein betaTrcp1 in mammary gland development and tumorigenesis. Mol Cell Biol 2004;24:8184-94. [PMID: 15340078 DOI: 10.1128/MCB.24.18.8184-8194.2004] [Cited by in Crossref: 60] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
7 Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020;12:E1249. [PMID: 32429232 DOI: 10.3390/cancers12051249] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
8 Pal D, Torres AE, Stromberg BR, Messina AL, Dickson AS, De K, Willard B, Venere M, Summers MK. Chk1-mediated phosphorylation of Cdh1 promotes the SCFβTRCP-dependent degradation of Cdh1 during S-phase and efficient cell-cycle progression. Cell Death Dis 2020;11:298. [PMID: 32345958 DOI: 10.1038/s41419-020-2493-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Boucas J, Riabinska A, Jokic M, Herter-Sprie GS, Chen S, Höpker K, Reinhardt HC. Posttranscriptional regulation of gene expression-adding another layer of complexity to the DNA damage response. Front Genet 2012;3:159. [PMID: 22936947 DOI: 10.3389/fgene.2012.00159] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
10 Biswas K, Philip S, Yadav A, Martin BK, Burkett S, Singh V, Babbar A, North SL, Chang S, Sharan SK. BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage. Nat Commun 2018;9:537. [PMID: 29416040 DOI: 10.1038/s41467-018-03020-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
11 Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21:245-255. [PMID: 19230643 DOI: 10.1016/j.ceb.2009.01.018] [Cited by in Crossref: 346] [Cited by in F6Publishing: 316] [Article Influence: 28.8] [Reference Citation Analysis]
12 Liang M, Liang YY, Wrighton K, Ungermannova D, Wang XP, Brunicardi FC, Liu X, Feng XH, Lin X. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol 2004;24:7524-37. [PMID: 15314162 DOI: 10.1128/MCB.24.17.7524-7537.2004] [Cited by in Crossref: 66] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
13 Platel M, Goldar A, Wiggins JM, Barbosa P, Libeau P, Priam P, Narassimprakash H, Grodzenski X, Marheineke K. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus. PLoS One 2015;10:e0129090. [PMID: 26046346 DOI: 10.1371/journal.pone.0129090] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
14 Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase. Mol Cell 2015;59:1011-24. [PMID: 26365377 DOI: 10.1016/j.molcel.2015.07.029] [Cited by in Crossref: 175] [Cited by in F6Publishing: 152] [Article Influence: 29.2] [Reference Citation Analysis]
15 Im JS, Keaton M, Lee KY, Kumar P, Park J, Dutta A. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev 2014;28:875-87. [PMID: 24700029 DOI: 10.1101/gad.239194.114] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
16 Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019;10:E94. [PMID: 30700024 DOI: 10.3390/genes10020094] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
17 Liu P, Barkley LR, Day T, Bi X, Slater DM, Alexandrow MG, Nasheuer HP, Vaziri C. The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J Biol Chem 2006;281:30631-44. [PMID: 16912045 DOI: 10.1074/jbc.M602982200] [Cited by in Crossref: 67] [Cited by in F6Publishing: 46] [Article Influence: 4.5] [Reference Citation Analysis]
18 Cardozo T, Pagano M. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochem 2007;8 Suppl 1:S9. [PMID: 18047746 DOI: 10.1186/1471-2091-8-S1-S9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
19 Gastwirt RF, Slavin DA, McAndrew CW, Donoghue DJ. Spy1 expression prevents normal cellular responses to DNA damage: inhibition of apoptosis and checkpoint activation. J Biol Chem 2006;281:35425-35. [PMID: 16951407 DOI: 10.1074/jbc.M604720200] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
20 Clark WM. Efficacy of citicoline as an acute stroke treatment. Expert Opin Pharmacother 2009;10:839-46. [PMID: 19351232 DOI: 10.1517/17460440902835475] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.1] [Reference Citation Analysis]
21 Jin J, Ang XL, Ye X, Livingstone M, Harper JW. Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase. J Biol Chem 2008;283:19322-8. [PMID: 18480045 DOI: 10.1074/jbc.M802474200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
22 Burdova K, Yang H, Faedda R, Hume S, Chauhan J, Ebner D, Kessler BM, Vendrell I, Drewry DH, Wells CI, Hatch SB, Dianov GL, Buffa FM, D'Angiolella V. E2F1 proteolysis via SCF-cyclin F underlies synthetic lethality between cyclin F loss and Chk1 inhibition. EMBO J 2019;38:e101443. [PMID: 31424118 DOI: 10.15252/embj.2018101443] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
23 Lin SY, Li K, Stewart GS, Elledge SJ. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci U S A 2004;101:6484-9. [PMID: 15096610 DOI: 10.1073/pnas.0401847101] [Cited by in Crossref: 101] [Cited by in F6Publishing: 101] [Article Influence: 5.9] [Reference Citation Analysis]
24 Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739-751. [PMID: 15340381 DOI: 10.1038/nrm1471] [Cited by in Crossref: 742] [Cited by in F6Publishing: 755] [Article Influence: 43.6] [Reference Citation Analysis]
25 Chou CC, Salunke SB, Kulp SK, Chen CS. Prospects on strategies for therapeutically targeting oncogenic regulatory factors by small-molecule agents. J Cell Biochem 2014;115:611-24. [PMID: 24166934 DOI: 10.1002/jcb.24704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
26 Smelkinson MG, Kalderon D. Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. Curr Biol 2006;16:110-6. [PMID: 16386907 DOI: 10.1016/j.cub.2005.12.012] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 4.6] [Reference Citation Analysis]
27 Gong B, Chen F, Pan Y, Arrieta-Cruz I, Yoshida Y, Haroutunian V, Pasinetti GM. SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer's disease amyloidosis and improves synaptic function. Aging Cell 2010;9:1018-31. [PMID: 20854419 DOI: 10.1111/j.1474-9726.2010.00632.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 5.5] [Reference Citation Analysis]
28 Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y. Persistent Stimulation with Interleukin-17 Desensitizes Cells Through SCF -TrCP-Mediated Degradation of Act1. Science Signaling 2011;4:ra73-ra73. [DOI: 10.1126/scisignal.2001653] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 2.7] [Reference Citation Analysis]
29 Ballarino M, Fruscalzo A, Marchioni M, Carnevali F. Identification of positive and negative regulatory regions controlling expression of the Xenopus laevis betaTrCP gene. Gene 2004;336:275-85. [PMID: 15246538 DOI: 10.1016/j.gene.2004.04.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
30 Postow L, Funabiki H. An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation. Cell Cycle 2013;12:587-95. [PMID: 23324393 DOI: 10.4161/cc.23408] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
31 Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta 2016;1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 48] [Article Influence: 5.0] [Reference Citation Analysis]
32 Plesca D, Mazumder S, Gama V, Matsuyama S, Almasan A. A C-terminal fragment of Cyclin E, generated by caspase-mediated cleavage, is degraded in the absence of a recognizable phosphodegron. J Biol Chem 2008;283:30796-803. [PMID: 18784078 DOI: 10.1074/jbc.M804642200] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
33 Bahassi el M, Yin M, Robbins SB, Li YQ, Conrady DG, Yuan Z, Kovall RA, Herr AB, Stambrook PJ. A human cancer-predisposing polymorphism in Cdc25A is embryonic lethal in the mouse and promotes ASK-1 mediated apoptosis. Cell Div 2011;6:4. [PMID: 21310058 DOI: 10.1186/1747-1028-6-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
34 Zheng S, Tao W. Targeting Cullin-RING E3 Ligases for Radiosensitization: From NEDDylation Inhibition to PROTACs. Front Oncol 2020;10:1517. [PMID: 32983997 DOI: 10.3389/fonc.2020.01517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ 2021. [PMID: 34363019 DOI: 10.1038/s41418-021-00845-5] [Reference Citation Analysis]
36 Mattiroli F, Sixma TK. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat Struct Mol Biol 2014;21:308-16. [PMID: 24699079 DOI: 10.1038/nsmb.2792] [Cited by in Crossref: 89] [Cited by in F6Publishing: 84] [Article Influence: 12.7] [Reference Citation Analysis]
37 Shi W, Ding R, Zhou PP, Fang Y, Wan R, Chen Y, Jin J. Coordinated Actions Between p97 and Cullin-RING Ubiquitin Ligases for Protein Degradation. Adv Exp Med Biol 2020;1217:61-78. [PMID: 31898222 DOI: 10.1007/978-981-15-1025-0_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
38 Kim HH, Abdelmohsen K, Gorospe M. Regulation of HuR by DNA Damage Response Kinases. J Nucleic Acids 2010;2010:981487. [PMID: 20798862 DOI: 10.4061/2010/981487] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
39 Ang XL, Harper JW. Interwoven Ubiquitination Oscillators and Control of Cell Cycle Transitions. Science Signaling 2004;2004:pe31-pe31. [DOI: 10.1126/stke.2422004pe31] [Cited by in Crossref: 7] [Cited by in F6Publishing: 23] [Article Influence: 0.4] [Reference Citation Analysis]
40 Gao D, Inuzuka H, Tseng A, Wei W. Akt finds its new path to regulate cell cycle through modulating Skp2 activity and its destruction by APC/Cdh1. Cell Div 2009;4:11. [PMID: 19549334 DOI: 10.1186/1747-1028-4-11] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
41 Osorio-Zambrano WF, Davey S. Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 2015;10:e0144434. [PMID: 26658951 DOI: 10.1371/journal.pone.0144434] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
42 Zhong J, Shaik S, Wan L, Tron AE, Wang Z, Sun L, Inuzuka H, Wei W. SCF β-TRCP targets MTSS1 for ubiquitination-mediated destruction to regulate cancer cell proliferation and migration. Oncotarget 2013;4:2339-53. [PMID: 24318128 DOI: 10.18632/oncotarget.1446] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
43 Lozada EM, Andrysik Z, Yin M, Redilla N, Rice K, Stambrook PJ. Acetylation and deacetylation of Cdc25A constitutes a novel mechanism for modulating Cdc25A functions with implications for cancer. Oncotarget 2016;7:20425-39. [PMID: 26967250 DOI: 10.18632/oncotarget.7966] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
44 Zhang D, Zaugg K, Mak TW, Elledge SJ. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006;126:529-42. [PMID: 16901786 DOI: 10.1016/j.cell.2006.06.039] [Cited by in Crossref: 221] [Cited by in F6Publishing: 217] [Article Influence: 14.7] [Reference Citation Analysis]
45 Ljungman M. Activation of DNA damage signaling. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005;577:203-16. [DOI: 10.1016/j.mrfmmm.2005.02.014] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.5] [Reference Citation Analysis]
46 Wang C, Xiao H, Ma J, Zhu Y, Yu J, Sun L, Sun H, Liu Y, Jin C, Huang H. The F-box protein β-TrCP promotes ubiquitination of TRF1 and regulates the ALT-associated PML bodies formation in U2OS cells. Biochemical and Biophysical Research Communications 2013;434:728-34. [DOI: 10.1016/j.bbrc.2013.03.096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
47 He N, Li C, Zhang X, Sheng T, Chi S, Chen K, Wang Q, Vertrees R, Logrono R, Xie J. Regulation of lung cancer cell growth and invasiveness by ?-TRCP. Mol Carcinog 2005;42:18-28. [DOI: 10.1002/mc.20063] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.4] [Reference Citation Analysis]
48 Wang Z, Zhong J, Inuzuka H, Gao D, Shaik S, Sarkar FH, Wei W. An evolving role for DEPTOR in tumor development and progression. Neoplasia 2012;14:368-75. [PMID: 22745583 DOI: 10.1593/neo.12542] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
49 Barbosa S, Carreira S, Bailey D, Abaitua F, O'Hare P. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets. Mol Biol Cell 2015;26:2939-54. [PMID: 26108621 DOI: 10.1091/mbc.E15-04-0247] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
50 Gewurz BE, Harper JW. DNA-Damage Control: Claspin Destruction Turns off the Checkpoint. Current Biology 2006;16:R932-4. [DOI: 10.1016/j.cub.2006.09.046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
51 Mailand N, Bekker-Jensen S, Bartek J, Lukas J. Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 2006;23:307-18. [PMID: 16885021 DOI: 10.1016/j.molcel.2006.06.016] [Cited by in Crossref: 184] [Cited by in F6Publishing: 183] [Article Influence: 12.3] [Reference Citation Analysis]
52 Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H, Lu F, Rustgi AK, Diehl JA. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 2008;14:68-78. [PMID: 18598945 DOI: 10.1016/j.ccr.2008.05.017] [Cited by in Crossref: 106] [Cited by in F6Publishing: 102] [Article Influence: 8.2] [Reference Citation Analysis]
53 Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007;11:175-89. [PMID: 17292828 DOI: 10.1016/j.ccr.2006.11.024] [Cited by in Crossref: 395] [Cited by in F6Publishing: 382] [Article Influence: 28.2] [Reference Citation Analysis]
54 Cheng Y, Gao WW, Tang HM, Deng JJ, Wong CM, Chan CP, Jin DY. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H. Sci Rep 2016;6:23938. [PMID: 27029215 DOI: 10.1038/srep23938] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
55 Sabir SR, Sahota NK, Jones GD, Fry AM. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents. PLoS One 2015;10:e0140975. [PMID: 26501353 DOI: 10.1371/journal.pone.0140975] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
56 Gallegos JR, Litersky J, Lee H, Sun Y, Nakayama K, Nakayama K, Lu H. SCF TrCP1 activates and ubiquitylates TAp63gamma. J Biol Chem 2008;283:66-75. [PMID: 17965458 DOI: 10.1074/jbc.M704686200] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
57 Patsoukis N, Sari D, Boussiotis VA. PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle 2012;11:4305-9. [PMID: 23032366 DOI: 10.4161/cc.22135] [Cited by in Crossref: 71] [Cited by in F6Publishing: 71] [Article Influence: 7.9] [Reference Citation Analysis]
58 Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2021;28:427-38. [PMID: 33130827 DOI: 10.1038/s41418-020-00648-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
59 Flynn RL, Zou L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 2011;36:133-40. [PMID: 20947357 DOI: 10.1016/j.tibs.2010.09.005] [Cited by in Crossref: 191] [Cited by in F6Publishing: 171] [Article Influence: 17.4] [Reference Citation Analysis]
60 Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 2004;1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Cited by in Crossref: 335] [Cited by in F6Publishing: 338] [Article Influence: 20.9] [Reference Citation Analysis]
61 Saavedra C, Milan M, Leite RB, Cordero D, Patarnello T, Cancela ML, Bargelloni L. A Microarray Study of Carpet-Shell Clam (Ruditapes decussatus) Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland. Front Physiol 2017;8:943. [PMID: 29234285 DOI: 10.3389/fphys.2017.00943] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
62 Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 2008;13:36-47. [PMID: 18167338 DOI: 10.1016/j.ccr.2007.12.002] [Cited by in F6Publishing: 115] [Reference Citation Analysis]
63 Myer DL, Robbins SB, Yin M, Boivin GP, Liu Y, Greis KD, Bahassi el M, Stambrook PJ. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat Res 2011;714:1-10. [PMID: 21376736 DOI: 10.1016/j.mrfmmm.2011.02.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
64 Nesti E, Corson GM, McCleskey M, Oyer JA, Mandel G. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014;111:E3929-36. [PMID: 25197063 DOI: 10.1073/pnas.1414770111] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
65 Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mohammed S, Proud CG, Heck AJ, Pagano M, Guardavaccaro D. Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress. Sci Signal 2012;5:ra40. [PMID: 22669845 DOI: 10.1126/scisignal.2002718] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 7.0] [Reference Citation Analysis]
66 Nakayama Y, Igarashi A, Kikuchi I, Obata Y, Fukumoto Y, Yamaguchi N. Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway. Exp Cell Res 2009;315:2515-28. [PMID: 19527713 DOI: 10.1016/j.yexcr.2009.06.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
67 Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012;30:623-630. [PMID: 22213113 DOI: 10.1002/stem.1021] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 9.1] [Reference Citation Analysis]
68 Moniz L, Dutt P, Haider N, Stambolic V. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div 2011;6:18. [PMID: 22040655 DOI: 10.1186/1747-1028-6-18] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 7.3] [Reference Citation Analysis]
69 Ding G, Chen P, Zhang H, Huang X, Zang Y, Li J, Li J, Wong J. Regulation of Ubiquitin-like with Plant Homeodomain and RING Finger Domain 1 (UHRF1) Protein Stability by Heat Shock Protein 90 Chaperone Machinery. J Biol Chem 2016;291:20125-35. [PMID: 27489107 DOI: 10.1074/jbc.M116.727214] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
70 Emanuele MJ, Enrico TP, Mouery RD, Wasserman D, Nachum S, Tzur A. Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin. Trends Cell Biol 2020;30:640-52. [PMID: 32513610 DOI: 10.1016/j.tcb.2020.05.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
71 Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol. 2009;21:816-824. [PMID: 19775879 DOI: 10.1016/j.ceb.2009.08.004] [Cited by in Crossref: 100] [Cited by in F6Publishing: 99] [Article Influence: 8.3] [Reference Citation Analysis]
72 Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019;10:1144. [PMID: 31632280 DOI: 10.3389/fphys.2019.01144] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
73 Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 2006;26:6056-64. [PMID: 16880517 DOI: 10.1128/MCB.00492-06] [Cited by in Crossref: 117] [Cited by in F6Publishing: 87] [Article Influence: 7.8] [Reference Citation Analysis]
74 Suk HY, Zhou C, Yang TT, Zhu H, Yu RY, Olabisi O, Yang X, Brancho D, Kim JY, Scherer PE. Ablation of calcineurin Aβ reveals hyperlipidemia and signaling cross-talks with phosphodiesterases. J Biol Chem. 2013;288:3477-3488. [PMID: 23258544 DOI: 10.1074/jbc.M112.419150] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
75 Zhu Y, Li F, Shi W, Zhai C, Wang J, Yan X, Wang Q, Zhang Q, Yang L, Gao L, Li M. COP9 signalosome subunit 6 mediates PDGF -induced pulmonary arterial smooth muscle cells proliferation. Exp Cell Res 2018;371:379-88. [PMID: 30180991 DOI: 10.1016/j.yexcr.2018.08.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
76 Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004;5:792-804. [PMID: 15459660 DOI: 10.1038/nrm1493] [Cited by in Crossref: 501] [Cited by in F6Publishing: 477] [Article Influence: 29.5] [Reference Citation Analysis]
77 Mitchell RS, Katsura C, Skasko MA, Fitzpatrick K, Lau D, Ruiz A, Stephens EB, Margottin-Goguet F, Benarous R, Guatelli JC. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLoS Pathog. 2009;5:e1000450. [PMID: 19478868 DOI: 10.1371/journal.ppat.1000450] [Cited by in Crossref: 226] [Cited by in F6Publishing: 238] [Article Influence: 18.8] [Reference Citation Analysis]
78 Yang L, Wang N, Tang Y, Cao X, Wan M. Acute myelogenous leukemia–derivedSMAD4 mutations target the protein to ubiquitin-proteasome degradation. Hum Mutat 2006;27:897-905. [DOI: 10.1002/humu.20387] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
79 Jin J, Ang XL, Shirogane T, Wade Harper J. Identification of substrates for F-box proteins. Methods Enzymol 2005;399:287-309. [PMID: 16338364 DOI: 10.1016/S0076-6879(05)99020-4] [Cited by in Crossref: 75] [Cited by in F6Publishing: 60] [Article Influence: 5.4] [Reference Citation Analysis]
80 Zhu H, Suk HY, Yu RY, Brancho D, Olabisi O, Yang TT, Yang X, Zhang J, Moussaif M, Durand JL, Jelicks LA, Kim JY, Scherer PE, Frank PG, Lisanti MP, Calvert JW, Duranski MR, Lefer DJ, Huston E, Baillie GS, Houslay MD, Molkentin JD, Jin J, Chow CW. Evolutionarily conserved role of calcineurin in phosphodegron-dependent degradation of phosphodiesterase 4D. Mol Cell Biol 2010;30:4379-90. [PMID: 20647544 DOI: 10.1128/MCB.01193-09] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
81 Medema RH, Macůrek L. Checkpoint control and cancer. Oncogene 2012;31:2601-13. [PMID: 21963855 DOI: 10.1038/onc.2011.451] [Cited by in Crossref: 109] [Cited by in F6Publishing: 103] [Article Influence: 10.9] [Reference Citation Analysis]
82 Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 2006;24:355-66. [PMID: 17081987 DOI: 10.1016/j.molcel.2006.09.007] [Cited by in Crossref: 252] [Cited by in F6Publishing: 253] [Article Influence: 16.8] [Reference Citation Analysis]
83 Alao JP, Sjölander JJ, Baar J, Özbaki-Yagan N, Kakoschky B, Sunnerhagen P. Caffeine stabilizes Cdc25 independently of Rad3 in Schizosaccharomyces pombe contributing to checkpoint override. Mol Microbiol 2014;92:777-96. [PMID: 24666325 DOI: 10.1111/mmi.12592] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
84 Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol. 2011;22:688-695. [PMID: 21945648 DOI: 10.1016/j.semcdb.2011.09.008] [Cited by in Crossref: 169] [Cited by in F6Publishing: 168] [Article Influence: 16.9] [Reference Citation Analysis]
85 Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72-85. [PMID: 20048001 DOI: 10.1101/gad.1843810] [Cited by in Crossref: 748] [Cited by in F6Publishing: 738] [Article Influence: 68.0] [Reference Citation Analysis]
86 Gubanova E, Issaeva N, Gokturk C, Djureinovic T, Helleday T. SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle 2013;12:3770-80. [PMID: 24107632 DOI: 10.4161/cc.26660] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
87 Estrabaud E, Le Rouzic E, Lopez-Vergès S, Morel M, Belaïdouni N, Benarous R, Transy C, Berlioz-Torrent C, Margottin-Goguet F. Regulated degradation of the HIV-1 Vpu protein through a betaTrCP-independent pathway limits the release of viral particles. PLoS Pathog 2007;3:e104. [PMID: 17676996 DOI: 10.1371/journal.ppat.0030104] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
88 Yang XH, Zou L. Checkpoint and Coordinated Cellular Responses to DNA Damage. In: Kaldis P, editor. Cell Cycle Regulation. Berlin/Heidelberg: Springer-Verlag; 2006. pp. 65-92. [DOI: 10.1007/b136684] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
89 Haber JE. Deciphering the DNA Damage Response. Cell 2015;162:1183-5. [PMID: 26359974 DOI: 10.1016/j.cell.2015.08.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
90 Shirogane T, Jin J, Ang XL, Harper JW. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 2005;280:26863-72. [PMID: 15917222 DOI: 10.1074/jbc.M502862200] [Cited by in Crossref: 193] [Cited by in F6Publishing: 120] [Article Influence: 12.1] [Reference Citation Analysis]
91 Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2016;36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
92 Hebeisen M, Roy R. CDC-25.1 stability is regulated by distinct domains to restrict cell division during embryogenesis in C. elegans. Development 2008;135:1259-69. [PMID: 18287204 DOI: 10.1242/dev.014969] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
93 Cha HJ, Yim H. The accumulation of DNA repair defects is the molecular origin of carcinogenesis. Tumour Biol 2013;34:3293-302. [PMID: 23907577 DOI: 10.1007/s13277-013-1038-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
94 Wan M, Huang J, Jhala NC, Tytler EM, Yang L, Vickers SM, Tang Y, Lu C, Wang N, Cao X. SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. Am J Pathol 2005;166:1379-92. [PMID: 15855639 DOI: 10.1016/s0002-9440(10)62356-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
95 Bassermann F, Pagano M. Dissecting the role of ubiquitylation in the DNA damage response checkpoint in G2. Cell Death Differ 2010;17:78-85. [DOI: 10.1038/cdd.2009.104] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
96 Rao V, Guan B, Mutton LN, Bieberich CJ. Proline-mediated proteasomal degradation of the prostate-specific tumor suppressor NKX3.1. J Biol Chem 2012;287:36331-40. [PMID: 22910912 DOI: 10.1074/jbc.M112.352823] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
97 Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao ZX, Kaelin WG Jr, Harper JW, Wei W. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010;18:147-59. [PMID: 20708156 DOI: 10.1016/j.ccr.2010.06.015] [Cited by in Crossref: 140] [Cited by in F6Publishing: 142] [Article Influence: 12.7] [Reference Citation Analysis]
98 Mohammadi E, Sadoughi F, Younesi S, Karimian A, Asemi Z, Farsad-Akhtar N, Jahanbakhshi F, Jamilian H, Yousefi B. The molecular mechanism of nuclear signaling for degradation of cytoplasmic DNA: Importance in DNA damage response and cancer. DNA Repair (Amst) 2021;103:103115. [PMID: 33915415 DOI: 10.1016/j.dnarep.2021.103115] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Wu C, Storey KB. Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle 2014;11:1714-26. [DOI: 10.4161/cc.19799] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
100 Ciardo D, Haccard O, Narassimprakash H, Chiodelli V, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system. Cell Cycle 2020;19:1817-32. [PMID: 32573322 DOI: 10.1080/15384101.2020.1782589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Luo Y, Liu Y, Wu L, Ma X, Liu Q, Huang F, Zhang X, Zhang Y, Zhang J, Luo H, Yang Y, Lu G, Tang X, Li L, Zeng Y, Pan T, Zhang H. CUL7 E3 Ubiquitin Ligase Mediates the Degradation of Activation-Induced Cytidine Deaminase and Regulates the Ig Class Switch Recombination in B Lymphocytes. J Immunol 2019;203:269-81. [PMID: 31092637 DOI: 10.4049/jimmunol.1900125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
102 Hergovich A. The Roles of NDR Protein Kinases in Hippo Signalling. Genes (Basel) 2016;7:E21. [PMID: 27213455 DOI: 10.3390/genes7050021] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 10.2] [Reference Citation Analysis]
103 Bhattacharya S, HuangFu WC, Liu J, Veeranki S, Baker DP, Koumenis C, Diehl JA, Fuchs SY. Inducible priming phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon receptor. J Biol Chem 2010;285:2318-25. [PMID: 19948722 DOI: 10.1074/jbc.M109.071498] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
104 Zheng H, Qian J, Varghese B, Baker DP, Fuchs S. Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol Cell Biol 2011;31:710-20. [PMID: 21173164 DOI: 10.1128/MCB.01154-10] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 4.9] [Reference Citation Analysis]
105 Hallé M, Liu YC, Hardy S, Théberge JF, Blanchetot C, Bourdeau A, Meng TC, Tremblay ML. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol Cell Biol 2007;27:1172-90. [PMID: 17130234 DOI: 10.1128/MCB.02462-05] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
106 Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2013;4:1-32. [PMID: 23599899 DOI: 10.3390/genes4010001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
107 Kanemori Y, Uto K, Sagata N. Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci U S A 2005;102:6279-84. [PMID: 15845771 DOI: 10.1073/pnas.0501873102] [Cited by in Crossref: 88] [Cited by in F6Publishing: 85] [Article Influence: 5.5] [Reference Citation Analysis]
108 Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 2010;9:1229-40. [PMID: 21056014 DOI: 10.1016/j.dnarep.2010.09.011] [Cited by in Crossref: 156] [Cited by in F6Publishing: 149] [Article Influence: 14.2] [Reference Citation Analysis]
109 Wang Z, Dai X, Zhong J, Inuzuka H, Wan L, Li X, Wang L, Ye X, Sun L, Gao D, Zou L, Wei W. SCF(β-TRCP) promotes cell growth by targeting PR-Set7/Set8 for degradation. Nat Commun 2015;6:10185. [PMID: 26666832 DOI: 10.1038/ncomms10185] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
110 Vodermaier HC. APC/C and SCF: controlling each other and the cell cycle. Curr Biol 2004;14:R787-96. [PMID: 15380093 DOI: 10.1016/j.cub.2004.09.020] [Cited by in Crossref: 205] [Cited by in F6Publishing: 193] [Article Influence: 12.8] [Reference Citation Analysis]
111 Kim IS, Lee M, Park JH, Jeon R, Baek SH, Kim KI. βTrCP-mediated ubiquitylation regulates protein stability of Mis18β in a cell cycle-dependent manner. Biochemical and Biophysical Research Communications 2014;443:62-7. [DOI: 10.1016/j.bbrc.2013.11.058] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
112 Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, Wei W. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta. 2015;1855:50-60. [PMID: 25481052 DOI: 10.1016/j.bbcan.2014.11.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 72] [Article Influence: 5.9] [Reference Citation Analysis]
113 Magliozzi R, Kim J, Low TY, Heck AJ, Guardavaccaro D. Degradation of Tiam1 by casein kinase 1 and the SCFβTrCP ubiquitin ligase controls the duration of mTOR-S6K signaling. J Biol Chem 2014;289:27400-9. [PMID: 25124033 DOI: 10.1074/jbc.M114.575571] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
114 Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 2010;29:2802-12. [PMID: 20639859 DOI: 10.1038/emboj.2010.157] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 5.3] [Reference Citation Analysis]
115 Woods D, Turchi JJ. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther 2013;14:379-89. [PMID: 23380594 DOI: 10.4161/cbt.23761] [Cited by in Crossref: 119] [Cited by in F6Publishing: 108] [Article Influence: 14.9] [Reference Citation Analysis]
116 Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev 2015;24:138-59. [PMID: 26247845 DOI: 10.1016/j.arr.2015.07.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
117 He L, Yan R, Yang Z, Zhang Y, Liu X, Yang J, Liu X, Liu X, Xia L, Wang Y, Wu J, Wu X, Shan L, Yang X, Liang J, Shang Y, Sun L. SCFJFK is functionally linked to obesity and metabolic syndrome. EMBO Rep 2021;22:e52036. [PMID: 34114325 DOI: 10.15252/embr.202052036] [Reference Citation Analysis]
118 Liu X, Zong W, Li T, Wang Y, Xu X, Zhou ZW, Wang ZQ. The E3 ubiquitin ligase APC/CCdh1 degrades MCPH1 after MCPH1-βTrCP2-Cdc25A-mediated mitotic entry to ensure neurogenesis. EMBO J 2017;36:3666-81. [PMID: 29150431 DOI: 10.15252/embj.201694443] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
119 Rai R, Li JM, Zheng H, Lok GT, Deng Y, Huen MS, Chen J, Jin J, Chang S. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol 2011;18:1400-7. [PMID: 22101936 DOI: 10.1038/nsmb.2172] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
120 Kohn KW, Aladjem MI, Weinstein JN, Pommier Y. Network architecture of signaling from uncoupled helicase-polymerase to cell cycle checkpoints and trans-lesion DNA synthesis. Cell Cycle 2009;8:2281-99. [PMID: 19556879 DOI: 10.4161/cc.8.14.9102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
121 Wang Z, Inuzuka H, Zhong J, Fukushima H, Wan L, Liu P, Wei W. DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget 2012;3:1026-35. [PMID: 22976441 DOI: 10.18632/oncotarget.640] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
122 Hebeisen M, Drysdale J, Roy R. Suppressors of the cdc-25.1(gf)-associated intestinal hyperplasia reveal important maternal roles for prp-8 and a subset of splicing factors in C. elegans. RNA 2008;14:2618-33. [PMID: 18945809 DOI: 10.1261/rna.1168408] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
123 Fukushima H, Ogura K, Wan L, Lu Y, Li V, Gao D, Liu P, Lau AW, Wu T, Kirschner MW, Inuzuka H, Wei W. SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 2013;4:803-16. [PMID: 23972993 DOI: 10.1016/j.celrep.2013.07.031] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 6.8] [Reference Citation Analysis]
124 López-Contreras AJ, Fernandez-Capetillo O. The ATR barrier to replication-born DNA damage. DNA Repair (Amst) 2010;9:1249-55. [PMID: 21036674 DOI: 10.1016/j.dnarep.2010.09.012] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 9.2] [Reference Citation Analysis]
125 Gutierrez GJ, Vögtlin A, Castro A, Ferby I, Salvagiotto G, Ronai Z, Lorca T, Nebreda AR. Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat Cell Biol 2006;8:1084-94. [PMID: 16964245 DOI: 10.1038/ncb1472] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.1] [Reference Citation Analysis]
126 Dozier C, Mazzolini L, Cénac C, Froment C, Burlet-Schiltz O, Besson A, Manenti S. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 2017;36:3781-8. [PMID: 28192398 DOI: 10.1038/onc.2016.506] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
127 Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006;23:319-29. [PMID: 16885022 DOI: 10.1016/j.molcel.2006.06.013] [Cited by in Crossref: 205] [Cited by in F6Publishing: 204] [Article Influence: 13.7] [Reference Citation Analysis]
128 Fanton CP, Rowe MW, Moler EJ, Ison-dugenny M, De Long SK, Rendahl K, Shao Y, Slabiak T, Gesner TG, Mackichan ML. Development of a Screening Assay for Surrogate Markers of Chk1 Inhibitor-Induced Cell Cycle Release. J Biomol Screen 2006;11:792-806. [DOI: 10.1177/1087057106289808] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
129 Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, Sagata N. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell 2009;20:2186-95. [PMID: 19244340 DOI: 10.1091/mbc.e09-01-0008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
130 Jiang H, Lu Y, Yuan L, Liu J. Regulation of interleukin-10 receptor ubiquitination and stability by beta-TrCP-containing ubiquitin E3 ligase. PLoS One 2011;6:e27464. [PMID: 22087322 DOI: 10.1371/journal.pone.0027464] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
131 Stracker TH, Usui T, Petrini JH. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst). 2009;8:1047-1054. [PMID: 19473886 DOI: 10.1016/j.dnarep.2009.04.012] [Cited by in Crossref: 165] [Cited by in F6Publishing: 155] [Article Influence: 13.8] [Reference Citation Analysis]
132 Hsu KS, Kao HY. β-Transducin repeat-containing protein 1 (β-TrCP1)-mediated silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) protein degradation promotes tumor necrosis factor α (TNFα)-induced inflammatory gene expression. J Biol Chem 2013;288:25375-86. [PMID: 23861398 DOI: 10.1074/jbc.M113.473124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
133 Uchida S, Watanabe N, Kudo Y, Yoshioka K, Matsunaga T, Ishizaka Y, Nakagama H, Poon RYC, Yamashita K. SCFβTrCP mediates stress-activated MAPK-induced Cdc25B degradation. Journal of Cell Science 2011;124:2816-25. [DOI: 10.1242/jcs.083931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
134 Pérez-Benavente B, Nasresfahani AF, Farràs R. Ubiquitin-Regulated Cell Proliferation and Cancer. Adv Exp Med Biol 2020;1233:3-28. [PMID: 32274751 DOI: 10.1007/978-3-030-38266-7_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Yamasaki L, Pagano M. Cell cycle, proteolysis and cancer. Curr Opin Cell Biol. 2004;16:623-628. [PMID: 15530772 DOI: 10.1016/j.ceb.2004.08.005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 3.3] [Reference Citation Analysis]
136 Varedi K SM, Ventura AC, Merajver SD, Lin XN. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation. PLoS One 2010;5:e14029. [PMID: 21179196 DOI: 10.1371/journal.pone.0014029] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
137 Richa, Sinha RP, Häder DP. Physiological aspects of UV-excitation of DNA. Top Curr Chem 2015;356:203-48. [PMID: 24696352 DOI: 10.1007/128_2014_531] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
138 Liu P, Cong X, Liao S, Jia X, Wang X, Dai W, Zhai L, Zhao L, Ji J, Ni D, Liu Z, Chen Y, Pan L, Liu W, Zhang J, Huang M, Liu B, Tan M. Global identification of phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ 2021. [PMID: 34215846 DOI: 10.1038/s41418-021-00827-7] [Reference Citation Analysis]
139 Ray D, Terao Y, Nimbalkar D, Chu LH, Donzelli M, Tsutsui T, Zou X, Ghosh AK, Varga J, Draetta GF, Kiyokawa H. Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 2005;25:3338-47. [PMID: 15798217 DOI: 10.1128/MCB.25.8.3338-3347.2005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
140 Kim D, Liu Y, Oberly S, Freire R, Smolka MB. ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 2018;46:8311-25. [PMID: 30010936 DOI: 10.1093/nar/gky625] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
141 Buisson R, Niraj J, Rodrigue A, Ho CK, Kreuzer J, Foo TK, Hardy EJ, Dellaire G, Haas W, Xia B, Masson JY, Zou L. Coupling of Homologous Recombination and the Checkpoint by ATR. Mol Cell 2017;65:336-46. [PMID: 28089683 DOI: 10.1016/j.molcel.2016.12.007] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 19.8] [Reference Citation Analysis]
142 Madlener S, Rosner M, Krieger S, Giessrigl B, Gridling M, Vo TP, Leisser C, Lackner A, Raab I, Grusch M, Hengstschläger M, Dolznig H, Krupitza G. Short 42 degrees C heat shock induces phosphorylation and degradation of Cdc25A which depends on p38MAPK, Chk2 and 14.3.3. Hum Mol Genet 2009;18:1990-2000. [PMID: 19289404 DOI: 10.1093/hmg/ddp123] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
143 Kiyokawa H, Ray D. In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anticancer Agents Med Chem 2008;8:832-6. [PMID: 19075565 DOI: 10.2174/187152008786847693] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 4.9] [Reference Citation Analysis]
144 Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9:297-308. [PMID: 18285803 DOI: 10.1038/nrm2351] [Cited by in Crossref: 788] [Cited by in F6Publishing: 730] [Article Influence: 60.6] [Reference Citation Analysis]
145 Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S. Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes Cancer 2018;9:39-52. [PMID: 29725502 DOI: 10.18632/genesandcancer.166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
146 Fukasawa T, Enomoto A, Miyagawa K. Serine–Threonine Kinase 38 regulates CDC25A stability and the DNA damage-induced G2/M checkpoint. Cellular Signalling 2015;27:1569-75. [DOI: 10.1016/j.cellsig.2015.04.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
147 Yen HC, Xu Q, Chou DM, Zhao Z, Elledge SJ. Global protein stability profiling in mammalian cells. Science 2008;322:918-23. [PMID: 18988847 DOI: 10.1126/science.1160489] [Cited by in Crossref: 288] [Cited by in F6Publishing: 283] [Article Influence: 22.2] [Reference Citation Analysis]
148 Kumar KG, Barriere H, Carbone CJ, Liu J, Swaminathan G, Xu P, Li Y, Baker DP, Peng J, Lukacs GL, Fuchs SY. Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. J Cell Biol 2007;179:935-50. [PMID: 18056411 DOI: 10.1083/jcb.200706034] [Cited by in Crossref: 103] [Cited by in F6Publishing: 108] [Article Influence: 7.4] [Reference Citation Analysis]
149 Wu Y, Feng X, Jin Y, Wu Z, Hankey W, Paisie C, Li L, Liu F, Barsky SH, Zhang W, Ganju R, Zou X. A novel mechanism of indole-3-carbinol effects on breast carcinogenesis involves induction of Cdc25A degradation. Cancer Prev Res (Phila) 2010;3:818-28. [PMID: 20587702 DOI: 10.1158/1940-6207.CAPR-09-0213] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
150 Seki A, Coppinger JA, Du H, Jang CY, Yates JR 3rd, Fang G. Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol 2008;181:65-78. [PMID: 18378770 DOI: 10.1083/jcb.200712027] [Cited by in Crossref: 96] [Cited by in F6Publishing: 96] [Article Influence: 7.4] [Reference Citation Analysis]
151 Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Elledge SJ, Clurman BE, Harper JW. Recognition of Phosphodegron Motifs in Human Cyclin E by the SCFFbw7 Ubiquitin Ligase. Journal of Biological Chemistry 2004;279:50110-9. [DOI: 10.1074/jbc.m409226200] [Cited by in Crossref: 95] [Cited by in F6Publishing: 59] [Article Influence: 5.6] [Reference Citation Analysis]
152 Kumar KG, Varghese B, Banerjee A, Baker DP, Constantinescu SN, Pellegrini S, Fuchs SY. Basal ubiquitin-independent internalization of interferon alpha receptor is prevented by Tyk2-mediated masking of a linear endocytic motif. J Biol Chem 2008;283:18566-72. [PMID: 18474601 DOI: 10.1074/jbc.M800991200] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
153 Wang Z, Zhong J, Gao D, Inuzuka H, Liu P, Wei W. DEPTOR ubiquitination and destruction by SCF(β-TrCP). Am J Physiol Endocrinol Metab 2012;303:E163-9. [PMID: 22454292 DOI: 10.1152/ajpendo.00105.2012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
154 Chou ST, Yen YC, Lee CM, Chen MS. Pro-apoptotic role of Cdc25A: activation of cyclin B1/Cdc2 by the Cdc25A C-terminal domain. J Biol Chem 2010;285:17833-45. [PMID: 20368335 DOI: 10.1074/jbc.M109.078386] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
155 Segref A, Cabello J, Clucas C, Schnabel R, Johnstone IL. Fate specification and tissue-specific cell cycle control of the Caenorhabditis elegans intestine. Mol Biol Cell 2010;21:725-38. [PMID: 20053685 DOI: 10.1091/mbc.e09-04-0268] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
156 Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 2007;27:6383-95. [PMID: 17636028 DOI: 10.1128/MCB.00254-07] [Cited by in Crossref: 133] [Cited by in F6Publishing: 81] [Article Influence: 9.5] [Reference Citation Analysis]
157 Ohsaki K, Oishi K, Kozono Y, Nakayama K, Nakayama KI, Ishida N. The Role of β-TrCP1 and β-TrCP2 in Circadian Rhythm Generation by Mediating Degradation of Clock Protein PER2. The Journal of Biochemistry 2008;144:609-18. [DOI: 10.1093/jb/mvn112] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
158 Wilker E, Yaffe MB. 14-3-3 Proteins—a focus on cancer and human disease. Journal of Molecular and Cellular Cardiology 2004;37:633-42. [DOI: 10.1016/j.yjmcc.2004.04.015] [Cited by in Crossref: 185] [Cited by in F6Publishing: 168] [Article Influence: 10.9] [Reference Citation Analysis]
159 Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol 2007;27:3098-108. [PMID: 17296736 DOI: 10.1128/MCB.02357-06] [Cited by in Crossref: 96] [Cited by in F6Publishing: 70] [Article Influence: 6.9] [Reference Citation Analysis]
160 Sarkar S, Dey BK, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 2010;21:2138-49. [PMID: 20462953 DOI: 10.1091/mbc.e10-01-0062] [Cited by in Crossref: 151] [Cited by in F6Publishing: 115] [Article Influence: 13.7] [Reference Citation Analysis]
161 Wiseman SL, Shimizu Y, Palfrey C, Nairn AC. Proteasomal degradation of eukaryotic elongation factor-2 kinase (EF2K) is regulated by cAMP-PKA signaling and the SCFβTRCP ubiquitin E3 ligase. J Biol Chem 2013;288:17803-11. [PMID: 23640883 DOI: 10.1074/jbc.M113.477182] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
162 Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369-381. [PMID: 16633365 DOI: 10.1038/nrc1881] [Cited by in Crossref: 931] [Cited by in F6Publishing: 917] [Article Influence: 62.1] [Reference Citation Analysis]
163 Hustedt N, Gasser SM, Shimada K. Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013;4:388-434. [PMID: 24705211 DOI: 10.3390/genes4030388] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
164 Goto H, Izawa I, Li P, Inagaki M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci 2012;103:1195-200. [PMID: 22435685 DOI: 10.1111/j.1349-7006.2012.02280.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
165 Rego MA, Kolling FW 4th, Howlett NG. The Fanconi anemia protein interaction network: casting a wide net. Mutat Res 2009;668:27-41. [PMID: 19101576 DOI: 10.1016/j.mrfmmm.2008.11.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
166 Reed SI. The ubiquitin-proteasome pathway in cell cycle control. In: Kaldis P, editor. Cell Cycle Regulation. Berlin/Heidelberg: Springer-Verlag; 2006. pp. 147-81. [DOI: 10.1007/b136681] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Reference Citation Analysis]
167 Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B. Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene 2007;26:7847-58. [DOI: 10.1038/sj.onc.1210596] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
168 Sun L, Shi L, Wang F, Huangyang P, Si W, Yang J, Yao Z, Shang Y. Substrate phosphorylation and feedback regulation in JFK-promoted p53 destabilization. J Biol Chem 2011;286:4226-35. [PMID: 21127074 DOI: 10.1074/jbc.M110.195115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
169 Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021;285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Reference Citation Analysis]
170 Benada J, Macurek L. Targeting the Checkpoint to Kill Cancer Cells. Biomolecules. 2015;5:1912-1937. [PMID: 26295265 DOI: 10.3390/biom5031912] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 11.7] [Reference Citation Analysis]
171 Ang XL, Seeburg DP, Sheng M, Harper JW. Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons. J Biol Chem 2008;283:29424-32. [PMID: 18723513 DOI: 10.1074/jbc.M802475200] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
172 Shimizu K, Fukushima H, Ogura K, Lien EC, Nihira NT, Zhang J, North BJ, Guo A, Nagashima K, Nakagawa T, Hoshikawa S, Watahiki A, Okabe K, Yamada A, Toker A, Asara JM, Fukumoto S, Nakayama KI, Nakayama K, Inuzuka H, Wei W. The SCFβ-TRCP E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Sci Signal 2017;10:eaah4117. [PMID: 28049764 DOI: 10.1126/scisignal.aah4117] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
173 Liu J, Wan L, Liu P, Inuzuka H, Liu J, Wang Z, Wei W. SCF(β-TRCP)-mediated degradation of NEDD4 inhibits tumorigenesis through modulating the PTEN/Akt signaling pathway. Oncotarget 2014;5:1026-37. [PMID: 24657926 DOI: 10.18632/oncotarget.1675] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
174 Frazer C, Young PG. Carboxy-terminal phosphorylation sites in Cdc25 contribute to enforcement of the DNA damage and replication checkpoints in fission yeast. Curr Genet 2012;58:217-34. [PMID: 22806395 DOI: 10.1007/s00294-012-0379-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
175 Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair (Amst) 2004;3:1039-47. [PMID: 15279791 DOI: 10.1016/j.dnarep.2004.03.033] [Cited by in Crossref: 163] [Cited by in F6Publishing: 155] [Article Influence: 10.2] [Reference Citation Analysis]
176 Zhang H, Lee S, Richardson CC. Essential protein interactions within the replisome regulate DNA replication. Cell Cycle 2014;10:3413-4. [DOI: 10.4161/cc.10.20.17523] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
177 Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, Wei W, Shi Y. DNA damage regulates UHRF1 stability via the SCF(β-TrCP) E3 ligase. Mol Cell Biol 2013;33:1139-48. [PMID: 23297342 DOI: 10.1128/MCB.01191-12] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
178 Gao D, Inuzuka H, Korenjak M, Tseng A, Wu T, Wan L, Kirschner M, Dyson N, Wei W. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol Biol Cell 2009;20:3305-16. [PMID: 19477924 DOI: 10.1091/mbc.e09-01-0092] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
179 Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010;2010:592980. [PMID: 21209706 DOI: 10.4061/2010/592980] [Cited by in Crossref: 457] [Cited by in F6Publishing: 395] [Article Influence: 41.5] [Reference Citation Analysis]
180 Loveless TB, Topacio BR, Vashisht AA, Galaang S, Ulrich KM, Young BD, Wohlschlegel JA, Toczyski DP. DNA Damage Regulates Translation through β-TRCP Targeting of CReP. PLoS Genet 2015;11:e1005292. [PMID: 26091241 DOI: 10.1371/journal.pgen.1005292] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
181 Li JM, Jin J. CRL Ubiquitin Ligases and DNA Damage Response. Front Oncol 2012;2:29. [PMID: 22655267 DOI: 10.3389/fonc.2012.00029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
182 Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021;11:200390. [PMID: 33906413 DOI: 10.1098/rsob.200390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Wei S, Chu PC, Chuang HC, Hung WC, Kulp SK, Chen CS. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS One 2012;7:e47298. [PMID: 23071779 DOI: 10.1371/journal.pone.0047298] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
184 Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014;114:6733-78. [DOI: 10.1021/cr400585q] [Cited by in Crossref: 227] [Cited by in F6Publishing: 195] [Article Influence: 32.4] [Reference Citation Analysis]
185 Low TY, Peng M, Magliozzi R, Mohammed S, Guardavaccaro D, Heck AJ. A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase. Sci Signal 2014;7:rs8. [PMID: 25515538 DOI: 10.1126/scisignal.2005882] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
186 Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H. Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 2005;25:2853-60. [PMID: 15767688 DOI: 10.1128/MCB.25.7.2853-2860.2005] [Cited by in Crossref: 103] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
187 Kee Y, Kim JM, D'Andrea AD. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev 2009;23:555-60. [PMID: 19270156 DOI: 10.1101/gad.1761309] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
188 Riemer A, Dobrynin G, Dressler A, Bremer S, Soni A, Iliakis G, Meyer H. The p97-Ufd1-Npl4 ATPase complex ensures robustness of the G2/M checkpoint by facilitating CDC25A degradation. Cell Cycle 2014;13:919-27. [PMID: 24429874 DOI: 10.4161/cc.27779] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
189 Wang Y, Tian J, Huang C, Ma J, Hu G, Chen Y, Wang T, Cai R, Zuo Y, Tan H, Fan Q, Dong B, Xue W, Yi J, Chen G, Tu J, Cheng J. P53 suppresses SENP3 phosphorylation to mediate G2 checkpoint. Cell Discov 2020;6:21. [PMID: 33879772 DOI: 10.1038/s41421-020-0154-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
190 Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017;292:10779-90. [PMID: 28515316 DOI: 10.1074/jbc.M116.772475] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
191 Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 2010;29:3324-34. [PMID: 20348946 DOI: 10.1038/onc.2010.96] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
192 Kousholt AN, Menzel T, Sørensen CS. Pathways for genome integrity in G2 phase of the cell cycle. Biomolecules 2012;2:579-607. [PMID: 24970150 DOI: 10.3390/biom2040579] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
193 Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G, Harris L, Wan L, Fukushima H, Husain A, Nose V, Fadda G, Sadow PM, Goessling W, North T, Lawler J, Wei W. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med 2012;209:1289-307. [PMID: 22711876 DOI: 10.1084/jem.20112446] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
194 Wilkins A, Ping Q, Carpenter CL. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 2004;18:856-861. [PMID: 15107402 DOI: 10.1101/gad.1177904] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 5.0] [Reference Citation Analysis]
195 Cheon Y, Lee S. Two major alternative splice variants of beta-TrCP1 interact with CENP-W with different binding preferences. Genes Genom 2019;41:167-74. [DOI: 10.1007/s13258-018-0748-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
196 Zhang J, Storey KB. Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica. Cell Cycle 2014;11:1727-42. [DOI: 10.4161/cc.19880] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
197 Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol. 2008;267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Cited by in Crossref: 107] [Cited by in F6Publishing: 58] [Article Influence: 8.2] [Reference Citation Analysis]
198 Wu X, Fukushima H, North BJ, Nagaoka Y, Nagashima K, Deng F, Okabe K, Inuzuka H, Wei W. SCFβ-TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination. Oncotarget 2014;5:4211-21. [PMID: 24961988 DOI: 10.18632/oncotarget.1971] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
199 Cheng R, Takeda K, Naguro I, Hatta T, Iemura S, Natsume T, Ichijo H, Hattori K. β-TrCP-dependent degradation of ASK1 suppresses the induction of the apoptotic response by oxidative stress. Biochimica et Biophysica Acta (BBA) - General Subjects 2018;1862:2271-80. [DOI: 10.1016/j.bbagen.2018.07.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
200 Zhang C, Zhang F. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. J Genomics 2015;3:40-50. [PMID: 25653723 DOI: 10.7150/jgen.11015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
201 Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol. 2016;73:99-110. [PMID: 26860958 DOI: 10.1016/j.biocel.2016.02.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
202 Coleman KE, Békés M, Chapman JR, Crist SB, Jones MJ, Ueberheide BM, Huang TT. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. Elife 2017;6:e24325. [PMID: 28475037 DOI: 10.7554/eLife.24325] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
203 Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M. The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 2008;134:256-67. [PMID: 18662541 DOI: 10.1016/j.cell.2008.05.043] [Cited by in Crossref: 281] [Cited by in F6Publishing: 282] [Article Influence: 21.6] [Reference Citation Analysis]
204 Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 Ligases for Cancer Therapies. Adv Exp Med Biol 2020;1217:123-46. [PMID: 31898226 DOI: 10.1007/978-981-15-1025-0_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
205 Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007;7:495-507. [PMID: 17568790 DOI: 10.1038/nrc2169] [Cited by in Crossref: 475] [Cited by in F6Publishing: 447] [Article Influence: 33.9] [Reference Citation Analysis]
206 Yadav AK, Sahasrabuddhe AA, Dimri M, Bommi PV, Sainger R, Dimri GP. Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain. Mol Cancer 2010;9:158. [PMID: 20569464 DOI: 10.1186/1476-4598-9-158] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
207 Ma HT, Poon RY. How protein kinases co-ordinate mitosis in animal cells. Biochem J 2011;435:17-31. [PMID: 21406064 DOI: 10.1042/BJ20100284] [Cited by in Crossref: 85] [Cited by in F6Publishing: 57] [Article Influence: 8.5] [Reference Citation Analysis]
208 Zhang F, Lu Y, Yan S, Xing Q, Tian W. SPRINT: an SNP-free toolkit for identifying RNA editing sites. Bioinformatics 2017;33:3538-48. [PMID: 29036410 DOI: 10.1093/bioinformatics/btx473] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 9.7] [Reference Citation Analysis]
209 St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021;11:1249. [PMID: 34439915 DOI: 10.3390/biom11081249] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
210 Heffernan TP, Ünsal-Kaçmaz K, Heinloth AN, Simpson DA, Paules RS, Sancar A, Cordeiro-Stone M, Kaufmann WK. Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 2007;282:9458-68. [PMID: 17276990 DOI: 10.1074/jbc.M611292200] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 4.0] [Reference Citation Analysis]
211 Zhang QH, Qi ST, Wang ZB, Yang CR, Wei YC, Chen L, Ouyang YC, Hou Y, Schatten H, Sun QY. Localization and function of the Ska complex during mouse oocyte meiotic maturation. Cell Cycle 2012;11:909-16. [PMID: 22336914 DOI: 10.4161/cc.11.5.19384] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
212 Kumar KG, Krolewski JJ, Fuchs SY. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J Biol Chem 2004;279:46614-20. [PMID: 15337770 DOI: 10.1074/jbc.M407082200] [Cited by in Crossref: 101] [Cited by in F6Publishing: 84] [Article Influence: 5.9] [Reference Citation Analysis]
213 Morandell S, Yaffe MB. Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. Prog Mol Biol Transl Sci 2012;110:289-314. [PMID: 22749150 DOI: 10.1016/B978-0-12-387665-2.00011-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
214 Silverman JS, Skaar JR, Pagano M. SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem Sci 2012;37:66-73. [PMID: 22099186 DOI: 10.1016/j.tibs.2011.10.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 6.4] [Reference Citation Analysis]
215 Agner J, Falck J, Lukas J, Bartek J. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway. Experimental Cell Research 2005;302:162-9. [DOI: 10.1016/j.yexcr.2004.08.035] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
216 Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013;14:563-80. [PMID: 23969844 DOI: 10.1038/nrm3640] [Cited by in Crossref: 188] [Cited by in F6Publishing: 163] [Article Influence: 23.5] [Reference Citation Analysis]
217 Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007;19:238-45. [PMID: 17303408 DOI: 10.1016/j.ceb.2007.02.009] [Cited by in Crossref: 512] [Cited by in F6Publishing: 494] [Article Influence: 36.6] [Reference Citation Analysis]
218 Tan X, Liang R, Chuang S. hHR23A is required to control the basal turnover of Chk1. Cellular Signalling 2015;27:2304-13. [DOI: 10.1016/j.cellsig.2015.08.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
219 Peschiaroli A, Skaar JR, Pagano M, Melino G. The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival. Oncogene 2010;29:1384-93. [PMID: 19966869 DOI: 10.1038/onc.2009.430] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 4.2] [Reference Citation Analysis]
220 Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol 2010;17:666-72. [DOI: 10.1038/nsmb.1842] [Cited by in Crossref: 432] [Cited by in F6Publishing: 394] [Article Influence: 39.3] [Reference Citation Analysis]
221 Cukras S, Morffy N, Ohn T, Kee Y. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases. PLoS One 2014;9:e101844. [PMID: 25025768 DOI: 10.1371/journal.pone.0101844] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
222 Wickliffe K, Williamson A, Jin L, Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev 2009;109:1537-48. [PMID: 19146381 DOI: 10.1021/cr800414e] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 5.3] [Reference Citation Analysis]
223 Zheng N, Dai X, Wang Z, Wei W. A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle 2016;15:3042-7. [PMID: 27649746 DOI: 10.1080/15384101.2016.1234552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
224 Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 2008;452:370-4. [PMID: 18354483 DOI: 10.1038/nature06780] [Cited by in Crossref: 220] [Cited by in F6Publishing: 222] [Article Influence: 16.9] [Reference Citation Analysis]
225 Lau AW, Liu Y, Tron AE, Inuzuka H, Wei W. The Role of FBXW Subfamily of F-box Proteins in Tumorigenesis. SCF and APC E3 Ubiquitin Ligases in Tumorigenesis. Cham: Springer International Publishing; 2014. pp. 15-45. [DOI: 10.1007/978-3-319-05026-3_2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
226 Sun L, Shi L, Li W, Yu W, Liang J, Zhang H, Yang X, Wang Y, Li R, Yao X, Yi X, Shang Y. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation. Proc Natl Acad Sci U S A 2009;106:10195-200. [PMID: 19509332 DOI: 10.1073/pnas.0901864106] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 4.6] [Reference Citation Analysis]
227 Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal. 2012;5:ra46. [PMID: 22740686 DOI: 10.1126/scisignal.2002796] [Cited by in Crossref: 253] [Cited by in F6Publishing: 271] [Article Influence: 28.1] [Reference Citation Analysis]
228 Roy N, Pacini G, Berlioz-Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci 2017;130:1596-611. [PMID: 28320822 DOI: 10.1242/jcs.195412] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
229 Wan L, Tan M, Yang J, Inuzuka H, Dai X, Wu T, Liu J, Shaik S, Chen G, Deng J, Malumbres M, Letai A, Kirschner MW, Sun Y, Wei W. APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell 2014;29:377-91. [PMID: 24871945 DOI: 10.1016/j.devcel.2014.04.022] [Cited by in Crossref: 79] [Cited by in F6Publishing: 76] [Article Influence: 11.3] [Reference Citation Analysis]
230 Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res 2014;181:111-30. [PMID: 24397478 DOI: 10.1667/RR13515.1] [Cited by in Crossref: 155] [Cited by in F6Publishing: 102] [Article Influence: 22.1] [Reference Citation Analysis]
231 Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 2004;101:4419-24. [PMID: 15070733 DOI: 10.1073/pnas.0307700101] [Cited by in Crossref: 314] [Cited by in F6Publishing: 316] [Article Influence: 18.5] [Reference Citation Analysis]
232 Dehart JL, Planelles V. Human immunodeficiency virus type 1 Vpr links proteasomal degradation and checkpoint activation. J Virol 2008;82:1066-72. [PMID: 17855541 DOI: 10.1128/JVI.01628-07] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
233 Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 2004;3:997-1007. [DOI: 10.1016/j.dnarep.2004.03.006] [Cited by in Crossref: 263] [Cited by in F6Publishing: 232] [Article Influence: 15.5] [Reference Citation Analysis]
234 Cheon Y, Lee S. CENP‐W inhibits CDC25A degradation by destabilizing the SCF β‐TrCP‐1 complex at G 2 /M. FASEB j 2018;32:6051-65. [DOI: 10.1096/fj.201701358rrr] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
235 Gutierrez GJ, Ronai Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 2006;31:324-32. [PMID: 16647857 DOI: 10.1016/j.tibs.2006.04.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
236 Barkley LR, Ohmori H, Vaziri C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 2007;47:392-408. [PMID: 17652783 DOI: 10.1007/s12013-007-0032-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
237 Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E, Callaini G, Glover DM, Bettencourt-Dias M. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 2009;19:43-9. [PMID: 19084407 DOI: 10.1016/j.cub.2008.11.037] [Cited by in Crossref: 169] [Cited by in F6Publishing: 158] [Article Influence: 13.0] [Reference Citation Analysis]
238 Vaites LP, Lee EK, Lian Z, Barbash O, Roy D, Wasik M, Klein-Szanto AJ, Rustgi AK, Diehl JA. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol 2011;31:4513-23. [PMID: 21911473 DOI: 10.1128/MCB.05733-11] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
239 Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem 2011;286:35733-41. [PMID: 21865166 DOI: 10.1074/jbc.M111.263608] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
240 Luo Y, Leverson JD. New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response. Expert Review of Anticancer Therapy 2014;5:333-42. [DOI: 10.1586/14737140.5.2.333] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
241 Hannah J, Zhou P. Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases. DNA Repair (Amst) 2009;8:536-43. [PMID: 19231300 DOI: 10.1016/j.dnarep.2009.01.011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 3.8] [Reference Citation Analysis]
242 Zheng S, Fu Y. Age-related copy number variations and expression levels of F-box protein FBXL20 predict ovarian cancer prognosis. Transl Oncol 2020;13:100863. [PMID: 32898767 DOI: 10.1016/j.tranon.2020.100863] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
243 Freeman AK, Monteiro AN. Phosphatases in the cellular response to DNA damage. Cell Commun Signal 2010;8:27. [PMID: 20860841 DOI: 10.1186/1478-811X-8-27] [Cited by in Crossref: 53] [Cited by in F6Publishing: 34] [Article Influence: 4.8] [Reference Citation Analysis]