BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, Minowa O, Ikeda K. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 2015;24:3651-61. [PMID: 25801282 DOI: 10.1093/hmg/ddv109] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Liu W, Li H, Edin F, Brännström J, Glueckert R, Schrott-Fischer A, Molnar M, Pacholsky D, Pfaller K, Rask-Andersen H. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea-a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci 2017;122:160-70. [PMID: 28513246 DOI: 10.1080/03009734.2017.1322645] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
2 Takeda H, Hosoya M, Fujioka M, Saegusa C, Saeki T, Miwa T, Okano H, Minoda R. Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice. Sci Rep 2018;8:1941. [PMID: 29386634 DOI: 10.1038/s41598-018-20277-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
3 Tajima S, Danzaki K, Ikeda K, Kamiya K. Degradation and modification of cochlear gap junction proteins in the early development of age-related hearing loss. Exp Mol Med 2020;52:166-75. [PMID: 31988333 DOI: 10.1038/s12276-020-0377-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021;15:728610. [PMID: 34526880 DOI: 10.3389/fncel.2021.728610] [Reference Citation Analysis]
5 Lustig L, Akil O. Cochlear Gene Therapy. Cold Spring Harb Perspect Med 2019;9:a033191. [PMID: 30323014 DOI: 10.1101/cshperspect.a033191] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
6 Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, Minowa O, Kurebayashi N, Ikeda K, Kamiya K. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports 2016;7:1023-36. [PMID: 27840044 DOI: 10.1016/j.stemcr.2016.10.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
7 Yoshimura H, Nishio SY, Usami SI. Milestones toward cochlear gene therapy for patients with hereditary hearing loss. Laryngoscope Investig Otolaryngol 2021;6:958-67. [PMID: 34693000 DOI: 10.1002/lio2.633] [Reference Citation Analysis]
8 Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018;368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
9 Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiological Reviews. [DOI: 10.1152/physrev.00035.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
10 Kim MA, Ryu N, Kim HM, Kim YR, Lee B, Kwon TJ, Bok J, Kim UK. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. Mol Ther Methods Clin Dev 2019;13:197-204. [PMID: 30805407 DOI: 10.1016/j.omtm.2019.01.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
11 Guo J, Ma X, Skidmore JM, Cimerman J, Prieskorn DM, Beyer LA, Swiderski DL, Dolan DF, Martin DM, Raphael Y. GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Mol Ther Methods Clin Dev 2021;23:319-33. [PMID: 34729379 DOI: 10.1016/j.omtm.2021.09.009] [Reference Citation Analysis]
12 Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel) 2021;12:1082. [PMID: 34356098 DOI: 10.3390/genes12071082] [Reference Citation Analysis]
13 Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. Targeted Allele Suppression Prevents Progressive Hearing Loss in the Mature Murine Model of Human TMC1 Deafness. Mol Ther 2019;27:681-90. [PMID: 30686588 DOI: 10.1016/j.ymthe.2018.12.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 10.7] [Reference Citation Analysis]
14 Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW Jr, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 2021;21:209-36. [PMID: 33850952 DOI: 10.1016/j.omtm.2021.03.005] [Reference Citation Analysis]
15 Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020;394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
16 Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021;168:118-33. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Delmaghani S, El-Amraoui A. Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020;9:E2309. [PMID: 32708116 DOI: 10.3390/jcm9072309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
18 Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2017;349:182-96. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
19 Mittal R, Debs LH, Nguyen D, Patel AP, Grati M, Mittal J, Yan D, Eshraghi AA, Liu XZ. Signaling in the Auditory System: Implications in Hair Cell Regeneration and Hearing Function: AUDITORY SIGNALING AND HAIR CELL REGENERATION. J Cell Physiol 2017;232:2710-21. [DOI: 10.1002/jcp.25695] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhou XX, Chen S, Xie L, Ji YZ, Wu X, Wang WW, Yang Q, Yu JT, Sun Y, Lin X, Kong WJ. Reduced Connexin26 in the Mature Cochlea Increases Susceptibility to Noise-Induced Hearing Lossin Mice. Int J Mol Sci 2016;17:301. [PMID: 26927086 DOI: 10.3390/ijms17030301] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
21 Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018;45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
22 Choo DI, Tawfik KO, Martin DM, Raphael Y. Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures. Am J Med Genet C Semin Med Genet 2017;175:439-49. [PMID: 29082607 DOI: 10.1002/ajmg.c.31587] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
23 Xie L, Chen S, Xu K, Cao HY, Du AN, Bai X, Sun Y, Kong WJ. Reduced postnatal expression of cochlear Connexin26 induces hearing loss and affects the developmental status of pillar cells in a dose-dependent manner. Neurochem Int 2019;128:196-205. [PMID: 31034913 DOI: 10.1016/j.neuint.2019.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Naples JG, Miller LE, Ramsey A, Li D. Cochlear protein biomarkers as potential sites for targeted inner ear drug delivery. Drug Deliv Transl Res 2020;10:368-79. [PMID: 31741303 DOI: 10.1007/s13346-019-00692-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu W, Edin F, Blom H, Magnusson P, Schrott-fischer A, Glueckert R, Santi PA, Li H, Laurell G, Rask-andersen H. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tissue Res 2016;365:13-27. [DOI: 10.1007/s00441-016-2359-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
26 Kanzaki S. Gene Delivery into the Inner Ear and Its Clinical Implications for Hearing and Balance. Molecules 2018;23:E2507. [PMID: 30274337 DOI: 10.3390/molecules23102507] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
27 Crispino G, Galindo Ramirez F, Campioni M, Zorzi V, Praetorius M, Di Pasquale G, Chiorini JA, Mammano F. In vivo genetic manipulation of inner ear connexin expression by bovine adeno-associated viral vectors. Sci Rep 2017;7:6567. [PMID: 28779115 DOI: 10.1038/s41598-017-06759-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
28 Liu W, Glueckert R, Schrott-fischer A, Rask-andersen H. Human cochlear microanatomy – an electron microscopy and super-resolution structured illumination study and review. Hearing, Balance and Communication 2020;18:256-69. [DOI: 10.1080/21695717.2020.1807259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
29 Green KL, Swiderski DL, Prieskorn DM, DeRemer SJ, Beyer LA, Miller JM, Green GE, Raphael Y. ACEMg Diet Supplement Modifies Progression of Hereditary Deafness. Sci Rep 2016;6:22690. [PMID: 26965868 DOI: 10.1038/srep22690] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
30 Taiber S, Avraham KB. Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neurosci Lett 2019;713:134527. [PMID: 31586696 DOI: 10.1016/j.neulet.2019.134527] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
31 Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021;3:737632. [PMID: 34778871 DOI: 10.3389/fgeed.2021.737632] [Reference Citation Analysis]
32 Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. Biomed Res Int. 2018;2018:8137614. [PMID: 30009175 DOI: 10.1155/2018/8137614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
33 Anzai T, Fukunaga I, Hatakeyama K, Fujimoto A, Kobayashi K, Nishikawa A, Aoki T, Noda T, Minowa O, Ikeda K, Kamiya K. Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26 Deficient Mice. PLoS One 2015;10:e0141258. [PMID: 26492081 DOI: 10.1371/journal.pone.0141258] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
34 Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020;394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018;11:221. [PMID: 29997477 DOI: 10.3389/fnmol.2018.00221] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
36 Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019;28:R65-79. [PMID: 31227837 DOI: 10.1093/hmg/ddz129] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
37 Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021;15:652215. [PMID: 33815052 DOI: 10.3389/fnins.2021.652215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017;18:649-70. [PMID: 28815315 DOI: 10.1007/s10162-017-0634-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
39 Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019;11:7416-41. [PMID: 31562289 DOI: 10.18632/aging.102246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
40 Yoshimura H, Shibata SB, Ranum PT, Smith RJH. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 2018;8:2980. [PMID: 29445157 DOI: 10.1038/s41598-018-21233-z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
41 Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017;10:236. [PMID: 28824370 DOI: 10.3389/fnmol.2017.00236] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
42 Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, Zhang Y, Zheng Q, Zhang T, Wang X, Liu Y, Kong Q, Li K, Wang D, Qi M, Hong Q, Zhang R, Wang X, Jia Q, Wang X, Qin G, Li Y, Luo A, Jin W, Yao J, Huang J, Zhang H, Li M, Xie X, Zheng X, Guo K, Wang Q, Zhang S, Li L, Xie F, Zhang Y, Weng X, Yin Z, Hu K, Cong Y, Zheng P, Zou H, Xin L, Xia J, Ruan J, Li H, Zhao W, Yuan J, Liu Z, Gu W, Li M, Wang Y, Wang H, Yang S, Liu Z, Wei H, Zhao J, Zhou Q, Meng A. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. Elife 2017;6:e26248. [PMID: 28639938 DOI: 10.7554/eLife.26248] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
43 Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020;394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, Hoseini M, Mohammadi M. Protective Effects of N-Acetyl-L-Cysteine on the Density of Spiral Ganglion Cells and Histological Changes Induced by Continuous Noise Exposure in Rats. Malays J Med Sci 2018;25:48-58. [PMID: 30914862 DOI: 10.21315/mjms2018.25.5.5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
45 Peters CW, Maguire CA, Hanlon KS. Delivering AAV to the Central Nervous and Sensory Systems. Trends Pharmacol Sci 2021;42:461-74. [PMID: 33863599 DOI: 10.1016/j.tips.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]