BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019;16:1227-58. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Molecular Immunology 2020;119:106-22. [DOI: 10.1016/j.molimm.2020.01.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
2 Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021;11:621825. [PMID: 33859938 DOI: 10.3389/fonc.2021.621825] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021;2:1021-49. [PMID: 34458823 DOI: 10.1039/d1cb00049g] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Yeo HJ, Shin MJ, Kim DW, Kwon HY, Eum WS, Choi SY. Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells. BMB Rep 2021;54:458-63. [DOI: 10.5483/bmbrep.2021.54.9.040] [Reference Citation Analysis]
5 Mazuryk J, Puchalska I, Koziński K, Ślusarz MJ, Ruczyński J, Rekowski P, Rogujski P, Płatek R, Wiśniewska MB, Piotrowski A, Janus Ł, Skowron PM, Pikuła M, Sachadyn P, Rodziewicz-Motowidło S, Czupryn A, Mucha P. PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke. Int J Mol Sci 2021;22:6086. [PMID: 34200045 DOI: 10.3390/ijms22116086] [Reference Citation Analysis]
6 Chow MYT, Qiu Y, Lam JKW. Inhaled RNA Therapy: From Promise to Reality. Trends Pharmacol Sci 2020;41:715-29. [PMID: 32893004 DOI: 10.1016/j.tips.2020.08.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kardani K, Bolhassani A. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy 2021;13:669-84. [PMID: 33878901 DOI: 10.2217/imt-2020-0312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tian Y, Zhou S. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1668. [PMID: 32929866 DOI: 10.1002/wnan.1668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
9 Gessner I, Klimpel A, Neundorf I. Synthesis of Cell-Penetrating Peptide Coated Silica Nanoparticles and Their Physicochemical and Biological Characterization. Methods Mol Biol 2022;2383:105-17. [PMID: 34766285 DOI: 10.1007/978-1-0716-1752-6_7] [Reference Citation Analysis]
10 Soe TH, Watanabe K, Ohtsuki T. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Molecules 2020;26:E36. [PMID: 33374732 DOI: 10.3390/molecules26010036] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Wang Q, Cheng S, Qin F, Fu A, Fu C. Application progress of RVG peptides to facilitate the delivery of therapeutic agents into the central nervous system. RSC Adv 2021;11:8505-15. [DOI: 10.1039/d1ra00550b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Herrera R, Rosbe K, Tugizov SM. Inactivation of HIV-1 in Polarized Infant Tonsil Epithelial Cells by Human Beta-Defensins 2 and 3 Tagged with the Protein Transduction Domain of HIV-1 Tat. Viruses 2021;13:2043. [PMID: 34696473 DOI: 10.3390/v13102043] [Reference Citation Analysis]
13 Kardani K, Bolhassani A, Agi E, Hashemi A. B1 protein: a novel cell penetrating protein for in vitro and in vivo delivery of HIV-1 multi-epitope DNA constructs. Biotechnol Lett 2020;42:1847-63. [PMID: 32449070 DOI: 10.1007/s10529-020-02918-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021;13:428. [PMID: 33809969 DOI: 10.3390/pharmaceutics13030428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Machado JF, Correia JDG, Morais TS. Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules 2021;26:3153. [PMID: 34070457 DOI: 10.3390/molecules26113153] [Reference Citation Analysis]
16 Kouidhi S, Mnif W, Alqarni N, Abdelwahed S, Redissi A, Ammous N, Selmi B, Gargouri A, Achour S, Cherif A, Mosbah A. Design and use of chimeric peptides in a new non-destructive ecological process applied to the extraction of all trans/9-cis β-carotene isomers from Dunaliella salina. Food Sci Nutr 2022;10:1928-36. [PMID: 35702303 DOI: 10.1002/fsn3.2809] [Reference Citation Analysis]
17 Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021;26:5420. [PMID: 34500849 DOI: 10.3390/molecules26175420] [Reference Citation Analysis]
18 Guo X, Chen L, Wang L, Geng J, Wang T, Hu J, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake and intracellular labeling by a new cell penetrating peptide derived from CDN1. Drug Deliv 2021;28:1722-36. [PMID: 34463179 DOI: 10.1080/10717544.2021.1963352] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Donà MG, Di Bonito P, Chiantore MV, Amici C, Accardi L. Targeting Human Papillomavirus-Associated Cancer by Oncoprotein-Specific Recombinant Antibodies. Int J Mol Sci 2021;22:9143. [PMID: 34502053 DOI: 10.3390/ijms22179143] [Reference Citation Analysis]
20 Zhao T, Liang C, Zhao Y, Xue X, Ma Z, Qi J, Shen H, Yang S, Zhang J, Jia Q, Du Q, Cao D, Xiang B, Zhang H, Qi X. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01383-z] [Reference Citation Analysis]
21 Lützenburg T, Burdina N, Scholz MS, Neundorf I. Improving Membrane Activity and Cargo Delivery Efficacy of a Cell-Penetrating Peptide by Loading with Carboranes. Pharmaceutics 2021;13:2075. [PMID: 34959356 DOI: 10.3390/pharmaceutics13122075] [Reference Citation Analysis]
22 Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Malik NUA, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides 2021;141:170542. [PMID: 33794283 DOI: 10.1016/j.peptides.2021.170542] [Reference Citation Analysis]
23 Ruiz-Cánovas E, Mendoza R, Villaverde A, Corchero JL. Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids Surf B Biointerfaces 2021;208:112123. [PMID: 34571468 DOI: 10.1016/j.colsurfb.2021.112123] [Reference Citation Analysis]
24 Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021;52:25. [PMID: 33596995 DOI: 10.1186/s13567-020-00868-9] [Reference Citation Analysis]
25 Kardani K, Bolhassani A. Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. J Mol Biol 2021;433:166703. [PMID: 33186582 DOI: 10.1016/j.jmb.2020.11.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
26 Wang L, Geng J, Chen L, Guo X, Wang T, Fang Y, Belingon B, Wu J, Li M, Zhan Y, Shang W, Wan Y, Feng X, Li X, Wang H. Improved transfer efficiency of supercharged 36 + GFP protein mediate nucleic acid delivery. Drug Deliv 2022;29:386-98. [PMID: 35075948 DOI: 10.1080/10717544.2022.2030430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kurrikoff K, Vunk B, Langel Ü. Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther 2021;21:361-70. [PMID: 32938243 DOI: 10.1080/14712598.2021.1823368] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
28 Cardenas AE, Drexler CI, Nechushtai R, Mittler R, Friedler A, Webb LJ, Elber R. Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation. J Phys Chem B 2022. [PMID: 35388695 DOI: 10.1021/acs.jpcb.1c10966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Reference Citation Analysis]
30 Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021;50:5397-434. [PMID: 33666625 DOI: 10.1039/d0cs01127d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
31 Cieślak M, Ryszawy D, Pudełek M, Urbanowicz M, Morawiak M, Staszewska-Krajewska O, Czyż J, Urbańczyk-Lipkowska Z. Bioinspired Bola-Type Peptide Dendrimers Inhibit Proliferation and Invasiveness of Glioblastoma Cells in a Manner Dependent on Their Structure and Amphipathic Properties. Pharmaceutics 2020;12:E1106. [PMID: 33217976 DOI: 10.3390/pharmaceutics12111106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022;12:e822. [PMID: 35593206 DOI: 10.1002/ctm2.822] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Feni L, Neundorf I. Different Approaches to Cyclize a Cell-Penetrating Peptide and to Tether Bioactive Payloads. Methods Mol Biol 2022;2371:375-89. [PMID: 34596859 DOI: 10.1007/978-1-0716-1689-5_20] [Reference Citation Analysis]
34 Min S, Kim K, Ku S, Park J, Seo J, Roh S. Newly synthesized peptide, Ara‐27, exhibits significant improvement in cell‐penetrating ability compared to conventional peptides. Biotechnol Progress 2020;36. [DOI: 10.1002/btpr.3014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2021:S0040-5957(21)00204-3. [PMID: 34689960 DOI: 10.1016/j.therap.2021.09.007] [Reference Citation Analysis]
36 Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020;21:E2536. [PMID: 32268473 DOI: 10.3390/ijms21072536] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
37 Han Z, Mcalpine SR, Chapman R. Delivering hydrophilic peptide inhibitors of heat shock protein 70 into cancer cells. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105713] [Reference Citation Analysis]
38 Mohammed EHM, Mandal D, Mozaffari S, Abdel-Hamied Zahran M, Mostafa Osman A, Kumar Tiwari R, Parang K. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization. Molecules 2020;25:E2581. [PMID: 32498339 DOI: 10.3390/molecules25112581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pep Sci 2021;27. [DOI: 10.1002/psc.3300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
40 Xu J, Gu M, Hooi L, Toh TB, Thng DKH, Lim JJ, Chow EK. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. Nanoscale 2021;13:16131-45. [PMID: 34542130 DOI: 10.1039/d1nr03502a] [Reference Citation Analysis]
41 Hejtmánková A, Váňová J, Španielová H. Cell-penetrating peptides in the intracellular delivery of viral nanoparticles. Vitam Horm 2021;117:47-76. [PMID: 34420585 DOI: 10.1016/bs.vh.2021.06.010] [Reference Citation Analysis]
42 Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021;179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. J Drug Target 2021;:1-15. [PMID: 33944641 DOI: 10.1080/1061186X.2021.1920026] [Reference Citation Analysis]
44 Lorents A, Maloverjan M, Padari K, Pooga M. Internalisation and Biological Activity of Nucleic Acids Delivering Cell-Penetrating Peptide Nanoparticles Is Controlled by the Biomolecular Corona. Pharmaceuticals (Basel) 2021;14:667. [PMID: 34358093 DOI: 10.3390/ph14070667] [Reference Citation Analysis]
45 Sun J, Xu Z, Hou Y, Yao W, Fan X, Zheng H, Piao J, Li F, Wei Y. Hierarchically structured microcapsules for oral delivery of emodin and tanshinone IIA to treat renal fibrosis. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121490] [Reference Citation Analysis]
46 Zhou Y, Prakash PS, Liang H, Gorfe AA, Hancock JF. The KRAS and other prenylated polybasic domain membrane anchors recognize phosphatidylserine acyl chain structure. Proc Natl Acad Sci U S A 2021;118:e2014605118. [PMID: 33526670 DOI: 10.1073/pnas.2014605118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zhang G, Liu W, Gao Z, Yang S, Zhou G, Chang Y, Ma Y, Liang X, Shao J, Chang H. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. Int Immunopharmacol 2021;101:108251. [PMID: 34715492 DOI: 10.1016/j.intimp.2021.108251] [Reference Citation Analysis]
48 Abdulla F, Nain Z, Hossain MM, Syed SB, Ahmed Khan MS, Adhikari UK. A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb Pathog 2021;150:104705. [PMID: 33352214 DOI: 10.1016/j.micpath.2020.104705] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022:rgac038. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Reference Citation Analysis]
50 Zhang C, Yuan W, Wu Y, Wan X, Gong Y. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci 2021;266:118886. [PMID: 33310044 DOI: 10.1016/j.lfs.2020.118886] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
51 Kardani K, Bolhassani A. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS One 2021;16:e0247396. [PMID: 33606823 DOI: 10.1371/journal.pone.0247396] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
52 Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021;19:255. [PMID: 34425832 DOI: 10.1186/s12951-021-01002-3] [Reference Citation Analysis]
53 Zhao L, Chen H, Lu L, Zhao C, Malichewe CV, Wang L, Guo X, Zhang X. Design and screening of a novel neuropilin-1 targeted penetrating peptide for anti-angiogenic therapy in glioma. Life Sci 2021;270:119113. [PMID: 33508290 DOI: 10.1016/j.lfs.2021.119113] [Reference Citation Analysis]
54 Milani A, Baesi K, Agi E, Marouf G, Ahmadi M, Bolhassani A. HIV-1 Accessory Proteins: Which one is Potentially Effective in Diagnosis and Vaccine Development? Protein Pept Lett 2021;28:687-98. [PMID: 33390106 DOI: 10.2174/0929866528999201231213610] [Reference Citation Analysis]
55 Feni L, Jütten L, Parente S, Piarulli U, Neundorf I, Diaz D. Cell-penetrating peptides containing 2,5-diketopiperazine (DKP) scaffolds as shuttles for anti-cancer drugs: conformational studies and biological activity. Chem Commun (Camb) 2020;56:5685-8. [PMID: 32319458 DOI: 10.1039/d0cc01490g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
56 Gurney L, Robson SC, Sweeney M, Jones AT, Taggart MJ. Strategies for Peptide-Mediated Cargo Delivery to Human Smooth Muscle Cells. Methods Mol Biol 2022;2383:459-71. [PMID: 34766307 DOI: 10.1007/978-1-0716-1752-6_29] [Reference Citation Analysis]
57 Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021;42:101846. [PMID: 33419703 DOI: 10.1016/j.redox.2020.101846] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
58 Bernatchez PN, Tao B, Bradshaw RA, Eveleth D, Sessa WC. Characterization of a Novel Caveolin Modulator That Reduces Vascular Permeability and Ocular Inflammation. Transl Vis Sci Technol 2021;10:21. [PMID: 34111267 DOI: 10.1167/tvst.10.6.21] [Reference Citation Analysis]