BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 2017;7:45524. [PMID: 28367981 DOI: 10.1038/srep45524] [Cited by in Crossref: 83] [Cited by in F6Publishing: 84] [Article Influence: 16.6] [Reference Citation Analysis]
Number Citing Articles
1 Huang S, Song J, He C, Cai X, Yuan K, Mei L, Feng Y. Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2021. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wang L, Kempton JB, Brigande JV. Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 2018;11:300. [PMID: 30210291 DOI: 10.3389/fnmol.2018.00300] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
3 Zhu J, Choi JW, Ishibashi Y, Isgrig K, Grati M, Bennett J, Chien W. Refining surgical techniques for efficient posterior semicircular canal gene delivery in the adult mammalian inner ear with minimal hearing loss. Sci Rep 2021;11:18856. [PMID: 34552193 DOI: 10.1038/s41598-021-98412-y] [Reference Citation Analysis]
4 Yang T, Guo L, Wang L, Yu X. Diagnosis, Intervention, and Prevention of Genetic Hearing Loss. Adv Exp Med Biol 2019;1130:73-92. [PMID: 30915702 DOI: 10.1007/978-981-13-6123-4_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 2021;22:86. [PMID: 33752742 DOI: 10.1186/s13059-021-02311-4] [Reference Citation Analysis]
6 Burton JA, Valero MD, Hackett TA, Ramachandran R. The use of nonhuman primates in studies of noise injury and treatment. J Acoust Soc Am 2019;146:3770. [PMID: 31795680 DOI: 10.1121/1.5132709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
7 Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1545. [PMID: 30411529 DOI: 10.1002/wnan.1545] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
8 Duarte MJ, Kanumuri VV, Landegger LD, Tarabichi O, Sinha S, Meng X, Hight AE, Kozin ED, Stankovic KM, Brown MC, Lee DJ. Ancestral Adeno-Associated Virus Vector Delivery of Opsins to Spiral Ganglion Neurons: Implications for Optogenetic Cochlear Implants. Mol Ther 2018;26:1931-9. [PMID: 30017876 DOI: 10.1016/j.ymthe.2018.05.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
9 Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021;15:728610. [PMID: 34526880 DOI: 10.3389/fncel.2021.728610] [Reference Citation Analysis]
10 Sayyid ZN, Kim GS, Cheng AG. Molecular therapy for genetic and degenerative vestibular disorders. Curr Opin Otolaryngol Head Neck Surg 2018;26:307-11. [PMID: 30045104 DOI: 10.1097/MOO.0000000000000477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
11 György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, Indzhykulian AA, Volak A, Karavitaki KD, Tamvakologos PI, Vezina M, Berezovskii VK, Born RT, O'Brien M, Lafond JF, Arsenijevic Y, Kenna MA, Maguire CA, Corey DP. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Mol Ther Methods Clin Dev 2019;13:1-13. [PMID: 30581889 DOI: 10.1016/j.omtm.2018.11.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 14.3] [Reference Citation Analysis]
12 Reisinger E. Dual-AAV delivery of large gene sequences to the inner ear. Hearing Research 2020;394:107857. [DOI: 10.1016/j.heares.2019.107857] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019;13:323. [PMID: 31379508 DOI: 10.3389/fncel.2019.00323] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
14 Balmer TS, Trussell LO. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. Elife 2019;8:e44964. [PMID: 30994458 DOI: 10.7554/eLife.44964] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
15 Raghu V, Ramakrishna Y, Burkard RF, Sadeghi SG. A novel intracochlear injection method for rapid drug delivery to vestibular end organs. J Neurosci Methods 2020;341:108689. [PMID: 32380226 DOI: 10.1016/j.jneumeth.2020.108689] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020;394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
17 Grimm D, Büning H. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Human Gene Therapy 2017;28:1075-86. [DOI: 10.1089/hum.2017.172] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 13.4] [Reference Citation Analysis]
18 Kim MA, Ryu N, Kim HM, Kim YR, Lee B, Kwon TJ, Bok J, Kim UK. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. Mol Ther Methods Clin Dev 2019;13:197-204. [PMID: 30805407 DOI: 10.1016/j.omtm.2019.01.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
19 Yoshimura H, Shibata SB, Ranum PT, Smith RJH. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 2018;8:2980. [PMID: 29445157 DOI: 10.1038/s41598-018-21233-z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
20 Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiological Reviews. [DOI: 10.1152/physrev.00035.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
21 Romero GE, Trussell LO. Distinct forms of synaptic plasticity during ascending vs descending control of medial olivocochlear efferent neurons. Elife 2021;10:e66396. [PMID: 34250904 DOI: 10.7554/eLife.66396] [Reference Citation Analysis]
22 Oestreicher D, Picher MM, Rankovic V, Moser T, Pangrsic T. Cabp2-Gene Therapy Restores Inner Hair Cell Calcium Currents and Improves Hearing in a DFNB93 Mouse Model. Front Mol Neurosci 2021;14:689415. [PMID: 34489639 DOI: 10.3389/fnmol.2021.689415] [Reference Citation Analysis]
23 Zhang Z, Wang J, Li C, Xue W, Xing Y, Liu F. Gene therapy development in hearing research in China. Gene Ther 2020;27:349-59. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2021;39:375-88. [PMID: 33378797 DOI: 10.1002/stem.3315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Garber K, Landhuis E, Sheridan C, Senior M, DeFrancesco L. Nature Biotechnology's academic spinouts of 2018. Nat Biotechnol 2019;37:601-12. [PMID: 31133743 DOI: 10.1038/s41587-019-0139-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
26 Ivanchenko MV, Hanlon KS, Hathaway DM, Klein AJ, Peters CW, Li Y, Tamvakologos PI, Nammour J, Maguire CA, Corey DP. AAV-S: A versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther Methods Clin Dev 2021;21:382-98. [PMID: 33869656 DOI: 10.1016/j.omtm.2021.03.019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Lustig L, Akil O. Cochlear Gene Therapy. Cold Spring Harb Perspect Med 2019;9:a033191. [PMID: 30323014 DOI: 10.1101/cshperspect.a033191] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
28 Fakhiri J, Landegger LD, Grimm D. Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hear Res 2020;:108092. [PMID: 33268240 DOI: 10.1016/j.heares.2020.108092] [Reference Citation Analysis]
29 Kang W, Zhao X, Sun Z, Dong T, Jin C, Tong L, Zhu W, Tao Y, Wu H. Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 2020;27:392-405. [PMID: 32005950 DOI: 10.1038/s41434-020-0124-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Richardson RT, Thompson AC, Wise AK, Ajay EA, Gunewardene N, O'Leary SJ, Stoddart PR, Fallon JB. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation. Sci Rep 2021;11:11229. [PMID: 34045604 DOI: 10.1038/s41598-021-90764-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. Adv Sci (Weinh) 2021;8:2004018. [PMID: 33977059 DOI: 10.1002/advs.202004018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, Vandenberghe LH, Wang Q, Gao G, Kong WJ, Chen ZY. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Hum Gene Ther 2018;29:492-506. [PMID: 29130354 DOI: 10.1089/hum.2017.120] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
33 Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW. AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 2019;10:427. [PMID: 30683875 DOI: 10.1038/s41467-018-08243-1] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 17.7] [Reference Citation Analysis]
34 Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM Jr, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020;59:101042. [PMID: 32173536 DOI: 10.1016/j.arr.2020.101042] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
35 Dombrowski T, Rankovic V, Moser T. Toward the Optical Cochlear Implant. Cold Spring Harb Perspect Med 2019;9:a033225. [PMID: 30323016 DOI: 10.1101/cshperspect.a033225] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
36 Gu X, Chai R, Guo L, Dong B, Li W, Shu Y, Huang X, Li H. Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea. Front Cell Neurosci 2019;13:8. [PMID: 30733670 DOI: 10.3389/fncel.2019.00008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
37 Roccio M, Senn P, Heller S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res. 2019;107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
38 Blanc F, Mondain M, Bemelmans AP, Affortit C, Puel JL, Wang J. rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. J Clin Med 2020;9:E589. [PMID: 32098144 DOI: 10.3390/jcm9020589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Omichi R, Yoshimura H, Shibata SB, Vandenberghe LH, Smith RJH. Hair Cell Transduction Efficiency of Single- and Dual-AAV Serotypes in Adult Murine Cochleae. Mol Ther Methods Clin Dev 2020;17:1167-77. [PMID: 32518805 DOI: 10.1016/j.omtm.2020.05.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
40 Leake PA, Rebscher SJ, Dore' C, Akil O. AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-hBDNF and AAV5-hGDNF. J Assoc Res Otolaryngol 2019;20:341-61. [PMID: 31222416 DOI: 10.1007/s10162-019-00723-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
41 Zhang Z, Chen Z, Fan L, Landry T, Brown J, Yu Z, Yin S, Wang J. Ultrasound-microbubble cavitation facilitates adeno-associated virus mediated cochlear gene transfection across the round-window membrane. Bioeng Transl Med 2021;6:e10189. [PMID: 33532589 DOI: 10.1002/btm2.10189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW Jr, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 2021;21:209-36. [PMID: 33850952 DOI: 10.1016/j.omtm.2021.03.005] [Reference Citation Analysis]
43 Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020;394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Nevoux J, Alexandru M, Bellocq T, Tanaka L, Hayashi Y, Watabe T, Lahlou H, Tani K, Edge ASB. An antibody to RGMa promotes regeneration of cochlear synapses after noise exposure. Sci Rep 2021;11:2937. [PMID: 33536466 DOI: 10.1038/s41598-021-81294-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Lee C, Sinha AK, Henry K, Walbaum AW, Crooks PA, Holt JC. Characterizing the Access of Cholinergic Antagonists to Efferent Synapses in the Inner Ear. Front Neurosci 2021;15:754585. [PMID: 34970112 DOI: 10.3389/fnins.2021.754585] [Reference Citation Analysis]
46 Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018;45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
47 Schilder AG, Su MP, Mandavia R, Anderson CR, Landry E, Ferdous T, Blackshaw H. Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hearing Research 2019;380:175-86. [DOI: 10.1016/j.heares.2019.07.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
48 Lan Y, Tao Y, Wang Y, Ke J, Yang Q, Liu X, Su B, Wu Y, Lin CP, Zhong G. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther 2020;27:329-37. [PMID: 32424232 DOI: 10.1038/s41434-020-0155-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
49 Peters CW, Maguire CA, Hanlon KS. Delivering AAV to the Central Nervous and Sensory Systems. Trends Pharmacol Sci 2021;42:461-74. [PMID: 33863599 DOI: 10.1016/j.tips.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther. 2019;200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
51 Delmaghani S, El-Amraoui A. Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020;9:E2309. [PMID: 32708116 DOI: 10.3390/jcm9072309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
52 Mnyandu N, Arbuthnot P, Maepa MB. In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. Methods Mol Biol 2020;2115:171-83. [PMID: 32006401 DOI: 10.1007/978-1-0716-0290-4_10] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Hudry E, Andres-Mateos E, Lerner EP, Volak A, Cohen O, Hyman BT, Maguire CA, Vandenberghe LH. Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 2018;10:197-209. [PMID: 30109242 DOI: 10.1016/j.omtm.2018.07.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
54 Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec 2019;303:390-407. [DOI: 10.1002/ar.24332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021;168:118-33. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
56 Al-Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med 2019;11:e9396. [PMID: 30509897 DOI: 10.15252/emmm.201809396] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
57 Isgrig K, Chien WW. Posterior Semicircular Canal Approach for Inner Ear Gene Delivery in Neonatal Mouse. J Vis Exp 2018. [PMID: 29553564 DOI: 10.3791/56648] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
58 Hu CJ, Lu YC, Tsai YH, Cheng HY, Takeda H, Huang CY, Xiao R, Hsu CJ, Tsai JW, Vandenberghe LH, Wu CC, Cheng YF. Efficient in Utero Gene Transfer to the Mammalian Inner Ears by the Synthetic Adeno-Associated Viral Vector Anc80L65. Mol Ther Methods Clin Dev 2020;18:493-500. [PMID: 32775487 DOI: 10.1016/j.omtm.2020.06.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
59 Casey G, Askew C, Brimble MA, Samulski RJ, Davidoff AM, Li C, Walters BJ. Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020;15:e0242599. [PMID: 33227033 DOI: 10.1371/journal.pone.0242599] [Reference Citation Analysis]
60 Hashimoto K, Hickman TT, Suzuki J, Ji L, Kohrman DC, Corfas G, Liberman MC. Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3. Sci Rep 2019;9:15362. [PMID: 31653916 DOI: 10.1038/s41598-019-51724-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
61 Lee J, Nist-Lund C, Solanes P, Goldberg H, Wu J, Pan B, Schneider BL, Holt JR. Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res 2020;394:107882. [PMID: 31980281 DOI: 10.1016/j.heares.2020.107882] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
62 Roman-Naranjo P, Gallego-Martinez A, Lopez Escamez JA. Genetics of vestibular syndromes. Curr Opin Neurol 2018;31:105-10. [PMID: 29095749 DOI: 10.1097/WCO.0000000000000519] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
63 Yu HV, Tao L, Llamas J, Wang X, Nguyen JD, Trecek T, Segil N. POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. Proc Natl Acad Sci U S A 2021;118:e2105137118. [PMID: 34266958 DOI: 10.1073/pnas.2105137118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021;15:652215. [PMID: 33815052 DOI: 10.3389/fnins.2021.652215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020;394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
66 Chin OY, Diaz RC. State-of-the-art methods in clinical intracochlear drug delivery. Curr Opin Otolaryngol Head Neck Surg 2019;27:381-6. [PMID: 31460985 DOI: 10.1097/MOO.0000000000000566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
67 Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development. 2019;146:dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
68 Menendez L, Trecek T, Gopalakrishnan S, Tao L, Markowitz AL, Yu HV, Wang X, Llamas J, Huang C, Lee J, Kalluri R, Ichida J, Segil N. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. Elife 2020;9:e55249. [PMID: 32602462 DOI: 10.7554/eLife.55249] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
69 El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2021;16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
70 Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019;19:129-39. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
71 Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes 2017;53:707-13. [PMID: 28762205 DOI: 10.1007/s11262-017-1502-7] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
72 Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018;11:221. [PMID: 29997477 DOI: 10.3389/fnmol.2018.00221] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
73 de Alencastro G, Pekrun K, Valdmanis P, Tiffany M, Xu J, Kay MA. Tracking Adeno-Associated Virus Capsid Evolution by High-Throughput Sequencing. Hum Gene Ther 2020;31:553-64. [PMID: 32024384 DOI: 10.1089/hum.2019.339] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
74 Talaei S, Schnee ME, Aaron KA, Ricci AJ. Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution. Front Cell Neurosci 2019;13:471. [PMID: 31736710 DOI: 10.3389/fncel.2019.00471] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
75 Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017;18:649-70. [PMID: 28815315 DOI: 10.1007/s10162-017-0634-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
76 Shibata SB, Yoshimura H, Ranum PT, Goodwin AT, Smith RJH. Intravenous rAAV2/9 injection for murine cochlear gene delivery. Sci Rep 2017;7:9609. [PMID: 28852025 DOI: 10.1038/s41598-017-09805-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
77 Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 2020;12:eaay9101. [PMID: 32493795 DOI: 10.1126/scitranslmed.aay9101] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 30.0] [Reference Citation Analysis]
78 Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol Med 2020;12:e11618. [PMID: 32227585 DOI: 10.15252/emmm.201911618] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
79 Renauld JM, Basch ML. Congenital Deafness and Recent Advances Towards Restoring Hearing Loss. Curr Protoc 2021;1:e76. [PMID: 33780161 DOI: 10.1002/cpz1.76] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Guo JY, He L, Qu TF, Liu YY, Liu K, Wang GP, Gong SS. Canalostomy As a Surgical Approach to Local Drug Delivery into the Inner Ears of Adult and Neonatal Mice. J Vis Exp 2018. [PMID: 29889202 DOI: 10.3791/57351] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
81 Wang J, Yin S, Chen H, Shi L. Noise-Induced Cochlear Synaptopathy and Ribbon Synapse Regeneration: Repair Process and Therapeutic Target. Adv Exp Med Biol 2019;1130:37-57. [PMID: 30915700 DOI: 10.1007/978-981-13-6123-4_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
82 Mookherjee S, Chen HY, Isgrig K, Yu W, Hiriyanna S, Levron R, Li T, Colosi P, Chien W, Swaroop A, Wu Z. A CEP290 C-Terminal Domain Complements the Mutant CEP290 of Rd16 Mice In Trans and Rescues Retinal Degeneration. Cell Rep 2018;25:611-623.e6. [PMID: 30332642 DOI: 10.1016/j.celrep.2018.09.043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
83 Herrmann AK, Bender C, Kienle E, Grosse S, El Andari J, Botta J, Schürmann N, Wiedtke E, Niopek D, Grimm D. A Robust and All-Inclusive Pipeline for Shuffling of Adeno-Associated Viruses. ACS Synth Biol 2019;8:194-206. [PMID: 30513195 DOI: 10.1021/acssynbio.8b00373] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
84 Sumner L, Mestel J, Reichenbach T. Steady streaming as a method for drug delivery to the inner ear. Sci Rep 2021;11:57. [PMID: 33420230 DOI: 10.1038/s41598-020-79946-z] [Reference Citation Analysis]
85 Akil O, Lustig L. AAV-Mediated Gene Delivery to the Inner Ear. Methods Mol Biol 2019;1950:271-82. [PMID: 30783980 DOI: 10.1007/978-1-4939-9139-6_16] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]