BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chaudhari AS, Mittra E, Davidzon GA, Gulaka P, Gandhi H, Brown A, Zhang T, Srinivas S, Gong E, Zaharchuk G, Jadvar H. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med 2021;4:127. [PMID: 34426629 DOI: 10.1038/s41746-021-00497-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Fu Y, Zhang H, Xue P, Ren M, Xiao T, Zhang Z, Huang Y, Dong E. Qualitative analysis of PD-L1 expression in non-small-cell lung cancer based on chest CT radiomics. Biomedical Signal Processing and Control 2023;84:104815. [DOI: 10.1016/j.bspc.2023.104815] [Reference Citation Analysis]
2 Margail C, Merlin C, Billoux T, Wallaert M, Otman H, Sas N, Molnar I, Guillemin F, Boyer L, Guy L, Tempier M, Levesque S, Revy A, Cachin F, Chanchou M. Imaging quality of an artificial intelligence denoising algorithm: validation in 68Ga PSMA-11 PET for patients with biochemical recurrence of prostate cancer.. [DOI: 10.21203/rs.3.rs-2617409/v1] [Reference Citation Analysis]
3 Quak E, Weyts K, Jaudet C, Prigent A, Foucras G, Lasnon C. Artificial intelligence-based 68Ga-DOTATOC PET denoising for optimizing 68Ge/68Ga generator use throughout its lifetime. Front Med 2023;10. [DOI: 10.3389/fmed.2023.1137514] [Reference Citation Analysis]
4 Spadafora M, Sannino P, Mansi L, Mainolfi C, Capasso R, Di Giorgio E, Fiordoro S, Imbimbo S, Masone F, Evangelista L. Algorithm for Reducing Overall Biological Detriment Caused by PET/CT: an Age-Based Study. Nucl Med Mol Imaging 2023. [DOI: 10.1007/s13139-023-00788-4] [Reference Citation Analysis]
5 Flaus A, Deddah T, Reilhac A, Leiris ND, Janier M, Merida I, Grenier T, Mcginnity CJ, Hammers A, Lartizien C, Costes N. PET image enhancement using artificial intelligence for better characterization of epilepsy lesions. Front Med 2022;9. [DOI: 10.3389/fmed.2022.1042706] [Reference Citation Analysis]
6 Gavriilidis P, Koole M, Annunziata S, Mottaghy FM, Wierts R. Positron Range Corrections and Denoising Techniques for Gallium-68 PET Imaging: A Literature Review. Diagnostics 2022;12:2335. [DOI: 10.3390/diagnostics12102335] [Reference Citation Analysis]
7 Sanaat A, Akhavanalaf A, Shiri I, Salimi Y, Arabi H, Zaidi H. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum Brain Mapp 2022. [PMID: 36087092 DOI: 10.1002/hbm.26068] [Reference Citation Analysis]
8 Kazek SL, Jentzen W, Seifert R, Herrmann K, Kersting D. Digitale Positronenemissionstomografie – Entwicklung, Detektortechnologie und Perspektiven. Angewandte Nuklearmedizin 2022;45:217-226. [DOI: 10.1055/a-1715-5184] [Reference Citation Analysis]
9 Fragoso Costa P, Jentzen W, Brahmer A, Mavroeidi IA, Zarrad F, Umutlu L, Fendler WP, Rischpler C, Herrmann K, Conti M, Seifert R, Sraieb M, Weber M, Kersting D. Phantom-based acquisition time and image reconstruction parameter optimisation for oncologic FDG PET/CT examinations using a digital system. BMC Cancer 2022;22:899. [PMID: 35978274 DOI: 10.1186/s12885-022-09993-4] [Reference Citation Analysis]
10 Hosch R, Weber M, Sraieb M, Flaschel N, Haubold J, Kim MS, Umutlu L, Kleesiek J, Herrmann K, Nensa F, Rischpler C, Koitka S, Seifert R, Kersting D. Artificial intelligence guided enhancement of digital PET: scans as fast as CT? Eur J Nucl Med Mol Imaging 2022. [PMID: 35904589 DOI: 10.1007/s00259-022-05901-x] [Reference Citation Analysis]
11 Stiles J, Baldassi B, Bubon O, Poladyan H, Freitas V, Scaranelo A, Mulligan AM, Waterston M, Reznik A. Evaluation of a High-Sensitivity Organ-Targeted PET Camera. Sensors 2022;22:4678. [DOI: 10.3390/s22134678] [Reference Citation Analysis]
12 Marcus C, Tajmir SH, Rowe SP, Sheikhbahaei S, Solnes LB. 18F-FDG PET/CT for Response Assessment in Lung Cancer. Seminars in Nuclear Medicine 2022. [DOI: 10.1053/j.semnuclmed.2022.04.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Theruvath AJ, Siedek F, Yerneni K, Muehe AM, Spunt SL, Pribnow A, Moseley M, Lu Y, Zhao Q, Gulaka P, Chaudhari A, Daldrup-Link HE. Validation of Deep Learning-based Augmentation for Reduced 18F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma. Radiol Artif Intell 2021;3:e200232. [PMID: 34870211 DOI: 10.1148/ryai.2021200232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Aide N, Lasnon C, Desmonts C, Armstrong IS, Walker MD, McGowan DR. Advances in PET-CT technology: An update. Semin Nucl Med 2021:S0001-2998(21)00081-7. [PMID: 34823841 DOI: 10.1053/j.semnuclmed.2021.10.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Gokyar S, Robb FJL, Kainz W, Chaudhari A, Winkler SA. MRSaiFE: An AI-based Approach Towards the Real-Time Prediction of Specific Absorption Rate. IEEE Access 2021;9:140824-34. [PMID: 34722096 DOI: 10.1109/access.2021.3118290] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]