BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection. Sci Rep. 2018;8:6791. [PMID: 29717156 DOI: 10.1038/s41598-018-25054-y] [Cited by in Crossref: 49] [Cited by in F6Publishing: 69] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiology. [DOI: 10.2217/fca-2022-0058] [Reference Citation Analysis]
2 Lu Y, Zhang Z, Wu H, Fang L, Hu B, Tang C, Zhang Y, Yin L, Tang D, Zheng Z, Zhu T, Dai Y. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med 2022;20. [DOI: 10.1186/s12967-022-03629-8] [Reference Citation Analysis]
3 Wicik Z, Nowak A, Jarosz-popek J, Wolska M, Eyileten C, Siller-matula JM, von Lewinski D, Sourij H, Filipiak‬ KJ, Postuła M. Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Front Pharmacol 2022;13:901340. [DOI: 10.3389/fphar.2022.901340] [Reference Citation Analysis]
4 Zhao SS, Rajasundaram S, Karhunen V, Alam U, Gill D. Sodium-glucose cotransporter 1 inhibition and gout: Mendelian randomisation study. Semin Arthritis Rheum 2022;56:152058. [PMID: 35839537 DOI: 10.1016/j.semarthrit.2022.152058] [Reference Citation Analysis]
5 Bian C, Ren H. Sirtuin Family and Diabetic Kidney Disease. Front Endocrinol 2022;13:901066. [DOI: 10.3389/fendo.2022.901066] [Reference Citation Analysis]
6 Qi W, Hu C, Zhao D, Li X. SIRT1–SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol 2022;13:801303. [DOI: 10.3389/fendo.2022.801303] [Reference Citation Analysis]
7 Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabetes Research and Clinical Practice 2022. [DOI: 10.1016/j.diabres.2022.109927] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 He L, Ma S, Zuo Q, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. An Effective Sodium-Dependent Glucose Transporter 2 Inhibition, Canagliflozin, Prevents Development of Hypertensive Heart Failure in Dahl Salt-Sensitive Rats. Front Pharmacol 2022;13:856386. [PMID: 35370704 DOI: 10.3389/fphar.2022.856386] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29124-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 de Souza Cordeiro LM, Bainbridge L, Devisetty N, McDougal DH, Peters DJM, Chhabra KH. Loss of function of renal Glut2 reverses hyperglycaemia and normalises body weight in mouse models of diabetes and obesity. Diabetologia 2022. [PMID: 35290476 DOI: 10.1007/s00125-022-05676-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Itoh H, Tanaka M. “Greedy Organs Hypothesis” for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney. Metabolism Open 2022. [DOI: 10.1016/j.metop.2022.100169] [Reference Citation Analysis]
12 Uehara-Watanabe N, Okuno-Ozeki N, Minamida A, Nakamura I, Nakata T, Nakai K, Yagi-Tomita A, Ida T, Ikeda K, Kitani T, Yamashita N, Kamezaki M, Kirita Y, Matoba S, Tamagaki K, Kusaba T. Direct evidence of proximal tubular proliferation in early diabetic nephropathy. Sci Rep 2022;12:778. [PMID: 35039597 DOI: 10.1038/s41598-022-04880-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Deschaine B, Verma S, Rayatzadeh H. Clinical Evidence and Proposed Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction: A Class Effect? Card Fail Rev 2022;8:e23. [PMID: 35846984 DOI: 10.15420/cfr.2022.11] [Reference Citation Analysis]
14 Wang W, Li J, Cai L. Research progress of sirtuins in renal and cardiovascular diseases. Curr Opin Nephrol Hypertens 2021;30:108-14. [PMID: 33229910 DOI: 10.1097/MNH.0000000000000660] [Reference Citation Analysis]
15 Fukushima K, Kitamura S, Tsuji K, Wada J. Sodium-Glucose Cotransporter 2 Inhibitors Work as a "Regulator" of Autophagic Activity in Overnutrition Diseases. Front Pharmacol 2021;12:761842. [PMID: 34744742 DOI: 10.3389/fphar.2021.761842] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Chung MC, Hung PH, Hsiao PJ, Wu LY, Chang CH, Wu MJ, Shieh JJ, Chung CJ. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open 2021;4:e2135353. [PMID: 34797368 DOI: 10.1001/jamanetworkopen.2021.35353] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Wang YJ, Paneni F, Stein S, Matter CM. Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease-From Bench to Bedside. Front Physiol 2021;12:755060. [PMID: 34712151 DOI: 10.3389/fphys.2021.755060] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021;10:2945. [PMID: 34831168 DOI: 10.3390/cells10112945] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
19 Ekanayake P, Mudaliar S. A novel hypothesis linking low-grade ketonaemia to cardio-renal benefits with sodium-glucose cotransporter-2 inhibitors. Diabetes Obes Metab 2022;24:3-11. [PMID: 34605129 DOI: 10.1111/dom.14562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Zafar MU, Badimon JJ. Prolyl Hydroxylase Inhibitors: a New Opportunity in Renal and Myocardial Protection. Cardiovasc Drugs Ther 2021. [PMID: 34533692 DOI: 10.1007/s10557-021-07257-0] [Reference Citation Analysis]
21 Sayour AA, Ruppert M, Oláh A, Benke K, Barta BA, Zsáry E, Merkely B, Radovits T. Effects of SGLT2 Inhibitors beyond Glycemic Control-Focus on Myocardial SGLT1. Int J Mol Sci 2021;22:9852. [PMID: 34576016 DOI: 10.3390/ijms22189852] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Du C, Ren Y, Li G, Yang Y, Yan Z, Yao F. Single Cell Transcriptome Helps Better Understanding Crosstalk in Diabetic Kidney Disease. Front Med (Lausanne) 2021;8:657614. [PMID: 34485320 DOI: 10.3389/fmed.2021.657614] [Reference Citation Analysis]
23 D'Onofrio N, Sardu C, Trotta MC, Scisciola L, Turriziani F, Ferraraccio F, Panarese I, Petrella L, Fanelli M, Modugno P, Massetti M, Marfella LV, Sasso FC, Rizzo MR, Barbieri M, Furbatto F, Minicucci F, Mauro C, Federici M, Balestrieri ML, Paolisso G, Marfella R. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab 2021;54:101337. [PMID: 34500107 DOI: 10.1016/j.molmet.2021.101337] [Cited by in Crossref: 3] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
24 Packer M. Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes. JACC Heart Fail 2021;9:535-49. [PMID: 34325884 DOI: 10.1016/j.jchf.2021.05.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021. [PMID: 34297135 DOI: 10.1007/s00232-021-00192-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Morsy MA, Khalaf HM, Rifaai RA, Bayoumi AMA, Khalifa EMMA, Ibrahim YF. Canagliflozin, an SGLT-2 inhibitor, ameliorates acetic acid-induced colitis in rats through targeting glucose metabolism and inhibiting NOX2. Biomed Pharmacother 2021;141:111902. [PMID: 34328119 DOI: 10.1016/j.biopha.2021.111902] [Reference Citation Analysis]
27 Korkmaz-Icöz S, Kocer C, Sayour AA, Kraft P, Benker MI, Abulizi S, Georgevici AI, Brlecic P, Radovits T, Loganathan S, Karck M, Szabó G. The Sodium-Glucose Cotransporter-2 Inhibitor Canagliflozin Alleviates Endothelial Dysfunction Following In Vitro Vascular Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2021;22:7774. [PMID: 34360539 DOI: 10.3390/ijms22157774] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
28 Xu J, Kitada M, Koya D. NAD+ Homeostasis in Diabetic Kidney Disease. Front Med (Lausanne) 2021;8:703076. [PMID: 34368195 DOI: 10.3389/fmed.2021.703076] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Xiao L, Nie X, Cheng Y, Wang N. Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovasc Drugs Ther 2021. [PMID: 34273091 DOI: 10.1007/s10557-021-07216-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wen S, Nguyen T, Gong M, Yuan X, Wang C, Jin J, Zhou L. An Overview of Similarities and Differences in Metabolic Actions and Effects of Central Nervous System Between Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) and Sodium Glucose Co-Transporter-2 Inhibitors (SGLT-2is). Diabetes Metab Syndr Obes 2021;14:2955-72. [PMID: 34234493 DOI: 10.2147/DMSO.S312527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Almaimani M, Sridhar VS, Cherney DZI. Sodium-glucose cotransporter 2 inhibition in non-diabetic kidney disease. Curr Opin Nephrol Hypertens 2021;30:474-81. [PMID: 34074889 DOI: 10.1097/MNH.0000000000000724] [Reference Citation Analysis]
32 Lee JF, Berzan E, Sridhar VS, Odutayo A, Cherney DZI. Cardiorenal Protection in Diabetic Kidney Disease. Endocrinol Metab (Seoul) 2021;36:256-69. [PMID: 33873265 DOI: 10.3803/EnM.2021.987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021;162:bqab079. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kaneto H, Obata A, Kimura T, Shimoda M, Kinoshita T, Matsuoka TA, Kaku K. Unexpected Pleiotropic Effects of SGLT2 Inhibitors: Pearls and Pitfalls of This Novel Antidiabetic Class. Int J Mol Sci 2021;22:3062. [PMID: 33802741 DOI: 10.3390/ijms22063062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, Kamato D, Sahebkar A, Wu W, Weng J, Xu S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics 2021;11:4502-15. [PMID: 33754074 DOI: 10.7150/thno.54498] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
36 Kitamura K, Hayashi K, Ito S, Hoshina Y, Sakai M, Yoshino K, Endo K, Fujitani S, Suzuki T. Effects of SGLT2 inhibitors on eGFR in type 2 diabetic patients-the role of antidiabetic and antihypertensive medications. Hypertens Res 2021;44:508-17. [PMID: 33311577 DOI: 10.1038/s41440-020-00590-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
37 Ekanayake P, Hupfeld C, Mudaliar S. Sodium-Glucose Cotransporter Type 2 (SGLT-2) Inhibitors and Ketogenesis: the Good and the Bad. Curr Diab Rep 2020;20:74. [PMID: 33230620 DOI: 10.1007/s11892-020-01359-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Vallon V, Verma S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu Rev Physiol 2021;83:503-28. [PMID: 33197224 DOI: 10.1146/annurev-physiol-031620-095920] [Cited by in Crossref: 10] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
39 Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, Ueda S, Gohda T, Suzuki Y. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio 2020;10:2761-70. [PMID: 33098615 DOI: 10.1002/2211-5463.13014] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Hou YC, Zheng CM, Yen TH, Lu KC. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int J Mol Sci 2020;21:E7833. [PMID: 33105763 DOI: 10.3390/ijms21217833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
41 Hong YA, Kim JE, Jo M, Ko GJ. The Role of Sirtuins in Kidney Diseases. Int J Mol Sci 2020;21:E6686. [PMID: 32932720 DOI: 10.3390/ijms21186686] [Cited by in Crossref: 4] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
42 Packer M. Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circ Heart Fail 2020;13:e007197. [PMID: 32894987 DOI: 10.1161/CIRCHEARTFAILURE.120.007197] [Cited by in Crossref: 14] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
43 Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020;35:i13-23. [PMID: 32003834 DOI: 10.1093/ndt/gfz237] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
44 Packer M. Uric Acid Is a Biomarker of Oxidative Stress in the Failing Heart: Lessons Learned from Trials With Allopurinol and SGLT2 Inhibitors. J Card Fail 2020;26:977-84. [PMID: 32890737 DOI: 10.1016/j.cardfail.2020.08.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
45 Gyimesi G, Pujol-Giménez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch 2020;472:1177-206. [PMID: 32767111 DOI: 10.1007/s00424-020-02433-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
46 Packer M. Molecular, Cellular, and Clinical Evidence That Sodium-Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure. J Am Heart Assoc 2020;9:e016270. [PMID: 32791029 DOI: 10.1161/JAHA.120.016270] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
47 Suga T, Sato K, Ohyama T, Matsui S, Kobayashi T, Tojima H, Horiguchi N, Yamazaki Y, Kakizaki S, Nishikido A, Okamura T, Yamada M, Kitamura T, Uraoka T. Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling. World J Hepatol 2020; 12(7): 350-362 [PMID: 32821334 DOI: 10.4254/wjh.v12.i7.350] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Suga T, Sato K, Ohyama T, Matsui S, Kobayashi T, Tojima H, Horiguchi N, Yamazaki Y, Kakizaki S, Nishikido A, Okamura T, Yamada M, Kitamura T, Uraoka T. Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling. WJH 2020;12:351-63. [DOI: 10.4254/wjgh.v12.i7.351] [Reference Citation Analysis]
49 Packer M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am J Kidney Dis 2021;77:280-6. [PMID: 32711072 DOI: 10.1053/j.ajkd.2020.04.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
50 Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens 2020;29:190-8. [PMID: 31815757 DOI: 10.1097/MNH.0000000000000584] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
51 Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020;141:2095-105. [DOI: 10.1161/circulationaha.119.045561] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
52 Kawanami D, Takashi Y, Tanabe M. Significance of Metformin Use in Diabetic Kidney Disease. Int J Mol Sci 2020;21:E4239. [PMID: 32545901 DOI: 10.3390/ijms21124239] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
53 Packer M. Role of ketogenic starvation sensors in mediating the renal protective effects of SGLT2 inhibitors in type 2 diabetes. J Diabetes Complications 2020;34:107647. [PMID: 32534886 DOI: 10.1016/j.jdiacomp.2020.107647] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
54 Fukushima K, Kitamura S, Tsuji K, Sang Y, Wada J. Sodium Glucose Co-Transporter 2 Inhibitor Ameliorates Autophagic Flux Impairment on Renal Proximal Tubular Cells in Obesity Mice. Int J Mol Sci 2020;21:E4054. [PMID: 32517059 DOI: 10.3390/ijms21114054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
55 Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 2020;31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 40] [Article Influence: 12.5] [Reference Citation Analysis]
56 Sakai K, Yamazaki O, Ishizawa K, Tamura Y, Wang Q, Ueno M, Hayama Y, Fujigaki Y, Shibata S. Upregulation of renal Na-K-2Cl cotransporter 2 in obese diabetes mellitus via a vasopressin receptor 2-dependent pathway. Biochem Biophys Res Commun 2020;524:710-5. [PMID: 32035616 DOI: 10.1016/j.bbrc.2020.01.142] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2021;117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
58 Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch. 2020;472:1345-1370. [PMID: 32144488 DOI: 10.1007/s00424-020-02361-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
59 Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020;22:734-42. [PMID: 31916329 DOI: 10.1111/dom.13961] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
60 Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail 2020;22:618-28. [PMID: 32037659 DOI: 10.1002/ejhf.1732] [Cited by in Crossref: 22] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
61 Mohamed HE, Asker ME, Keshawy MM, Hasan RA, Mahmoud YK. Inhibition of tumor necrosis factor-α enhanced the antifibrotic effect of empagliflozin in an animal model with renal insulin resistance. Mol Cell Biochem 2020;466:45-54. [PMID: 31933108 DOI: 10.1007/s11010-020-03686-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
62 Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020;2020:8492467. [PMID: 32377524 DOI: 10.1155/2020/8492467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
63 Kim JH, Ko HY, Wang HJ, Lee H, Yun M, Kang ES. Effect of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on gluconeogenesis in proximal renal tubules. Diabetes Obes Metab 2020;22:373-82. [PMID: 31692240 DOI: 10.1111/dom.13905] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
64 Silva Dos Santos D, Polidoro JZ, Borges-Júnior FA, Girardi ACC. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective. Am J Physiol Cell Physiol 2020;318:C328-36. [PMID: 31721613 DOI: 10.1152/ajpcell.00275.2019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
65 García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019;8:E864. [PMID: 31212945 DOI: 10.3390/jcm8060864] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
66 Barutta F, Bernardi S, Gargiulo G, Durazzo M, Gruden G. SGLT2 inhibition to address the unmet needs in diabetic nephropathy. Diabetes Metab Res Rev 2019;35:e3171. [PMID: 30997935 DOI: 10.1002/dmrr.3171] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
67 Sunilkumar S, Ford SM. Elevated glucose concentration in culture media decreases membrane trafficking of SGLT2 in LLC-PK1 cells via a cAMP/PKA-dependent pathway. Am J Physiol Cell Physiol 2019;316:C913-24. [PMID: 30943059 DOI: 10.1152/ajpcell.00433.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
68 Hasegawa K. Novel tubular-glomerular interplay in diabetic kidney disease mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide Oshima Award Address 2017. Clin Exp Nephrol 2019;23:987-94. [PMID: 30859351 DOI: 10.1007/s10157-019-01719-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
69 Kimura Y, Kuno A, Tanno M, Sato T, Ohno K, Shibata S, Nakata K, Sugawara H, Abe K, Igaki Y, Yano T, Miki T, Miura T. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig 2019;10:933-46. [PMID: 30663266 DOI: 10.1111/jdi.13009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]