BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018;9:2184. [PMID: 29872041 DOI: 10.1038/s41467-018-04580-3] [Cited by in Crossref: 88] [Cited by in F6Publishing: 91] [Article Influence: 29.3] [Reference Citation Analysis]
Number Citing Articles
1 Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. Prog Mol Biol Transl Sci 2021;182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Reference Citation Analysis]
2 [DOI: 10.1101/2020.05.17.100818] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Wang D, Zhang F, Gao G. CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors. Cell 2020;181:136-50. [PMID: 32243786 DOI: 10.1016/j.cell.2020.03.023] [Cited by in Crossref: 88] [Cited by in F6Publishing: 70] [Article Influence: 88.0] [Reference Citation Analysis]
4 Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry 2019;58:1947-57. [DOI: 10.1021/acs.biochem.9b00046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
5 Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, Wang G, Li C, Ren Y, Li G, Ding X, Sun Y, Li GL, Song L, Li Y, Yang H, Liu Z. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development 2018;145:dev168906. [PMID: 30275281 DOI: 10.1242/dev.168906] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
6 Rees HA, Wilson C, Doman JL, Liu DR. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv 2019;5:eaax5717. [PMID: 31086823 DOI: 10.1126/sciadv.aax5717] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 45.0] [Reference Citation Analysis]
7 Frati G, Miccio A. Genome Editing for β-Hemoglobinopathies: Advances and Challenges. J Clin Med 2021;10:482. [PMID: 33525591 DOI: 10.3390/jcm10030482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lansing F, Paszkowski-Rogacz M, Schmitt LT, Schneider PM, Rojo Romanos T, Sonntag J, Buchholz F. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res 2020;48:472-85. [PMID: 31745551 DOI: 10.1093/nar/gkz1078] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
9 Martin AS, Salamango DJ, Serebrenik AA, Shaban NM, Brown WL, Harris RS. A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Sci Rep 2019;9:497. [PMID: 30679582 DOI: 10.1038/s41598-018-36739-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
10 Fox K, Rallapalli KL, Komor AC. Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes (Basel) 2020;11:E88. [PMID: 31940934 DOI: 10.3390/genes11010088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Krishnamurthy S, Traore S, Cooney AL, Brommel CM, Kulhankova K, Sinn PL, Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res 2021;49:10558-72. [PMID: 34520545 DOI: 10.1093/nar/gkab788] [Reference Citation Analysis]
12 Björklund T. Repairing the Brain: Gene Therapy. J Parkinsons Dis 2018;8:S123-30. [PMID: 30584164 DOI: 10.3233/JPD-181485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kang W, Sun Z, Zhao X, Wang X, Tao Y, Wu H. Gene editing based hearing impairment research and therapeutics. Neurosci Lett 2019;709:134326. [PMID: 31195050 DOI: 10.1016/j.neulet.2019.134326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Doherty EE, Wilcox XE, van Sint Fiet L, Kemmel C, Turunen JJ, Klein B, Tantillo DJ, Fisher AJ, Beal PA. Rational Design of RNA Editing Guide Strands: Cytidine Analogs at the Orphan Position. J Am Chem Soc 2021;143:6865-76. [PMID: 33939417 DOI: 10.1021/jacs.0c13319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021;16:1089-128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
16 Yang L, Wang L, Huo Y, Chen X, Yin S, Hu Y, Zhang X, Zheng R, Geng H, Han H, Ma X, Liu M, Li H, Yu W, Liu M, Wang J, Li D. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol Ther 2020;28:1673-83. [PMID: 32413280 DOI: 10.1016/j.ymthe.2020.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
17 Newby GA. Base Editing: Efficient Installation of Point Mutations with Minimal Byproducts. Stem Cells Dev 2019;28:712-3. [PMID: 31107171 DOI: 10.1089/scd.2019.0080] [Reference Citation Analysis]
18 Zeballos C MA, Gaj T. Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends Biotechnol 2021;39:692-705. [PMID: 33277043 DOI: 10.1016/j.tibtech.2020.10.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
19 Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020;21:E6240. [PMID: 32872311 DOI: 10.3390/ijms21176240] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
20 Kamble PG, Hetty S, Vranic M, Almby K, Castillejo-López C, Abalo XM, Pereira MJ, Eriksson JW. Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 2020;10:10565. [PMID: 32601291 DOI: 10.1038/s41598-020-67293-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
21 Lau CH, Tin C, Suh Y. CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac Rev 2020;9:20. [PMID: 33659952 DOI: 10.12703/r/9-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Caso F, Davies B. Base editing and prime editing in laboratory animals. Lab Anim 2021;:23677221993895. [PMID: 33596731 DOI: 10.1177/0023677221993895] [Reference Citation Analysis]
23 Lee HK, Willi M, Miller SM, Kim S, Liu C, Liu DR, Hennighausen L. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 2018;9:4804. [PMID: 30442934 DOI: 10.1038/s41467-018-07322-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 14.7] [Reference Citation Analysis]
24 Chen Y, Zhi S, Liu W, Wen J, Hu S, Cao T, Sun H, Li Y, Huang L, Liu Y, Liang P, Huang J. Development of Highly Efficient Dual‐AAV Split Adenosine Base Editor for In Vivo Gene Therapy. Small Methods 2020;4:2000309. [DOI: 10.1002/smtd.202000309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
25 Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018;19:770-88. [PMID: 30323312 DOI: 10.1038/s41576-018-0059-1] [Cited by in Crossref: 480] [Cited by in F6Publishing: 405] [Article Influence: 240.0] [Reference Citation Analysis]
26 Hu J, Bourne RA, McGrath BC, Lin A, Pei Z, Cavener DR. Co-opting regulation bypass repair as a gene correction strategy for monogenic diseases. Mol Ther 2021:S1525-0016(21)00204-5. [PMID: 33892188 DOI: 10.1016/j.ymthe.2021.04.017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Rouet R, de Oñate L, Li J, Murthy N, Wilson RC. Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. The CRISPR Journal 2018;1:367-78. [DOI: 10.1089/crispr.2018.0037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants 2021;7:1166-87. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA 2nd, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021;39:949-57. [PMID: 34012094 DOI: 10.1038/s41587-021-00933-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
30 Greenfield A. Fearful old world? A commentary on the Second International Summit on human genome editing. Mamm Genome 2019;30:1-4. [PMID: 30600355 DOI: 10.1007/s00335-018-9791-2] [Reference Citation Analysis]
31 Cunningham TJ, Fisher E, Fratta P, Gilthorpe JD. DNA Editing for Amyotrophic Lateral Sclerosis: Leading Off First Base. CRISPR J 2020;3:75-7. [PMID: 32315228 DOI: 10.1089/crispr.2020.29087.tcu] [Reference Citation Analysis]
32 Rabinowitz R, Abadi S, Almog S, Offen D. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing. Nucleic Acids Res 2020;48:W340-7. [PMID: 32255179 DOI: 10.1093/nar/gkaa215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos C MA, Winter J, Perez-Pinera P, Gaj T. Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol Ther 2020;28:1177-89. [PMID: 31991108 DOI: 10.1016/j.ymthe.2020.01.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 44.0] [Reference Citation Analysis]
34 Pineda M, Lear A, Collins JP, Kiani S. Safe CRISPR: Challenges and Possible Solutions. Trends in Biotechnology 2019;37:389-401. [DOI: 10.1016/j.tibtech.2018.09.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
35 Kantor A, McClements ME, Peddle CF, Fry LE, Salman A, Cehajic-Kapetanovic J, Xue K, MacLaren RE. CRISPR genome engineering for retinal diseases. Prog Mol Biol Transl Sci 2021;182:29-79. [PMID: 34175046 DOI: 10.1016/bs.pmbts.2021.01.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Molla KA, Yang Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends in Biotechnology 2019;37:1121-42. [DOI: 10.1016/j.tibtech.2019.03.008] [Cited by in Crossref: 116] [Cited by in F6Publishing: 94] [Article Influence: 58.0] [Reference Citation Analysis]
37 D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021;147:105055. [PMID: 33964373 DOI: 10.1016/j.neuint.2021.105055] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. National Science Review 2020;7:1092-107. [DOI: 10.1093/nsr/nwaa007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 18.0] [Reference Citation Analysis]
39 Osborn MJ, Newby GA, McElroy AN, Knipping F, Nielsen SC, Riddle MJ, Xia L, Chen W, Eide CR, Webber BR, Wandall HH, Dabelsteen S, Blazar BR, Liu DR, Tolar J. Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. J Invest Dermatol 2020;140:338-347.e5. [PMID: 31437443 DOI: 10.1016/j.jid.2019.07.701] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
40 Niggemann P, György B, Chen ZY. Genome and base editing for genetic hearing loss. Hear Res 2020;394:107958. [PMID: 32334889 DOI: 10.1016/j.heares.2020.107958] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
41 Lee M, Kim H. Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 2019;138:563-90. [DOI: 10.1007/s00439-019-02028-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
42 Fry LE, McClements ME, MacLaren RE. Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmol 2021;139:319-28. [PMID: 33507217 DOI: 10.1001/jamaophthalmol.2020.6418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
43 Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2021;39:375-88. [PMID: 33378797 DOI: 10.1002/stem.3315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020;40:BSR20200127. [PMID: 32207531 DOI: 10.1042/BSR20200127] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 53.0] [Reference Citation Analysis]
45 Park S, Beal PA. Off-Target Editing by CRISPR-Guided DNA Base Editors. Biochemistry 2019;58:3727-34. [PMID: 31433621 DOI: 10.1021/acs.biochem.9b00573] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
46 Choe DC, Musunuru K. Base editing: a brief review and a practical example. J Biomed Res 2020;35:107-14. [PMID: 32934192 DOI: 10.7555/JBR.34.20200003] [Reference Citation Analysis]
47 Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, Ping Y, Zhang Y. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol. 2019;12:127. [PMID: 31783892 DOI: 10.1186/s13045-019-0831-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
48 Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021;14:765. [PMID: 34451862 DOI: 10.3390/ph14080765] [Reference Citation Analysis]
49 Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Adv Sci (Weinh) 2020;7:1902312. [PMID: 32195078 DOI: 10.1002/advs.201902312] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 45.0] [Reference Citation Analysis]
50 Das D, Feuer K, Wahbeh M, Avramopoulos D. Modeling Psychiatric Disorder Biology with Stem Cells. Curr Psychiatry Rep 2020;22:24. [PMID: 32318888 DOI: 10.1007/s11920-020-01148-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
51 Mention K, Santos L, Harrison PT. Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis-Learning from Other Diseases. Genes (Basel) 2019;10:E387. [PMID: 31117296 DOI: 10.3390/genes10050387] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
52 Kuang J, Lyu Q, Wang J, Cui Y, Zhao J. Advances in base editing with an emphasis on an AAV-based strategy. Methods 2021:S1046-2023(21)00089-X. [PMID: 33774157 DOI: 10.1016/j.ymeth.2021.03.015] [Reference Citation Analysis]
53 Xia M, Chen Y, He Y, Li H, Li W. Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture. Stem Cells 2020;38:860-74. [PMID: 32159914 DOI: 10.1002/stem.3175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
54 Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020;19:839-59. [PMID: 33077937 DOI: 10.1038/s41573-020-0084-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
55 Magrin E, Miccio A, Cavazzana M. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood 2019;134:1203-13. [PMID: 31467062 DOI: 10.1182/blood.2019000949] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 34.0] [Reference Citation Analysis]
56 Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther. 2019;200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
57 Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020;13:148. [PMID: 32903507 DOI: 10.3389/fnmol.2020.00148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
58 Preece R, Georgiadis C. Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerg Top Life Sci 2019;3:261-75. [PMID: 33523139 DOI: 10.1042/ETLS20180144] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Jang HK, Jo DH, Lee SN, Cho CS, Jeong YK, Jung Y, Yu J, Kim JH, Woo JS, Bae S. High-purity production and precise editing of DNA base editing ribonucleoproteins. Sci Adv 2021;7:eabg2661. [PMID: 34452911 DOI: 10.1126/sciadv.abg2661] [Reference Citation Analysis]
60 Balboa D, Prasad RB, Groop L, Otonkoski T. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia. 2019;62:1329-1336. [PMID: 31161346 DOI: 10.1007/s00125-019-4908-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
61 Wang F, Zeng Y, Wang Y, Niu Y. The Development and Application of a Base Editor in Biomedicine. Biomed Res Int 2020;2020:2907623. [PMID: 32855962 DOI: 10.1155/2020/2907623] [Reference Citation Analysis]
62 French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020;14:183. [PMID: 32733204 DOI: 10.3389/fncel.2020.00183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
63 Collantes JC, Tan VM, Xu H, Ruiz-Urigüen M, Alasadi A, Guo J, Tao H, Su C, Tyc KM, Selmi T, Lambourne JJ, Harbottle JA, Stombaugh J, Xing J, Wiggins CM, Jin S. Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR J 2021;4:58-68. [PMID: 33616445 DOI: 10.1089/crispr.2020.0035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Schatoff EM, Zafra MP, Dow LE. Base editing the mammalian genome. Methods 2019;164-165:100-8. [PMID: 30836137 DOI: 10.1016/j.ymeth.2019.02.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
65 Grisch-Chan HM, Schwank G, Harding CO, Thöny B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum Gene Ther 2019;30:1274-83. [PMID: 31364419 DOI: 10.1089/hum.2019.111] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
66 Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021;29:3107-24. [PMID: 34509669 DOI: 10.1016/j.ymthe.2021.09.002] [Reference Citation Analysis]
67 Sinnamon JR, Kim SY, Fisk JR, Song Z, Nakai H, Jeng S, McWeeney SK, Mandel G. In Vivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing. Cell Rep 2020;32:107878. [PMID: 32668243 DOI: 10.1016/j.celrep.2020.107878] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
68 Billon P, Nambiar TS, Hayward SB, Zafra MP, Schatoff EM, Oshima K, Dunbar A, Breinig M, Park YC, Ryu HS, Tschaharganeh DF, Levine RL, Baer R, Ferrando A, Dow LE, Ciccia A. Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Rep 2020;30:3280-3295.e6. [PMID: 32160537 DOI: 10.1016/j.celrep.2020.02.068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020;4:97-110. [PMID: 31937940 DOI: 10.1038/s41551-019-0501-5] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 92.0] [Reference Citation Analysis]
70 Huang KC, Wang ML, Chen SJ, Kuo JC, Wang WJ, Nhi Nguyen PN, Wahlin KJ, Lu JF, Tran AA, Shi M, Chien Y, Yarmishyn AA, Tsai PH, Yang TC, Jane WN, Chang CC, Peng CH, Schlaeger TM, Chiou SH. Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis. Stem Cell Reports 2019;13:906-23. [PMID: 31668851 DOI: 10.1016/j.stemcr.2019.09.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
71 Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883-91. [PMID: 32433547 DOI: 10.1038/s41587-020-0453-z] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 95.0] [Reference Citation Analysis]
72 Cruz L, György B, Cheah PS, Kleinstiver BP, Eimer WA, Garcia SP, Sharma N, Ozelius LJ, Bragg DC, Joung JK, Norberto de Souza O, Macedo Timmers LFS, Breakefield XO. Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. Mol Ther Nucleic Acids 2020;21:1-12. [PMID: 32502938 DOI: 10.1016/j.omtn.2020.05.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
73 Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee SJ, Liquori AJ, Murray R, Packer MS, Rinaldi C, Slaymaker IM, Yen J, Young LE, Ciaramella G. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 2020;38:892-900. [PMID: 32284586 DOI: 10.1038/s41587-020-0491-6] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 80.0] [Reference Citation Analysis]
74 Antoniou P, Miccio A, Brusson M. Base and Prime Editing Technologies for Blood Disorders. Front Genome Ed 2021;3:618406. [DOI: 10.3389/fgeed.2021.618406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
75 Yang B, Yang L, Chen J. Development and Application of Base Editors. CRISPR J 2019;2:91-104. [PMID: 30998092 DOI: 10.1089/crispr.2019.0001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
76 Tang J, Lee T, Sun T. Single-nucleotide editing: From principle, optimization to application. Hum Mutat 2019;40:2171-83. [PMID: 31131955 DOI: 10.1002/humu.23819] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
77 Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019;7:E47. [PMID: 31248000 DOI: 10.3390/diseases7030047] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
78 Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020;18:193. [PMID: 33317513 DOI: 10.1186/s12915-020-00929-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes (Basel) 2020;11:E976. [PMID: 32842577 DOI: 10.3390/genes11090976] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
80 Ranzau BL, Komor AC. Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry 2019;58:330-5. [PMID: 30500171 DOI: 10.1021/acs.biochem.8b00958] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
81 Meneghini V, Peviani M, Luciani M, Zambonini G, Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front Genome Ed 2021;3:644319. [PMID: 34713256 DOI: 10.3389/fgeed.2021.644319] [Reference Citation Analysis]
82 Jeong YK, Song B, Bae S. Current Status and Challenges of DNA Base Editing Tools. Mol Ther 2020;28:1938-52. [PMID: 32763143 DOI: 10.1016/j.ymthe.2020.07.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
83 Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021;168:118-33. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
84 Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021;184:1081-1097.e19. [PMID: 33606978 DOI: 10.1016/j.cell.2021.01.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
85 Murphy AJ, Febbraio MA. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat Rev Immunol 2021. [PMID: 34285393 DOI: 10.1038/s41577-021-00580-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020;38:845-55. [PMID: 32601435 DOI: 10.1038/s41587-020-0565-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 42.0] [Reference Citation Analysis]
87 Duarte F, Déglon N. Genome Editing for CNS Disorders. Front Neurosci 2020;14:579062. [PMID: 33192264 DOI: 10.3389/fnins.2020.579062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Miccio A, Antoniou P, Ciura S, Kabashi E. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Mol Ther 2021:S1525-0016(21)00190-8. [PMID: 33823304 DOI: 10.1016/j.ymthe.2021.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development. 2019;146:dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
90 Lee HK, Oh Y, Hong J, Lee SH, Hur JK. Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 2021;54:98-105. [PMID: 33298245 [PMID: 33298245 DOI: 10.5483/bmbrep.2021.54.2.217] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021;168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
92 Mao S, Liu Y, Huang S, Huang X, Chi T. Site-directed RNA editing (SDRE): Off-target effects and their countermeasures. J Genet Genomics 2019;46:531-5. [PMID: 31889638 DOI: 10.1016/j.jgg.2019.11.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]