BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y, Li Y, Wang H, Yang S, Xu Q, Polley DB, Liberman MC, Kong WJ, Holt JR, Chen ZY, Liu DR. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553:217-221. [PMID: 29258297 DOI: 10.1038/nature25164] [Cited by in Crossref: 234] [Cited by in F6Publishing: 201] [Article Influence: 46.8] [Reference Citation Analysis]
Number Citing Articles
1 Sahel JA, Dalkara D. Gene therapy for retinal dystrophy. Nat Med 2019;25:198-9. [PMID: 30718907 DOI: 10.1038/s41591-019-0346-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
2 Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018;9:2184. [PMID: 29872041 DOI: 10.1038/s41467-018-04580-3] [Cited by in Crossref: 88] [Cited by in F6Publishing: 91] [Article Influence: 22.0] [Reference Citation Analysis]
3 Paßreiter A, Thomas A, Grogna N, Delahaut P, Thevis M. First Steps toward Uncovering Gene Doping with CRISPR/Cas by Identifying SpCas9 in Plasma via HPLC–HRMS/MS. Anal Chem 2020;92:16322-8. [DOI: 10.1021/acs.analchem.0c04445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Wang L, Kempton JB, Brigande JV. Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 2018;11:300. [PMID: 30210291 DOI: 10.3389/fnmol.2018.00300] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
5 Guzmán-Zapata D, Vargas-Morales BV, Loyola-Vargas VM. From genome scissors to molecular scalpel: evolution of CRISPR systems. Biotechnol Genet Eng Rev 2021;37:82-104. [PMID: 34412573 DOI: 10.1080/02648725.2021.1962071] [Reference Citation Analysis]
6 Monteleone LR, Matthews MM, Palumbo CM, Thomas JM, Zheng Y, Chiang Y, Fisher AJ, Beal PA. A Bump-Hole Approach for Directed RNA Editing. Cell Chem Biol 2019;26:269-277.e5. [PMID: 30581135 DOI: 10.1016/j.chembiol.2018.10.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
7 Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018;171:207-18. [PMID: 29704747 DOI: 10.1016/j.biomaterials.2018.04.031] [Cited by in Crossref: 120] [Cited by in F6Publishing: 111] [Article Influence: 30.0] [Reference Citation Analysis]
8 Wang J, Puel J. Toward Cochlear Therapies. Physiological Reviews 2018;98:2477-522. [DOI: 10.1152/physrev.00053.2017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
9 Sayyid ZN, Kim GS, Cheng AG. Molecular therapy for genetic and degenerative vestibular disorders. Curr Opin Otolaryngol Head Neck Surg 2018;26:307-11. [PMID: 30045104 DOI: 10.1097/MOO.0000000000000477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
10 Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 Ribonucleoprotein-Mediated Genome and Epigenome Editing in Mammalian Cells. Adv Drug Deliv Rev 2021;:114087. [PMID: 34942274 DOI: 10.1016/j.addr.2021.114087] [Reference Citation Analysis]
11 Brooks AK, Gaj T. Innovations in CRISPR technology. Current Opinion in Biotechnology 2018;52:95-101. [DOI: 10.1016/j.copbio.2018.03.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Yan J, Kang DD, Dong Y. Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomater Sci 2021. [PMID: 34115079 DOI: 10.1039/d1bm00537e] [Reference Citation Analysis]
13 Burton JA, Valero MD, Hackett TA, Ramachandran R. The use of nonhuman primates in studies of noise injury and treatment. J Acoust Soc Am 2019;146:3770. [PMID: 31795680 DOI: 10.1121/1.5132709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
14 Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, Wang G, Li C, Ren Y, Li G, Ding X, Sun Y, Li GL, Song L, Li Y, Yang H, Liu Z. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development 2018;145:dev168906. [PMID: 30275281 DOI: 10.1242/dev.168906] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
15 Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021;8:698521. [PMID: 34660621 DOI: 10.3389/fmed.2021.698521] [Reference Citation Analysis]
16 Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration. Mol Ther. 2019;27:904-911. [PMID: 30982678 DOI: 10.1016/j.ymthe.2019.03.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
17 Nadeau JH, Auwerx J. The virtuous cycle of human genetics and mouse models in drug discovery. Nat Rev Drug Discov 2019;18:255-72. [DOI: 10.1038/s41573-018-0009-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 7.7] [Reference Citation Analysis]
18 Zhu X, Tang R, Wang S, Chen X, Hu J, Lei C, Huang Y, Wang H, Nie Z, Yao S. Protein@Inorganic Nanodumpling System for High-Loading Protein Delivery with Activatable Fluorescence and Magnetic Resonance Bimodal Imaging Capabilities. ACS Nano 2020;14:2172-82. [PMID: 31990525 DOI: 10.1021/acsnano.9b09024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
19 Krishnamurthy S, Wohlford-Lenane C, Kandimalla S, Sartre G, Meyerholz DK, Théberge V, Hallée S, Duperré AM, Del'Guidice T, Lepetit-Stoffaes JP, Barbeau X, Guay D, McCray PB Jr. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat Commun 2019;10:4906. [PMID: 31659165 DOI: 10.1038/s41467-019-12922-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
20 Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 2020;10:3118-37. [PMID: 32194858 DOI: 10.7150/thno.43298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. Journal of Biotechnology 2020;308:1-9. [DOI: 10.1016/j.jbiotec.2019.11.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
22 Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021;15:660748. [PMID: 33854418 DOI: 10.3389/fncel.2021.660748] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019;13:323. [PMID: 31379508 DOI: 10.3389/fncel.2019.00323] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
24 Yu M, Liu X, Cheng H, Kuang L, Zhang S, Yan X. Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system. Methods 2021:S1046-2023(21)00156-0. [PMID: 34107351 DOI: 10.1016/j.ymeth.2021.06.004] [Reference Citation Analysis]
25 Kang W, Sun Z, Zhao X, Wang X, Tao Y, Wu H. Gene editing based hearing impairment research and therapeutics. Neurosci Lett 2019;709:134326. [PMID: 31195050 DOI: 10.1016/j.neulet.2019.134326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021;16:1089-128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
27 Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Rolas L, Barkaway A, Nourshargh S, Folgueras AR, Freije JMP, López-Otín C. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med 2019;25:423-6. [PMID: 30778239 DOI: 10.1038/s41591-018-0338-6] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 18.0] [Reference Citation Analysis]
28 Li Y, Weng Y, Bai D, Jia Y, Liu Y, Zhang Y, Kou X, Zhao Y, Ruan J, Chen J, Yin J, Wang H, Teng X, Wang Z, Liu W, Gao S. Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation. Nat Commun 2020;11:4593. [PMID: 32929070 DOI: 10.1038/s41467-020-18391-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Chou SJ, Yang P, Ban Q, Yang YP, Wang ML, Chien CS, Chen SJ, Sun N, Zhu Y, Liu H, Hui W, Lin TC, Wang F, Zhang RY, Nguyen VQ, Liu W, Chen M, Jonas SJ, Weiss PS, Tseng HR, Chiou SH. Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9-Mediated Knockin of Retinoschisin 1 Gene-A Potential Nonviral Therapeutic Solution for X-Linked Juvenile Retinoschisis. Adv Sci (Weinh) 2020;7:1903432. [PMID: 32440478 DOI: 10.1002/advs.201903432] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
30 Li Y, Li R, Chakraborty A, Ogurlu R, Zhao X, Chen J, Xu Q. Combinatorial Library of Cyclic Benzylidene Acetal-Containing pH-Responsive Lipidoid Nanoparticles for Intracellular mRNA Delivery. Bioconjug Chem 2020;31:1835-43. [PMID: 32520527 DOI: 10.1021/acs.bioconjchem.0c00295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Wan T, Niu D, Wu C, Xu F, Church G, Ping Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today 2019;26:40-66. [DOI: 10.1016/j.mattod.2018.12.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
32 Alyami MZ, Alsaiari SK, Li Y, Qutub SS, Aleisa FA, Sougrat R, Merzaban JS, Khashab NM. Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks. J Am Chem Soc 2020;142:1715-20. [PMID: 31931564 DOI: 10.1021/jacs.9b11638] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 26.5] [Reference Citation Analysis]
33 Chen L, Wang L, Chen L, Wang F, Ji F, Sun W, Zhao H, Han W, Yang S. Transcript Profiles of Stria Vascularis in Models of Waardenburg Syndrome. Neural Plast 2020;2020:2908182. [PMID: 32802035 DOI: 10.1155/2020/2908182] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020;10:E756. [PMID: 33092183 DOI: 10.3390/brainsci10100756] [Reference Citation Analysis]
35 Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing. ACS Nano 2020;14:9243-62. [PMID: 32697075 DOI: 10.1021/acsnano.0c04707] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
36 Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021;15:728610. [PMID: 34526880 DOI: 10.3389/fncel.2021.728610] [Reference Citation Analysis]
37 Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: Methods for improvement and applications. Adv Colloid Interface Sci 2019;268:25-38. [PMID: 30933750 DOI: 10.1016/j.cis.2019.03.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
38 Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. Targeted Allele Suppression Prevents Progressive Hearing Loss in the Mature Murine Model of Human TMC1 Deafness. Mol Ther 2019;27:681-90. [PMID: 30686588 DOI: 10.1016/j.ymthe.2018.12.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 10.7] [Reference Citation Analysis]
39 Qiao J, Sun W, Lin S, Jin R, Ma L, Liu Y. Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem Commun (Camb) 2019;55:4707-10. [PMID: 30942216 DOI: 10.1039/c9cc00010k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
40 Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl) 2020;98:615-32. [PMID: 32198625 DOI: 10.1007/s00109-020-01893-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
41 Yang T, Guo L, Wang L, Yu X. Diagnosis, Intervention, and Prevention of Genetic Hearing Loss. Adv Exp Med Biol 2019;1130:73-92. [PMID: 30915702 DOI: 10.1007/978-981-13-6123-4_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Huang CH, Lee KC, Doudna JA. Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends Cancer 2018;4:499-512. [PMID: 29937048 DOI: 10.1016/j.trecan.2018.05.006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
44 Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020;578:229-36. [DOI: 10.1038/s41586-020-1978-5] [Cited by in Crossref: 165] [Cited by in F6Publishing: 129] [Article Influence: 82.5] [Reference Citation Analysis]
45 Wang H, Wu K, Guan J, Wang Q. Generation of a human induced pluripotent stem cell line (CPGHi001-A) from a hearing loss patient with the TMC1 p.M418K mutation. Stem Cell Res 2020;49:101982. [PMID: 33217648 DOI: 10.1016/j.scr.2020.101982] [Reference Citation Analysis]
46 Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018;19:770-88. [PMID: 30323312 DOI: 10.1038/s41576-018-0059-1] [Cited by in Crossref: 480] [Cited by in F6Publishing: 405] [Article Influence: 160.0] [Reference Citation Analysis]
47 Lustig L, Akil O. Cochlear Gene Therapy. Cold Spring Harb Perspect Med 2019;9:a033191. [PMID: 30323014 DOI: 10.1101/cshperspect.a033191] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
48 Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, Garcia-Sancho J, Giraldez F, Schimmang T. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage. PLoS One 2018;13:e0200210. [PMID: 29979748 DOI: 10.1371/journal.pone.0200210] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
49 Keough KC, Lyalina S, Olvera MP, Whalen S, Conklin BR, Pollard KS. AlleleAnalyzer: a tool for personalized and allele-specific sgRNA design. Genome Biol 2019;20:167. [PMID: 31416467 DOI: 10.1186/s13059-019-1783-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
50 Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther 2019;27:710-28. [PMID: 30846391 DOI: 10.1016/j.ymthe.2019.02.012] [Cited by in Crossref: 207] [Cited by in F6Publishing: 187] [Article Influence: 69.0] [Reference Citation Analysis]
51 Valentini C, Szeto B, Kysar JW, Lalwani AK. Inner Ear Gene Delivery: Vectors and Routes. Hearing Balance Commun 2020;18:278-85. [PMID: 33604229 DOI: 10.1080/21695717.2020.1807261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020;19:673-94. [PMID: 32782413 DOI: 10.1038/s41573-020-0075-7] [Cited by in Crossref: 193] [Cited by in F6Publishing: 183] [Article Influence: 96.5] [Reference Citation Analysis]
53 Lee HK, Willi M, Miller SM, Kim S, Liu C, Liu DR, Hennighausen L. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 2018;9:4804. [PMID: 30442934 DOI: 10.1038/s41467-018-07322-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
54 Rouet R, de Oñate L, Li J, Murthy N, Wilson RC. Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. The CRISPR Journal 2018;1:367-78. [DOI: 10.1089/crispr.2018.0037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
55 Sago CD, Lokugamage MP, Paunovska K, Vanover DA, Monaco CM, Shah NN, Gamboa Castro M, Anderson SE, Rudoltz TG, Lando GN, Munnilal Tiwari P, Kirschman JL, Willett N, Jang YC, Santangelo PJ, Bryksin AV, Dahlman JE. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci U S A 2018;115:E9944-52. [PMID: 30275336 DOI: 10.1073/pnas.1811276115] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 18.3] [Reference Citation Analysis]
56 Botor M, Fus-Kujawa A, Uroczynska M, Stepien KL, Galicka A, Gawron K, Sieron AL. Osteogenesis Imperfecta: Current and Prospective Therapies. Biomolecules 2021;11:1493. [PMID: 34680126 DOI: 10.3390/biom11101493] [Reference Citation Analysis]
57 Naduthodi MIS, Mohanraju P, Südfeld C, D'Adamo S, Barbosa MJ, van der Oost J. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol Biofuels 2019;12:66. [PMID: 30962821 DOI: 10.1186/s13068-019-1401-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
58 Mainland JD, Barlow LA, Munger SD, Millar SE, Vergara MN, Jiang P, Schwob JE, Goldstein BJ, Boye SE, Martens JR, Leopold DA, Bartoshuk LM, Doty RL, Hummel T, Pinto JM, Trimmer C, Kelly C, Pribitkin EA, Reed DR. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem Senses 2020;45:493-502. [PMID: 32556127 DOI: 10.1093/chemse/bjaa038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
59 Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019;9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
60 Liu Y, Zhang X. The current state and future prospects of the fundamental research on pediatric otorhinolaryngology: an analysis of application and funding data of the National Natural Science Foundation of China from 2009 to 2019. Ann Transl Med 2020;8:1287. [PMID: 33209867 DOI: 10.21037/atm-20-6487] [Reference Citation Analysis]
61 Mukalel AJ, Riley RS, Zhang R, Mitchell MJ. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett 2019;458:102-12. [PMID: 31100411 DOI: 10.1016/j.canlet.2019.04.040] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
62 Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020;23:100789. [PMID: 31901636 DOI: 10.1016/j.isci.2019.100789] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 13.3] [Reference Citation Analysis]
63 Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, Zhang J, Yu X, Zheng W, Jiang X. Triple‐Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angew Chem 2019;131:12534-8. [DOI: 10.1002/ange.201903618] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
64 Lenz DR, Gunewardene N, Abdul-Aziz DE, Wang Q, Gibson TM, Edge ASB. Applications of Lgr5-Positive Cochlear Progenitors (LCPs) to the Study of Hair Cell Differentiation. Front Cell Dev Biol. 2019;7:14. [PMID: 30873406 DOI: 10.3389/fcell.2019.00014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
65 Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 2021;22:86. [PMID: 33752742 DOI: 10.1186/s13059-021-02311-4] [Reference Citation Analysis]
66 Chen J, Hong F, Zhang C, Li L, Wang C, Shi H, Fu Y, Wang J. Differentiation and transplantation of human induced pluripotent stem cell-derived otic epithelial progenitors in mouse cochlea. Stem Cell Res Ther. 2018;9:230. [PMID: 30157937 DOI: 10.1186/s13287-018-0967-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
67 Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. A New Approach to Treating Neurodegenerative Otologic Disorders. Biores Open Access 2018;7:107-15. [PMID: 30069423 DOI: 10.1089/biores.2018.0017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
68 Oppel F, Schürmann M, Shao S, Kaltschmidt B, Kaltschmidt C, Sudhoff H. [Perspectives of genome editing in otorhinolaryngology]. HNO 2019;67:184-9. [PMID: 30689007 DOI: 10.1007/s00106-019-0613-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Kang W, Zhao X, Sun Z, Dong T, Jin C, Tong L, Zhu W, Tao Y, Wu H. Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 2020;27:392-405. [PMID: 32005950 DOI: 10.1038/s41434-020-0124-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 György B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP, Garcia SP, Zaborowski MP, Solanes P, Spataro S, Schneider BL, Joung JK, Géléoc GSG, Holt JR, Corey DP. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 2019;25:1123-30. [PMID: 31270503 DOI: 10.1038/s41591-019-0500-9] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 22.0] [Reference Citation Analysis]
71 Chen B, Niu Y, Wang H, Wang K, Yang H, Li W. Recent advances in CRISPR research. Protein Cell 2020;11:786-91. [PMID: 32200531 DOI: 10.1007/s13238-020-00704-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
72 Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2021;39:375-88. [PMID: 33378797 DOI: 10.1002/stem.3315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 [DOI: 10.1101/272724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
74 Liu J, Wu T, Lu X, Wu X, Liu S, Zhao S, Xu X, Ding B. A Self-Assembled Platform Based on Branched DNA for sgRNA/Cas9/Antisense Delivery. J Am Chem Soc 2019;141:19032-7. [PMID: 31729871 DOI: 10.1021/jacs.9b09043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
75 Nami F, Basiri M, Satarian L, Curtiss C, Baharvand H, Verfaillie C. Strategies for In Vivo Genome Editing in Nondividing Cells. Trends Biotechnol 2018;36:770-86. [PMID: 29685818 DOI: 10.1016/j.tibtech.2018.03.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
76 Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020;19:839-59. [PMID: 33077937 DOI: 10.1038/s41573-020-0084-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
77 Sun D, Sun Z, Jiang H, Vaidya AM, Xin R, Ayat NR, Schilb AL, Qiao PL, Han Z, Naderi A, Lu ZR. Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing. Bioconjug Chem 2019;30:667-78. [PMID: 30582790 DOI: 10.1021/acs.bioconjchem.8b00856] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
78 Zhang Z, Wang J, Li C, Xue W, Xing Y, Liu F. Gene therapy development in hearing research in China. Gene Ther 2020;27:349-59. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019;59:1389-99. [PMID: 30600536 DOI: 10.1111/trf.15126] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
80 Piotrowski-Daspit AS, Glaze PM, Saltzman WM. Debugging the genetic code: non-viral in vivo delivery of therapeutic genome editing technologies. Curr Opin Biomed Eng 2018;7:24-32. [PMID: 30984891 DOI: 10.1016/j.cobme.2018.08.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
81 Morello R. Osteogenesis imperfecta and therapeutics. Matrix Biol. 2018;71-72:294-312. [PMID: 29540309 DOI: 10.1016/j.matbio.2018.03.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
82 Christie KA, Robertson LJ, Conway C, Blighe K, DeDionisio LA, Chao-Shern C, Kowalczyk AM, Marshall J, Turnbull D, Nesbit MA, Moore CBT. Mutation-Independent Allele-Specific Editing by CRISPR-Cas9, a Novel Approach to Treat Autosomal Dominant Disease. Mol Ther 2020;28:1846-57. [PMID: 32416058 DOI: 10.1016/j.ymthe.2020.05.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Guo C, Huang SS, Yuan YY, Zhou Y, Wang N, Kang DY, Yang SY, Zhang X, Gao X, Dai P. Hearing Phenotypes of Patients with Hearing Loss Homozygous for the GJB2 c.235delc Mutation. Neural Plast 2020;2020:8841522. [PMID: 32802038 DOI: 10.1155/2020/8841522] [Reference Citation Analysis]
84 Xu X, Wan T, Xin H, Li D, Pan H, Wu J, Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med 2019;21:e3107. [PMID: 31237055 DOI: 10.1002/jgm.3107] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 23.0] [Reference Citation Analysis]
85 Yoshimura H, Nishio SY, Usami SI. Milestones toward cochlear gene therapy for patients with hereditary hearing loss. Laryngoscope Investig Otolaryngol 2021;6:958-67. [PMID: 34693000 DOI: 10.1002/lio2.633] [Reference Citation Analysis]
86 Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2020;19:23-38. [DOI: 10.1038/s41573-019-0046-z] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 33.0] [Reference Citation Analysis]
87 Chorath K, Willis M, Morton-Gonzaba N, Moreira A. Mesenchymal stem cells for sensorineural hearing loss: a systematic review of preclinical studies. Mol Biol Rep 2020;47:4723-36. [PMID: 32323262 DOI: 10.1007/s11033-020-05460-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Skipper KA, Mikkelsen JG. Toward In Vivo Gene Therapy Using CRISPR. Methods Mol Biol 2019;1961:293-306. [PMID: 30912053 DOI: 10.1007/978-1-4939-9170-9_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
89 Li L, Yang Z, Zhu S, He L, Fan W, Tang W, Zou J, Shen Z, Zhang M, Tang L, Dai Y, Niu G, Hu S, Chen X. A Rationally Designed Semiconducting Polymer Brush for NIR-II Imaging-Guided Light-Triggered Remote Control of CRISPR/Cas9 Genome Editing. Adv Mater 2019;31:e1901187. [PMID: 30957918 DOI: 10.1002/adma.201901187] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 14.7] [Reference Citation Analysis]
90 Han X, Mitchell MJ, Nie G. Nanomaterials for Therapeutic RNA Delivery. Matter 2020;3:1948-75. [DOI: 10.1016/j.matt.2020.09.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
91 Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes (Basel). 2020;11. [PMID: 32977396 DOI: 10.3390/genes11101113] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
92 Roper J, Yilmaz ÖH. Breakthrough Moments: Genome Editing and Organoids. Cell Stem Cell 2019;24:841-2. [DOI: 10.1016/j.stem.2019.05.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
93 Li Y, Glass Z, Xu Q. Rescued from the fate of neurological disorder. Nat Biomed Eng 2018;2:469-70. [PMID: 30948825 DOI: 10.1038/s41551-018-0267-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
94 Li Y, Bolinger J, Yu Y, Glass Z, Shi N, Yang L, Wang M, Xu Q. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci 2019;7:596-606. [DOI: 10.1039/c8bm00637g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
95 Lau CH, Tin C. The Synergy between CRISPR and Chemical Engineering. Curr Gene Ther 2019;19:147-71. [PMID: 31267870 DOI: 10.2174/1566523219666190701100556] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020;394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
97 Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021;3:737632. [PMID: 34778871 DOI: 10.3389/fgeed.2021.737632] [Reference Citation Analysis]
98 Ban Q, Yang P, Chou SJ, Qiao L, Xia H, Xue J, Wang F, Xu X, Sun N, Zhang RY, Zhang C, Lee A, Liu W, Lin TY, Ko YL, Antovski P, Zhang X, Chiou SH, Lee CF, Hui W, Liu D, Jonas SJ, Weiss PS, Tseng HR. Supramolecular Nanosubstrate-Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. Small 2021;17:e2100546. [PMID: 34105245 DOI: 10.1002/smll.202100546] [Reference Citation Analysis]
99 Wu SS, Li QC, Yin CQ, Xue W, Song CQ. Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases.Theranostics. 2020;10:4374-4382. [PMID: 32292501 DOI: 10.7150/thno.43360] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
100 Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis Clin Med 2021;4:179-91. [PMID: 34541453 DOI: 10.1093/pcmedi/pbab014] [Reference Citation Analysis]
101 Villiger L, Grisch-chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Häberle J, Matos J, Robinson MD, Thöny B, Schwank G. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 2018;24:1519-25. [DOI: 10.1038/s41591-018-0209-1] [Cited by in Crossref: 139] [Cited by in F6Publishing: 129] [Article Influence: 34.8] [Reference Citation Analysis]
102 Delmaghani S, El-Amraoui A. Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020;9:E2309. [PMID: 32708116 DOI: 10.3390/jcm9072309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
103 Li Y, Chakraborty A, Chen J, Xu Q. Combinatorial Library of Light-Cleavable Lipidoid Nanoparticles for Intracellular Drug Delivery. ACS Biomater Sci Eng 2019;5:2391-8. [DOI: 10.1021/acsbiomaterials.9b00445] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
104 Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP, Fellows MD, Porritt MJ, Firth MA, Carreras A, Baccega T, Seeliger F, Bjursell M, Tsai SQ, Nguyen NT, Nitsch R, Mayr LM, Pinello L, Bohlooly-Y M, Aryee MJ, Maresca M, Joung JK. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. 2018;561:416-419. [PMID: 30209390 DOI: 10.1038/s41586-018-0500-9] [Cited by in Crossref: 170] [Cited by in F6Publishing: 148] [Article Influence: 42.5] [Reference Citation Analysis]
105 Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. J Assoc Res Otolaryngol 2021;22:95-105. [PMID: 33507440 DOI: 10.1007/s10162-020-00781-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 Tang W, Han L, Lu X, Wang Z, Liu F, Li Y, Liu S, Liu S, Tian R, Liu J, Ding B. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS Appl Mater Interfaces 2021;13:20974-81. [PMID: 33909408 DOI: 10.1021/acsami.1c02122] [Reference Citation Analysis]
107 Hastings ML, Jones TA. Antisense Oligonucleotides for the Treatment of Inner Ear Dysfunction. Neurotherapeutics 2019;16:348-59. [PMID: 30972560 DOI: 10.1007/s13311-019-00729-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
108 Wang H, Wu K, Guan J, Yang J, Xie L, Xiong F, Lan L, Wang D, Wang Q. Identification of four TMC1 variations in different Chinese families with hereditary hearing loss. Mol Genet Genomic Med 2018. [PMID: 29654653 DOI: 10.1002/mgg3.394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
109 Huang S, Song J, He C, Cai X, Yuan K, Mei L, Feng Y. Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2021. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Lan Y, Tao Y, Wang Y, Ke J, Yang Q, Liu X, Su B, Wu Y, Lin CP, Zhong G. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther 2020;27:329-37. [PMID: 32424232 DOI: 10.1038/s41434-020-0155-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
111 Durán-Alonso MB. Stem cell-based approaches: Possible route to hearing restoration? World J Stem Cells 2020; 12(6): 422-437 [PMID: 32742560 DOI: 10.4252/wjsc.v12.i6.422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
112 Rabinowitz R, Offen D. Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Mol Ther 2021;29:937-48. [PMID: 33248248 DOI: 10.1016/j.ymthe.2020.11.009] [Reference Citation Analysis]
113 Qiu Y, Qiu J. Stem Cells: A New Hope for Hearing Loss Therapy. Adv Exp Med Biol 2019;1130:165-80. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
114 Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. Adv Mater 2020;32:2002932. [DOI: 10.1002/adma.202002932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
115 Duarte F, Déglon N. Genome Editing for CNS Disorders. Front Neurosci 2020;14:579062. [PMID: 33192264 DOI: 10.3389/fnins.2020.579062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
116 Urnov F. An ode to gene edits that prevent deafness. Nature 2018;553:162-3. [PMID: 29323325 DOI: 10.1038/d41586-017-08645-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
117 Holmgaard AB, Askou AL, Jensen EG, Alsing S, Bak RO, Mikkelsen JG, Corydon TJ. Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes Containing Cas9 Protein and Modified sgRNAs. Mol Ther 2021;29:191-207. [PMID: 33022212 DOI: 10.1016/j.ymthe.2020.09.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
118 Furgurson M, Lagor WR. CRISPR: a promising tool for lipid physiology and therapeutics. Curr Opin Lipidol 2019;30:172-6. [PMID: 30893109 DOI: 10.1097/MOL.0000000000000591] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
119 Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW Jr, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 2021;21:209-36. [PMID: 33850952 DOI: 10.1016/j.omtm.2021.03.005] [Reference Citation Analysis]
120 Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 2020;11:3232. [PMID: 32591530 DOI: 10.1038/s41467-020-17029-3] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 31.5] [Reference Citation Analysis]
121 Shen Y, Cohen JL, Nicoloro SM, Kelly M, Yenilmez B, Henriques F, Tsagkaraki E, Edwards YJK, Hu X, Friedline RH, Kim JK, Czech MP. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. J Biol Chem 2018;293:17291-305. [PMID: 30190322 DOI: 10.1074/jbc.RA118.004554] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
122 Frisina RD, Budzevich M, Zhu X, Martinez GV, Walton JP, Borkholder DA. Animal model studies yield translational solutions for cochlear drug delivery. Hear Res 2018;368:67-74. [PMID: 29793764 DOI: 10.1016/j.heares.2018.05.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
123 Silva SA, Maass JC. p27Kip1 down-regulation as achieved by two clinically feasible means did not induce proliferation of supporting cells in the rat neonatal cochlea in vivo. Hear Res 2019;373:10-22. [PMID: 30578960 DOI: 10.1016/j.heares.2018.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
124 French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020;14:183. [PMID: 32733204 DOI: 10.3389/fncel.2020.00183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
125 Dai X, Blancafort P, Wang P, Sgro A, Thompson EW, Ostrikov KK. Innovative Precision Gene-Editing Tools in Personalized Cancer Medicine. Adv Sci (Weinh) 2020;7:1902552. [PMID: 32596104 DOI: 10.1002/advs.201902552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
126 Blattner G, Cavazza A, Thrasher AJ, Turchiano G. Gene Editing and Genotoxicity: Targeting the Off-Targets. Front Genome Ed 2020;2:613252. [DOI: 10.3389/fgeed.2020.613252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Lam KH, Fernandez-Perez A, Schmidtke DW, Munshi NV. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device. Biomed Microdevices 2018;20:52. [PMID: 29938310 DOI: 10.1007/s10544-018-0292-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
128 Jeong YK, Song B, Bae S. Current Status and Challenges of DNA Base Editing Tools. Mol Ther 2020;28:1938-52. [PMID: 32763143 DOI: 10.1016/j.ymthe.2020.07.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
129 Suzuki K, Yamamoto M, Hernandez-Benitez R, Li Z, Wei C, Soligalla RD, Aizawa E, Hatanaka F, Kurita M, Reddy P, Ocampo A, Hishida T, Sakurai M, Nemeth AN, Nuñez Delicado E, Campistol JM, Magistretti P, Guillen P, Rodriguez Esteban C, Gong J, Yuan Y, Gu Y, Liu GH, López-Otín C, Wu J, Zhang K, Izpisua Belmonte JC. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res 2019;29:804-19. [PMID: 31444470 DOI: 10.1038/s41422-019-0213-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
130 Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018;42:3371-85. [PMID: 30272261 DOI: 10.3892/ijmm.2018.3907] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
131 Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019;28:R65-79. [PMID: 31227837 DOI: 10.1093/hmg/ddz129] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
132 Marsh S, Hanson B, Wood MJA, Varela MA, Roberts TC. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Mol Ther 2020;28:2527-39. [PMID: 33171139 DOI: 10.1016/j.ymthe.2020.10.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
133 Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Olleta Lascarro I. New-born Hearing Screening Programmes in 2020: CODEPEH Recommendations. Acta Otorrinolaringol Esp (Engl Ed) 2021;72:312-23. [PMID: 34535222 DOI: 10.1016/j.otoeng.2020.06.009] [Reference Citation Analysis]
134 Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149-57. [PMID: 31634902 DOI: 10.1038/s41586-019-1711-4] [Cited by in Crossref: 895] [Cited by in F6Publishing: 741] [Article Influence: 298.3] [Reference Citation Analysis]
135 Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020;234:119711. [PMID: 31945616 DOI: 10.1016/j.biomaterials.2019.119711] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
136 Ji XJ, Chen W, Wang X, Zhang Y, Liu Q, Guo WW, Zhao JG, Yang SM. Canalostomy is an ideal surgery route for inner ear gene delivery in big animal model. Acta Otolaryngol 2019;139:939-47. [PMID: 31486693 DOI: 10.1080/00016489.2019.1654130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
137 Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants 2021;7:1166-87. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Zhang Y, Yang X. The Roles of TGF-β Signaling in Cerebrovascular Diseases. Front Cell Dev Biol 2020;8:567682. [PMID: 33072751 DOI: 10.3389/fcell.2020.567682] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Nishio SY, Usami SI. Prevalence and clinical features of autosomal dominant and recessive TMC1-associated hearing loss. Hum Genet 2021. [PMID: 34523024 DOI: 10.1007/s00439-021-02364-2] [Reference Citation Analysis]
140 Niggemann P, György B, Chen ZY. Genome and base editing for genetic hearing loss. Hear Res 2020;394:107958. [PMID: 32334889 DOI: 10.1016/j.heares.2020.107958] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
141 Gu X, Chai R, Guo L, Dong B, Li W, Shu Y, Huang X, Li H. Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea. Front Cell Neurosci 2019;13:8. [PMID: 30733670 DOI: 10.3389/fncel.2019.00008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
142 Wu Y, Jiang L, Dong Z, Chen S, Yu XY, Tang S. Intracellular Delivery of Proteins into Living Cells by Low-Molecular-Weight Polyethyleneimine. Int J Nanomedicine 2021;16:4197-208. [PMID: 34188469 DOI: 10.2147/IJN.S315444] [Reference Citation Analysis]
143 Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J 2020;3:253-75. [PMID: 32833535 DOI: 10.1089/crispr.2020.0025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
144 Miller JC, Patil DP, Xia DF, Paine CB, Fauser F, Richards HW, Shivak DA, Bendaña YR, Hinkley SJ, Scarlott NA, Lam SC, Reik A, Zhou Y, Paschon DE, Li P, Wangzor T, Lee G, Zhang L, Rebar EJ. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat Biotechnol 2019;37:945-52. [PMID: 31359006 DOI: 10.1038/s41587-019-0186-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
145 Yin D, Ling S, Wang D, Dai Y, Jiang H, Zhou X, Paludan SR, Hong J, Cai Y. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol 2021;39:567-77. [PMID: 33432198 DOI: 10.1038/s41587-020-00781-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
146 Wrobel C, Zafeiriou MP, Moser T. Understanding and treating paediatric hearing impairment. EBioMedicine 2021;63:103171. [PMID: 33422987 DOI: 10.1016/j.ebiom.2020.103171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 2020;394:107947. [PMID: 32247629 DOI: 10.1016/j.heares.2020.107947] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
148 Jackler RK, Jan TA. The future of otology. J Laryngol Otol 2019;133:747-58. [PMID: 31462337 DOI: 10.1017/S0022215119001531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
149 Hanson B, Wood MJA, Roberts TC. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biol 2021;18:1048-62. [PMID: 33472516 DOI: 10.1080/15476286.2021.1874161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
150 Pöhler M, Guttmann S, Nadzemova O, Lenders M, Brand E, Zibert A, Schmidt HH, Sandfort V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One 2020;15:e0239411. [PMID: 32997714 DOI: 10.1371/journal.pone.0239411] [Reference Citation Analysis]
151 Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019;13:529. [PMID: 31827424 DOI: 10.3389/fncel.2019.00529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
152 Yao J, Wang Y, Cao C, Song R, Bi D, Zhang H, Li Y, Qin G, Hou N, Zhang N, Zhang J, Guo W, Yang S, Wang Y, Zhao J. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. Mol Ther Nucleic Acids 2021;24:986-99. [PMID: 34094716 DOI: 10.1016/j.omtn.2021.04.009] [Reference Citation Analysis]
153 Burgio G. CRISPR Falling on Deaf Ears. CRISPR J 2018;1:18-20. [PMID: 31021181 DOI: 10.1089/crispr.2018.29002.gbu] [Reference Citation Analysis]
154 Sun Z, Cheng Z, Gong N, Xu Z, Jin C, Wu H, Tao Y. Neural presbycusis at ultra-high frequency in aged common marmosets and rhesus monkeys. Aging (Albany NY) 2021;13:12587-606. [PMID: 33909598 DOI: 10.18632/aging.202936] [Reference Citation Analysis]
155 Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 2021;:100975. [PMID: 34058340 DOI: 10.1016/j.preteyeres.2021.100975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
156 de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021;22:3910. [PMID: 33920085 DOI: 10.3390/ijms22083910] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, Muller A, Sousa AA, Tsai SQ, Bengtsson NE, Lööv C, Ingelsson M, Chamberlain JS, Corey DP, Aryee MJ, Joung JK, Breakefield XO, Maguire CA, György B. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun 2019;10:4439. [PMID: 31570731 DOI: 10.1038/s41467-019-12449-2] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 30.7] [Reference Citation Analysis]
158 Xu Q, Zhang Z, Zhao L, Qin Y, Cai H, Geng Z, Zhu X, Zhang W, Zhang Y, Tan J, Wang J, Zhou J. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies. J Control Release 2020;326:455-67. [PMID: 32711027 DOI: 10.1016/j.jconrel.2020.07.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
159 Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, Zhang J, Yu X, Zheng W, Jiang X. Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angew Chem Int Ed Engl 2019;58:12404-8. [PMID: 31318118 DOI: 10.1002/anie.201903618] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 13.7] [Reference Citation Analysis]
160 Pendse ND, Lamas V, Pawlyk BS, Maeder ML, Chen ZY, Pierce EA, Liu Q. In Vivo Assessment of Potential Therapeutic Approaches for USH2A-Associated Diseases. Adv Exp Med Biol 2019;1185:91-6. [PMID: 31884594 DOI: 10.1007/978-3-030-27378-1_15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
161 Shah V, Mittal R, Shahal D, Sinha P, Bulut E, Mittal J, Eshraghi AA. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in vitro Model of Electrode Insertion Trauma. Front Mol Neurosci 2020;13:113. [PMID: 32760249 DOI: 10.3389/fnmol.2020.00113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
162 Taiber S, Avraham KB. Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neurosci Lett 2019;713:134527. [PMID: 31586696 DOI: 10.1016/j.neulet.2019.134527] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
163 Li C, Georgakopoulou A, Mishra A, Gil S, Hawkins RD, Yannaki E, Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv 2021;5:1122-35. [PMID: 33620431 DOI: 10.1182/bloodadvances.2020003702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
164 Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019;11:7416-41. [PMID: 31562289 DOI: 10.18632/aging.102246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
165 Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol 2018;3:217-28. [PMID: 30370342 DOI: 10.1016/j.synbio.2018.10.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
166 Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, Cui H, Zhao X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021;13:3307. [PMID: 34641123 DOI: 10.3390/polym13193307] [Reference Citation Analysis]
167 Géléoc GGS, El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res 2020;394:107932. [PMID: 32199721 DOI: 10.1016/j.heares.2020.107932] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
168 Van Rompaey V. Making the Case for Research on Disease-Modifying Treatments to Tackle Post-lingual Progressive Sensorineural Hearing Loss. Front Neurol 2020;11:290. [PMID: 32373054 DOI: 10.3389/fneur.2020.00290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
169 Pan X, Pei X, Huang H, Su N, Wu Z, Wu Z, Qi X. One-in-one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin. J Control Release 2021;337:686-97. [PMID: 34389365 DOI: 10.1016/j.jconrel.2021.08.015] [Reference Citation Analysis]
170 Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018;11:221. [PMID: 29997477 DOI: 10.3389/fnmol.2018.00221] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
171 Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020;394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
172 Zhao W, Hou X, Vick OG, Dong Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019;217:119291. [PMID: 31255978 DOI: 10.1016/j.biomaterials.2019.119291] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
173 Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2020;303:516-26. [PMID: 30859735 DOI: 10.1002/ar.24107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
174 Duan Y, Ye T, Qu Z, Chen Y, Miranda A, Zhou X, Lok KC, Chen Y, Fu AKY, Gradinaru V, Ip NY. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nat Biomed Eng 2021. [PMID: 34312508 DOI: 10.1038/s41551-021-00759-0] [Reference Citation Analysis]
175 Chien WW. A CRISPR Way to Restore Hearing. N Engl J Med 2018;378:1255-6. [PMID: 29601257 DOI: 10.1056/NEJMcibr1716789] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
176 van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020;38:845-55. [PMID: 32601435 DOI: 10.1038/s41587-020-0565-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 21.0] [Reference Citation Analysis]
177 Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020;747:144677. [PMID: 32304785 DOI: 10.1016/j.gene.2020.144677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021;15:652215. [PMID: 33815052 DOI: 10.3389/fnins.2021.652215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
179 Nist-Lund CA, Pan B, Patterson A, Asai Y, Chen T, Zhou W, Zhu H, Romero S, Resnik J, Polley DB, Géléoc GS, Holt JR. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun 2019;10:236. [PMID: 30670701 DOI: 10.1038/s41467-018-08264-w] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 15.3] [Reference Citation Analysis]
180 Li Y, Li AC, Xu Q. Intracellular Delivery of His-Tagged Genome-Editing Proteins Enabled by Nitrilotriacetic Acid-Containing Lipidoid Nanoparticles. Adv Healthc Mater 2019;8:e1800996. [PMID: 30565897 DOI: 10.1002/adhm.201800996] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
181 Hastings ML, Brigande JV. Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hear Res 2020;394:107931. [PMID: 32173115 DOI: 10.1016/j.heares.2020.107931] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
182 Deng S, Li X, Liu S, Chen J, Li M, Chew SY, Leong KW, Cheng D. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv 2020;6:eabb4005. [PMID: 32832641 DOI: 10.1126/sciadv.abb4005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
183 Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020;40:BSR20200127. [PMID: 32207531 DOI: 10.1042/BSR20200127] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 53.0] [Reference Citation Analysis]
184 Blanc F, Mondain M, Bemelmans AP, Affortit C, Puel JL, Wang J. rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. J Clin Med 2020;9:E589. [PMID: 32098144 DOI: 10.3390/jcm9020589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
185 Qiao J, Li W, Lin S, Sun W, Ma L, Liu Y. Co-expression of Cas9 and single-guided RNAs in Escherichia coli streamlines production of Cas9 ribonucleoproteins. Commun Biol 2019;2:161. [PMID: 31069270 DOI: 10.1038/s42003-019-0402-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
186 Qu J, Zhu L, Zhou Z, Chen P, Liu S, Locy ML, Thannickal VJ, Zhou Y. Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing. Am J Respir Crit Care Med 2018;198:599-609. [PMID: 29924937 DOI: 10.1164/rccm.201711-2242OC] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
187 Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther. 2019;200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
188 Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet 2021:ddab153. [PMID: 34089057 DOI: 10.1093/hmg/ddab153] [Reference Citation Analysis]
189 You L, Tong R, Li M, Liu Y, Xue J, Lu Y. Advancements and Obstacles of CRISPR-Cas9 Technology in Translational Research. Mol Ther Methods Clin Dev 2019;13:359-70. [PMID: 30989086 DOI: 10.1016/j.omtm.2019.02.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
190 Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2021;157:229-62. [PMID: 32880951 DOI: 10.1111/jnc.15168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
191 Temblador A, Topalis D, Andrei G, Snoeck R. CRISPR/Cas9 Editing of the Polyomavirus Tumor Antigens Inhibits Merkel Cell Carcinoma Growth In Vitro. Cancers (Basel) 2019;11:E1260. [PMID: 31466237 DOI: 10.3390/cancers11091260] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
192 Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020;394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
193 Wang X, Dong K, Kong D, Zhou Y, Yin J, Cai F, Wang M, Ye H. A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. Sci Adv 2021;7:eabh2358. [PMID: 34890237 DOI: 10.1126/sciadv.abh2358] [Reference Citation Analysis]
194 Nachtigal AL, Milenkovic A, Brandl C, Schulz HL, Duerr LMJ, Lang GE, Reiff C, Herrmann P, Kellner U, Weber BHF. Mutation-Dependent Pathomechanisms Determine the Phenotype in the Bestrophinopathies. Int J Mol Sci 2020;21:E1597. [PMID: 32111077 DOI: 10.3390/ijms21051597] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
195 Tong S, Moyo B, Lee CM, Leong K, Bao G. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater. 2019;4:726-737. [PMID: 34094589 DOI: 10.1038/s41578-019-0145-9] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 17.7] [Reference Citation Analysis]
196 Jo DH, Koo T, Cho CS, Kim JH, Kim JS, Kim JH. Long-Term Effects of In Vivo Genome Editing in the Mouse Retina Using Campylobacter jejuni Cas9 Expressed via Adeno-Associated Virus. Mol Ther 2019;27:130-6. [PMID: 30470629 DOI: 10.1016/j.ymthe.2018.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
197 Farooq R, Hussain K, Tariq M, Farooq A, Mustafa M. CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 2020;61:51-65. [PMID: 31912450 DOI: 10.1007/s13353-019-00535-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
198 Renauld JM, Basch ML. Congenital Deafness and Recent Advances Towards Restoring Hearing Loss. Curr Protoc 2021;1:e76. [PMID: 33780161 DOI: 10.1002/cpz1.76] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
199 Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021;168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
200 Taharabaru T, Yokoyama R, Higashi T, Mohammed AFA, Inoue M, Maeda Y, Niidome T, Onodera R, Motoyama K. Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein. ACS Appl Mater Interfaces 2020;12:21386-97. [DOI: 10.1021/acsami.9b21667] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
201 Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B 2020;8:4369-86. [DOI: 10.1039/d0tb00207k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
202 Billon P, Nambiar TS, Hayward SB, Zafra MP, Schatoff EM, Oshima K, Dunbar A, Breinig M, Park YC, Ryu HS, Tschaharganeh DF, Levine RL, Baer R, Ferrando A, Dow LE, Ciccia A. Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Rep 2020;30:3280-3295.e6. [PMID: 32160537 DOI: 10.1016/j.celrep.2020.02.068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
203 Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020;8:692. [PMID: 32671050 DOI: 10.3389/fbioe.2020.00692] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
204 Wu J, Solanes P, Nist-Lund C, Spataro S, Shubina-Oleinik O, Marcovich I, Goldberg H, Schneider BL, Holt JR. Single and Dual Vector Gene Therapy with AAV9-PHP.B Rescues Hearing in Tmc1 Mutant Mice. Mol Ther 2021;29:973-88. [PMID: 33212302 DOI: 10.1016/j.ymthe.2020.11.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
205 Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM, Dumont RA, Rigo F, Lentz JJ, Hastings ML, Brigande JV. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res 2020;48:5065-80. [PMID: 32249312 DOI: 10.1093/nar/gkaa194] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
206 Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B 2021;11:2150-71. [PMID: 34522582 DOI: 10.1016/j.apsb.2021.05.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
207 Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 2020;12:eaay9101. [PMID: 32493795 DOI: 10.1126/scitranslmed.aay9101] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 30.0] [Reference Citation Analysis]
208 Devare J, Gubbels S, Raphael Y. Outlook and future of inner ear therapy. Hear Res 2018;368:127-35. [PMID: 29804723 DOI: 10.1016/j.heares.2018.05.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
209 Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021;168:118-33. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
210 Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development. 2019;146:dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]