BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013;14:1062-72. [PMID: 24232182 DOI: 10.1038/embor.2013.182] [Cited by in Crossref: 193] [Cited by in F6Publishing: 175] [Article Influence: 21.4] [Reference Citation Analysis]
Number Citing Articles
1 Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MV, Bernardini S, Madeddu P, Cesareni G, Seliktar D, Rizzi R, Bearzi C, Cannata SM, Spinetti G, Gargioli C. 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 2014;5:203. [PMID: 24910618 DOI: 10.3389/fphys.2014.00203] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
2 Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2019;28:2030-45. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Hwang AB, Brack AS. Muscle Stem Cells and Aging. Curr Top Dev Biol 2018;126:299-322. [PMID: 29305003 DOI: 10.1016/bs.ctdb.2017.08.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
4 Nederveen JP, Joanisse S, Thomas ACQ, Snijders T, Manta K, Bell KE, Phillips SM, Kumbhare D, Parise G. Age‐related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB j 2020;34:8975-89. [DOI: 10.1096/fj.201900787r] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022;73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Mayerl S, Schmidt M, Doycheva D, Darras VM, Hüttner SS, Boelen A, Visser TJ, Kaether C, Heuer H, von Maltzahn J. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration. Stem Cell Reports 2018;10:1959-74. [PMID: 29706500 DOI: 10.1016/j.stemcr.2018.03.021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
7 Bronisz-Budzyńska I, Kozakowska M, Podkalicka P, Kachamakova-Trojanowska N, Łoboda A, Dulak J. The role of Nrf2 in acute and chronic muscle injury. Skelet Muscle 2020;10:35. [PMID: 33287890 DOI: 10.1186/s13395-020-00255-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang YX, Blau HM. Macrophages rescue injured engineered muscle. Nat Biomed Eng 2018;2:890-1. [PMID: 31015725 DOI: 10.1038/s41551-018-0312-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020;104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sincennes MC, Wang YX, Rudnicki MA. Primary Mouse Myoblast Purification using Magnetic Cell Separation. In: Perdiguero E, Cornelison D, editors. Muscle Stem Cells. New York: Springer; 2017. pp. 41-50. [DOI: 10.1007/978-1-4939-6771-1_3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Dort J, Fabre P, Molina T, Dumont NA. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int 2019;2019:4761427. [PMID: 31396285 DOI: 10.1155/2019/4761427] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
12 Cui K, Kang N, Banie L, Zhou T, Liu T, Wang B, Ruan Y, Peng D, Wang HS, Wang T, Wang G, Reed-Maldonado AB, Chen Z, Lin G, Lue TF. Microenergy acoustic pulses induced myogenesis of urethral striated muscle stem/progenitor cells. Transl Androl Urol. 2019;8:489-500. [PMID: 32133280 DOI: 10.21037/tau.2019.08.18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Jakobsen JR, Jakobsen NR, Mackey AL, Koch M, Kjaer M, Krogsgaard MR. Remodeling of muscle fibers approaching the human myotendinous junction. Scand J Med Sci Sports 2018;28:1859-65. [PMID: 29672952 DOI: 10.1111/sms.13196] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
14 Jakobsen JR, Krogsgaard MR. The Myotendinous Junction-A Vulnerable Companion in Sports. A Narrative Review. Front Physiol 2021;12:635561. [PMID: 33841171 DOI: 10.3389/fphys.2021.635561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bechshøft CJL, Schjerling P, Kjaer M, Mackey AL. The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro. J Appl Physiol (1985) 2019;127:342-55. [PMID: 31120810 DOI: 10.1152/japplphysiol.00215.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Matsuyoshi Y, Akahoshi M, Nakamura M, Tatsumi R, Mizunoya W. Isolation and Purification of Satellite Cells from Young Rats by Percoll Density Gradient Centrifugation. In: Rønning SB, editor. Myogenesis. New York: Springer; 2019. pp. 81-93. [DOI: 10.1007/978-1-4939-8897-6_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
17 Nowak E, Gawor M, Ciemerych MA, Zimowska M. Silencing of gelatinase expression delays myoblast differentiation in vitro: MMPs during myoblast differentiation. Cell Biol Int 2018;42:373-82. [DOI: 10.1002/cbin.10914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
18 Evano B, Khalilian S, Le Carrou G, Almouzni G, Tajbakhsh S. Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells In Vivo and on Artificial Niches. Cell Reports 2020;30:3195-3206.e7. [DOI: 10.1016/j.celrep.2020.01.097] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
19 Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2021;35:e21182. [PMID: 33205514 DOI: 10.1096/fj.202001627R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Sandonà M, Consalvi S, Tucciarone L, De Bardi M, Scimeca M, Angelini DF, Buffa V, D'Amico A, Bertini ES, Cazzaniga S, Bettica P, Bouché M, Bongiovanni A, Puri PL, Saccone V. HDAC inhibitors tune miRNAs in extracellular vesicles of dystrophic muscle-resident mesenchymal cells. EMBO Rep 2020;21:e50863. [PMID: 32754983 DOI: 10.15252/embr.202050863] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
21 Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021;278:121173. [PMID: 34619561 DOI: 10.1016/j.biomaterials.2021.121173] [Reference Citation Analysis]
22 Marinkovic M, Fuoco C, Sacco F, Cerquone Perpetuini A, Giuliani G, Micarelli E, Pavlidou T, Petrilli LL, Reggio A, Riccio F, Spada F, Vumbaca S, Zuccotti A, Castagnoli L, Mann M, Gargioli C, Cesareni G. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Sci Alliance 2019;2:e201900437. [PMID: 31239312 DOI: 10.26508/lsa.201900437] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
23 Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019;37:1246-62. [PMID: 30604468 DOI: 10.1002/jor.24212] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
24 Chikenji TS, Saito Y, Konari N, Nakano M, Mizue Y, Otani M, Fujimiya M. p16INK4A-expressing mesenchymal stromal cells restore the senescence-clearance-regeneration sequence that is impaired in chronic muscle inflammation. EBioMedicine 2019;44:86-97. [PMID: 31129096 DOI: 10.1016/j.ebiom.2019.05.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
25 Schüler SC, Kirkpatrick JM, Schmidt M, Santinha D, Koch P, Di Sanzo S, Cirri E, Hemberg M, Ori A, von Maltzahn J. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep 2021;35:109223. [PMID: 34107247 DOI: 10.1016/j.celrep.2021.109223] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021;22:7220. [PMID: 34281273 DOI: 10.3390/ijms22137220] [Reference Citation Analysis]
27 Lee EJ, Jan AT, Baig MH, Ahmad K, Malik A, Rabbani G, Kim T, Lee IK, Lee YH, Park SY, Choi I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J 2018;32:768-81. [PMID: 28974563 DOI: 10.1096/fj.201700665R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
28 Reggio A, Rosina M, Palma A, Cerquone Perpetuini A, Petrilli LL, Gargioli C, Fuoco C, Micarelli E, Giuliani G, Cerretani M, Bresciani A, Sacco F, Castagnoli L, Cesareni G. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ 2020;27:2921-41. [PMID: 32382110 DOI: 10.1038/s41418-020-0551-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
29 Nelissen JL, Traa WA, de Boer HH, de Graaf L, Mazzoli V, Savci-heijink CD, Nicolay K, Froeling M, Bader DL, Nederveen AJ, Oomens CWJ, Strijkers GJ. An advanced magnetic resonance imaging perspective on the etiology of deep tissue injury. Journal of Applied Physiology 2018;124:1580-96. [DOI: 10.1152/japplphysiol.00891.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
30 Guardiola O, Andolfi G, Tirone M, Iavarone F, Brunelli S, Minchiotti G. Induction of Acute Skeletal Muscle Regeneration by Cardiotoxin Injection. J Vis Exp 2017. [PMID: 28117768 DOI: 10.3791/54515] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
31 Vallecillo-García P, Orgeur M, Vom Hofe-Schneider S, Stumm J, Kappert V, Ibrahim DM, Börno ST, Hayashi S, Relaix F, Hildebrandt K, Sengle G, Koch M, Timmermann B, Marazzi G, Sassoon DA, Duprez D, Stricker S. Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development. Nat Commun 2017;8:1218. [PMID: 29084951 DOI: 10.1038/s41467-017-01120-3] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
32 Azevedo M, Baylies MK. Getting into Position: Nuclear Movement in Muscle Cells. Trends Cell Biol 2020;30:303-16. [PMID: 32008895 DOI: 10.1016/j.tcb.2020.01.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
33 García-Prat L, Muñoz-Cánoves P. Aging, metabolism and stem cells: Spotlight on muscle stem cells. Mol Cell Endocrinol 2017;445:109-17. [PMID: 27531569 DOI: 10.1016/j.mce.2016.08.021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
34 Schüler SC, Dumontier S, Rigaux J, Bentzinger CF. Visualization of the Skeletal Muscle Stem Cell Niche in Fiber Bundles. Curr Protoc 2021;1:e263. [PMID: 34612611 DOI: 10.1002/cpz1.263] [Reference Citation Analysis]
35 Proietti D, Giordani L, De Bardi M, D'Ercole C, Lozanoska-Ochser B, Amadio S, Volonté C, Marinelli S, Muchir A, Bouché M, Borsellino G, Sacco A, Puri PL, Madaro L. Activation of skeletal muscle-resident glial cells upon nerve injury. JCI Insight 2021;6:143469. [PMID: 33661767 DOI: 10.1172/jci.insight.143469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
36 Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019;10:500. [PMID: 31114509 DOI: 10.3389/fphys.2019.00500] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
37 Fernando CA, Pangan AM, Cornelison D, Segal SS. Recovery of blood flow regulation in microvascular resistance networks during regeneration of mouse gluteus maximus muscle. J Physiol 2019;597:1401-17. [PMID: 30575953 DOI: 10.1113/JP277247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
38 Koopman R, Ly CH, Ryall JG. A metabolic link to skeletal muscle wasting and regeneration. Front Physiol 2014;5:32. [PMID: 24567722 DOI: 10.3389/fphys.2014.00032] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 8.1] [Reference Citation Analysis]
39 Blais A. Myogenesis in the Genomics Era. Journal of Molecular Biology 2015;427:2023-38. [DOI: 10.1016/j.jmb.2015.02.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
40 Gibbons MC, Singh A, Engler AJ, Ward SR. The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 2018;36:546-56. [PMID: 28755470 DOI: 10.1002/jor.23662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
41 Yin J, Yang L, Xie Y, Liu Y, Li S, Yang W, Xu B, Ji H, Ding L, Wang K, Li G, Chen L, Hu P. Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy. Nat Commun 2018;9:1752. [PMID: 29717119 DOI: 10.1038/s41467-018-04038-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
42 Koike TE, Fuziwara CS, Brum PC, Kimura ET, Rando TA, Miyabara EH. Muscle Stem Cell Function Is Impaired in β2-Adrenoceptor Knockout Mice. Stem Cell Rev Rep 2022. [PMID: 35244862 DOI: 10.1007/s12015-022-10334-y] [Reference Citation Analysis]
43 Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017;97:889-938. [PMID: 28468832 DOI: 10.1152/physrev.00038.2016] [Cited by in Crossref: 137] [Cited by in F6Publishing: 114] [Article Influence: 27.4] [Reference Citation Analysis]
44 Pereira MG, Silva MT, da Cunha FM, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves regeneration of skeletal muscles from old rats. Experimental Gerontology 2015;72:269-77. [DOI: 10.1016/j.exger.2015.10.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
45 Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021;12:252-73. [PMID: 33783983 DOI: 10.1002/jcsm.12678] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Palma A, Cerquone Perpetuini A, Ferrentino F, Fuoco C, Gargioli C, Giuliani G, Iannuccelli M, Licata L, Micarelli E, Paoluzi S, Perfetto L, Petrilli LL, Reggio A, Rosina M, Sacco F, Vumbaca S, Zuccotti A, Castagnoli L, Cesareni G. Myo-REG: A Portal for Signaling Interactions in Muscle Regeneration. Front Physiol 2019;10:1216. [PMID: 31611808 DOI: 10.3389/fphys.2019.01216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Park SS, Kwon ES, Kwon KS. Molecular mechanisms and therapeutic interventions in sarcopenia. Osteoporos Sarcopenia 2017;3:117-22. [PMID: 30775515 DOI: 10.1016/j.afos.2017.08.098] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
48 Dayanidhi S, Lieber RL. Muscle Biology of Contractures in Children with Cerebral Palsy. In: Panteliadis CP, editor. Cerebral Palsy. Cham: Springer International Publishing; 2018. pp. 143-53. [DOI: 10.1007/978-3-319-67858-0_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
49 Prüller J, Mannhardt I, Eschenhagen T, Zammit PS, Figeac N. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. PLoS One 2018;13:e0202574. [PMID: 30222770 DOI: 10.1371/journal.pone.0202574] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
50 Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, Passos JF, Pignolo RJ, Tchkonia T, Niedernhofer LJ. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu Rev Pharmacol Toxicol 2021;61:779-803. [PMID: 32997601 DOI: 10.1146/annurev-pharmtox-050120-105018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
51 Kowalski K, Dos Santos M, Maire P, Ciemerych MA, Brzoska E. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche. Stem Cell Res Ther 2018;9:258. [PMID: 30261919 DOI: 10.1186/s13287-018-0993-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 Corvelyn M, De Beukelaer N, Duelen R, Deschrevel J, Van Campenhout A, Prinsen S, Gayan-Ramirez G, Maes K, Weide G, Desloovere K, Sampaolesi M, Costamagna D. Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2020;11:945. [PMID: 32848872 DOI: 10.3389/fphys.2020.00945] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Gladman JT, Yadava RS, Mandal M, Yu Q, Kim YK, Mahadevan MS. NKX2-5, a modifier of skeletal muscle pathology due to RNA toxicity. Hum Mol Genet 2015;24:251-64. [PMID: 25168381 DOI: 10.1093/hmg/ddu443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
54 Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT, Chakkalakal JV. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife 2017;6:e26464. [PMID: 28583253 DOI: 10.7554/eLife.26464] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 12.4] [Reference Citation Analysis]
55 Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019;9:18. [PMID: 31217019 DOI: 10.1186/s13395-019-0202-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
56 Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2016;12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
57 Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121508] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Malecova B, Gatto S, Etxaniz U, Passafaro M, Cortez A, Nicoletti C, Giordani L, Torcinaro A, De Bardi M, Bicciato S, De Santa F, Madaro L, Puri PL. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat Commun 2018;9:3670. [PMID: 30202063 DOI: 10.1038/s41467-018-06068-6] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 16.8] [Reference Citation Analysis]
59 Sala D, Sacco A. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care 2016;19:171-6. [PMID: 27023048 DOI: 10.1097/MCO.0000000000000273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 0.5] [Reference Citation Analysis]
60 Pelosi M, De Rossi M, Barberi L, Musarò A. IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. Biomed Res Int. 2014;2014:206026. [PMID: 24967341 DOI: 10.1155/2014/206026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
61 Kritikaki E, Asterling R, Ward L, Padget K, Barreiro E, Simoes DCM. Exercise Training-Induced Extracellular Matrix Protein Adaptation in Locomotor Muscles: A Systematic Review. Cells 2021;10:1022. [PMID: 33926070 DOI: 10.3390/cells10051022] [Reference Citation Analysis]
62 Patel KH, Talovic M, Dunn AJ, Patel A, Vendrell S, Schwartz M, Garg K. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss. J Biomed Mater Res 2020;108:2528-37. [DOI: 10.1002/jbm.b.34584] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
63 Fuoco C, Petrilli LL, Cannata S, Gargioli C. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J Orthop Surg Res 2016;11:86. [PMID: 27460672 DOI: 10.1186/s13018-016-0421-y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
64 Kim E, Wu F, Lim D, Zeuthen C, Zhang Y, Allen J, Muraine L, Trollet C, Vest KE, Choo HJ. Fibroadipogenic Progenitors Regulate the Basal Proliferation of Satellite Cells and Homeostasis of Pharyngeal Muscles via HGF Secretion. Front Cell Dev Biol 2022;10:875209. [DOI: 10.3389/fcell.2022.875209] [Reference Citation Analysis]
65 Virgilio KM, Martin KS, Peirce SM, Blemker SS. Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol (1985) 2018;125:1424-39. [PMID: 30070607 DOI: 10.1152/japplphysiol.00379.2018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
66 Mesquita-Ferrari RA, Alves AN, de Oliveira Cardoso V, Artilheiro PP, Bussadori SK, Rocha LA, Nunes FD, Fernandes KP. Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers Med Sci 2015;30:2209-13. [PMID: 25616713 DOI: 10.1007/s10103-015-1715-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
67 Belikan P, Nauth L, Färber LC, Abel F, Langendorf E, Drees P, Rommens PM, Ritz U, Mattyasovszky SG. Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo. Int J Mol Sci 2020;21:E2112. [PMID: 32204424 DOI: 10.3390/ijms21062112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Kozakowska M, Pietraszek-Gremplewicz K, Ciesla M, Seczynska M, Bronisz-Budzynska I, Podkalicka P, Bukowska-Strakova K, Loboda A, Jozkowicz A, Dulak J. Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. Am J Pathol 2018;188:491-506. [PMID: 29169990 DOI: 10.1016/j.ajpath.2017.10.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
69 Elliott JM, Dayanidhi S, Hazle C, Hoggarth MA, McPherson J, Sparks CL, Weber KA 2nd. Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash? J Orthop Sports Phys Ther 2016;46:862-73. [PMID: 27690836 DOI: 10.2519/jospt.2016.6735] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
70 Tucciarone L, Etxaniz U, Sandoná M, Consalvi S, Puri PL, Saccone V. Advanced Methods to Study the Cross Talk Between Fibro-Adipogenic Progenitors and Muscle Stem Cells. Methods Mol Biol 2018;1687:231-56. [PMID: 29067668 DOI: 10.1007/978-1-4939-7374-3_17] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
71 Guilhot C, Fovet T, Delobel P, Dargegen M, Jasmin BJ, Brioche T, Chopard A, Py G. Severe Muscle Deconditioning Triggers Early Extracellular Matrix Remodeling and Resident Stem Cell Differentiation into Adipocytes in Healthy Men. IJMS 2022;23:5489. [DOI: 10.3390/ijms23105489] [Reference Citation Analysis]
72 Adusei KM, Ngo TB, Sadtler K. T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater 2021;133:17-33. [PMID: 33905946 DOI: 10.1016/j.actbio.2021.04.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
73 Spada F, Fuoco C, Pirrò S, Paoluzi S, Castagnoli L, Gargioli C, Cesareni G. Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. N Biotechnol 2016;33:514-23. [PMID: 26773739 DOI: 10.1016/j.nbt.2015.12.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
74 Su K, Wang Q, Qi L, Hua D, Tao J, Mangan CJ, Lou Y, Li L. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury. Toxicol Lett 2016;258:101-7. [PMID: 27313091 DOI: 10.1016/j.toxlet.2016.06.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
75 Der Vartanian A, Quétin M, Michineau S, Auradé F, Hayashi S, Dubois C, Rocancourt D, Drayton-Libotte B, Szegedi A, Buckingham M, Conway SJ, Gervais M, Relaix F. PAX3 Confers Functional Heterogeneity in Skeletal Muscle Stem Cell Responses to Environmental Stress. Cell Stem Cell 2019;24:958-973.e9. [PMID: 31006622 DOI: 10.1016/j.stem.2019.03.019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
76 Bentzinger CF. Best supporting actors. Science 2019;363:1051. [PMID: 30846594 DOI: 10.1126/science.aaw3613] [Reference Citation Analysis]
77 Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G, Fan Z, Wang T, Planque M, Carmeliet P, Pellerin L, Wolfrum C, Fendt SM, Banfi A, Stockmann C, Soro-Arnáiz I, Kopf M, De Bock K. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metab 2020;31:1136-1153.e7. [PMID: 32492393 DOI: 10.1016/j.cmet.2020.05.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 25.5] [Reference Citation Analysis]
78 Farup J, Madaro L, Puri PL, Mikkelsen UR. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis 2015;6:e1830. [PMID: 26203859 DOI: 10.1038/cddis.2015.198] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 11.0] [Reference Citation Analysis]
79 Madaro L, Passafaro M, Sala D, Etxaniz U, Lugarini F, Proietti D, Alfonsi MV, Nicoletti C, Gatto S, De Bardi M, Rojas-García R, Giordani L, Marinelli S, Pagliarini V, Sette C, Sacco A, Puri PL. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 2018;20:917-27. [PMID: 30050118 DOI: 10.1038/s41556-018-0151-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 18.3] [Reference Citation Analysis]
80 Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019;10:828. [PMID: 31379590 DOI: 10.3389/fphys.2019.00828] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
81 Castagnetti F, Fiacco E, Imbriano C, Latella L. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells. J Vis Exp 2017. [PMID: 28654079 DOI: 10.3791/55908] [Reference Citation Analysis]
82 Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21:854-862. [PMID: 26248268 DOI: 10.1038/nm.3918] [Cited by in Crossref: 229] [Cited by in F6Publishing: 193] [Article Influence: 32.7] [Reference Citation Analysis]
83 Stumm J, Vallecillo-García P, Vom Hofe-Schneider S, Ollitrault D, Schrewe H, Economides AN, Marazzi G, Sassoon DA, Stricker S. Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury. Stem Cell Res 2018;32:8-16. [PMID: 30149291 DOI: 10.1016/j.scr.2018.08.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
84 Sassoli C, Vallone L, Tani A, Chellini F, Nosi D, Zecchi-Orlandini S. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 2018;372:549-70. [PMID: 29404727 DOI: 10.1007/s00441-018-2792-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
85 Müller E, Pröller P, Ferreira-Briza F, Aglas L, Stöggl T. Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Front Physiol 2019;10:35. [PMID: 30745882 DOI: 10.3389/fphys.2019.00035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, Borycki AG. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 2018;9:1075. [PMID: 29540680 DOI: 10.1038/s41467-018-03425-3] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 17.8] [Reference Citation Analysis]
87 Feige P, Brun CE, Ritso M, Rudnicki MA. Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease. Cell Stem Cell 2018;23:653-64. [PMID: 30388423 DOI: 10.1016/j.stem.2018.10.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 27.3] [Reference Citation Analysis]
88 Cerquone Perpetuini A, Re Cecconi AD, Chiappa M, Martinelli GB, Fuoco C, Desiderio G, Castagnoli L, Gargioli C, Piccirillo R, Cesareni G. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. J Cachexia Sarcopenia Muscle 2018;9:727-46. [PMID: 29781585 DOI: 10.1002/jcsm.12303] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
89 Ahrens HE, Huettemeister J, Schmidt M, Kaether C, von Maltzahn J. Klotho expression is a prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skelet Muscle 2018;8:20. [PMID: 29973273 DOI: 10.1186/s13395-018-0166-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
90 Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014;50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
91 Verma M, Murkonda BS, Asakura Y, Asakura A. Skeletal Muscle Tissue Clearing for LacZ and Fluorescent Reporters, and Immunofluorescence Staining. Methods Mol Biol 2016;1460:129-40. [PMID: 27492170 DOI: 10.1007/978-1-4939-3810-0_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
92 Henze H, Jung MJ, Ahrens HE, Steiner S, von Maltzahn J. Skeletal muscle aging – Stem cells in the spotlight. Mechanisms of Ageing and Development 2020;189:111283. [DOI: 10.1016/j.mad.2020.111283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
93 Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells 2019;8:E232. [PMID: 30862132 DOI: 10.3390/cells8030232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
94 Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018;9:1255-68. [PMID: 30499235 DOI: 10.1002/jcsm.12363] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
95 Pirrò S, Spada F, Gadaleta E, Ferrentino F, Thorn GJ, Cesareni G, Chelala C. HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data. J Comput Biol 2020;27:1283-94. [PMID: 31855463 DOI: 10.1089/cmb.2019.0384] [Reference Citation Analysis]
96 Juban G. Transcriptional control of macrophage inflammatory shift during skeletal muscle regeneration. Semin Cell Dev Biol 2021:S1084-9521(21)00162-2. [PMID: 34183241 DOI: 10.1016/j.semcdb.2021.06.011] [Reference Citation Analysis]
97 González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017;7:20. [PMID: 29017538 DOI: 10.1186/s13395-017-0138-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
98 Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering. Biomater Sci 2021;9:4040-53. [PMID: 33899845 DOI: 10.1039/d1bm00147g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020;11:253. [PMID: 32265741 DOI: 10.3389/fphys.2020.00253] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
100 Matheny RW, Carrigan CT, Abdalla MN, Geddis AV, Leandry LA, Aguilar CA, Hobbs SS, Urso ML. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Hormone & IGF Research 2017;32:14-21. [DOI: 10.1016/j.ghir.2016.09.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
101 Besnier M, Gasparino S, Vono R, Sangalli E, Facoetti A, Bollati V, Cantone L, Zaccagnini G, Maimone B, Fuschi P, Da Silva D, Schiavulli M, Aday S, Caputo M, Madeddu P, Emanueli C, Martelli F, Spinetti G. miR-210 Enhances the Therapeutic Potential of Bone-Marrow-Derived Circulating Proangiogenic Cells in the Setting of Limb Ischemia. Mol Ther 2018;26:1694-705. [PMID: 29908843 DOI: 10.1016/j.ymthe.2018.06.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
102 Blanc RS, Kallenbach JG, Bachman JF, Mitchell A, Paris ND, Chakkalakal JV. Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury. Nat Commun 2020;11:4167. [PMID: 32820177 DOI: 10.1038/s41467-020-17620-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
103 Teixeira E, Duarte JA. Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Med 2016;46:783-92. [DOI: 10.1007/s40279-015-0462-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
104 Ceafalan LC, Enciu AM, Fertig TE, Popescu BO, Gherghiceanu M, Hinescu ME, Radu E. Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018;97:442-61. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
105 McKellar DW, Walter LD, Song LT, Mantri M, Wang MFZ, De Vlaminck I, Cosgrove BD. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol 2021;4:1280. [PMID: 34773081 DOI: 10.1038/s42003-021-02810-x] [Reference Citation Analysis]
106 Haroon M, Klein-Nulend J, Bakker AD, Jin J, Seddiqi H, Offringa C, de Wit GMJ, Le Grand F, Giordani L, Liu KJ, Knight RD, Jaspers RT. Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophys J 2021;120:2665-78. [PMID: 34087215 DOI: 10.1016/j.bpj.2021.05.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
107 Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014;6:246. [PMID: 25295003 DOI: 10.3389/fnagi.2014.00246] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
108 Molina T, Fabre P, Dumont NA. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biol 2021;11:210110. [PMID: 34875199 DOI: 10.1098/rsob.210110] [Reference Citation Analysis]
109 De Lisio M, Farup J, Sukiennik RA, Clevenger N, Nallabelli J, Nelson B, Ryan K, Rahbek SK, de Paoli F, Vissing K, Boppart MD. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle. J Appl Physiol (1985) 2015;119:900-7. [PMID: 26205545 DOI: 10.1152/japplphysiol.01112.2014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
110 Oláh G, Szczesny B, Brunyánszki A, López-García IA, Gerö D, Radák Z, Szabo C. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS One 2015;10:e0134227. [PMID: 26218895 DOI: 10.1371/journal.pone.0134227] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
111 Pala F, Di Girolamo D, Mella S, Yennek S, Chatre L, Ricchetti M, Tajbakhsh S. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci 2018;131:jcs212977. [PMID: 30054310 DOI: 10.1242/jcs.212977] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
112 Stanley A, Tichy ED, Kocan J, Roberts DW, Shore EM, Mourkioti F. Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva. NPJ Regen Med 2022;7:5. [PMID: 35031614 DOI: 10.1038/s41536-021-00201-8] [Reference Citation Analysis]
113 Rossin F, Avitabile E, Catarinella G, Fornetti E, Testa S, Oliverio S, Gargioli C, Cannata S, Latella L, Di Sano F. Reticulon-1C Involvement in Muscle Regeneration. Metabolites 2021;11:855. [PMID: 34940613 DOI: 10.3390/metabo11120855] [Reference Citation Analysis]
114 Wang YX, Feige P, Brun CE, Hekmatnejad B, Dumont NA, Renaud JM, Faulkes S, Guindon DE, Rudnicki MA. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell 2019;24:419-432.e6. [PMID: 30713094 DOI: 10.1016/j.stem.2019.01.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 13.0] [Reference Citation Analysis]
115 Hauck JS, Howard ZM, Lowe J, Rastogi N, Pico MG, Swager SA, Petrosino JM, Gomez-Sanchez CE, Gomez-Sanchez EP, Accornero F, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Front Physiol 2019;10:1324. [PMID: 31736768 DOI: 10.3389/fphys.2019.01324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
116 Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019;127:26-36. [PMID: 31128290 DOI: 10.1016/j.bone.2019.05.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
117 Núñez-Álvarez Y, Hurtado E, Muñoz M, García-Tuñon I, Rech GE, Pluvinet R, Sumoy L, Pendás AM, Peinado MA, Suelves M. Loss of HDAC11 accelerates skeletal muscle regeneration in mice. FEBS J 2021;288:1201-23. [PMID: 32602219 DOI: 10.1111/febs.15468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
118 Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018;33:269-82. [PMID: 28986986 DOI: 10.1002/jbmr.3304] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 14.3] [Reference Citation Analysis]
119 Serrano AL, Muñoz-Cánoves P. Mouse Models of Muscle Fibrosis. Methods Mol Biol 2021;2299:357-70. [PMID: 34028754 DOI: 10.1007/978-1-0716-1382-5_24] [Reference Citation Analysis]
120 Haroon M, Bloks NGC, Deldicque L, Koppo K, Seddiqi H, Bakker AD, Klein-Nulend J, Jaspers RT. Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx? Exp Cell Res 2022;:113204. [PMID: 35588795 DOI: 10.1016/j.yexcr.2022.113204] [Reference Citation Analysis]
121 Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 2016;364:647-60. [DOI: 10.1007/s00441-015-2343-0] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 12.8] [Reference Citation Analysis]
122 Jiao Y, Huang B, Chen Y, Hong G, Xu J, Hu C, Wang C. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Int J Mol Sci 2018;19:E271. [PMID: 29337929 DOI: 10.3390/ijms19010271] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
123 O'bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022;4:903992. [DOI: 10.3389/fspor.2022.903992] [Reference Citation Analysis]
124 Basurto IM, Passipieri JA, Gardner GM, Smith KK, Amacher AR, Hansrisuk AI, Christ GJ, Caliari SR. Photoreactive hydrogel stiffness influences volumetric muscle loss repair. Tissue Eng Part A 2021. [PMID: 34409861 DOI: 10.1089/ten.TEA.2021.0137] [Reference Citation Analysis]
125 Lee EJ, Shaikh S, Choi D, Ahmad K, Baig MH, Lim JH, Lee YH, Park SJ, Kim YW, Park SY, Choi I. Transthyretin Maintains Muscle Homeostasis Through the Novel Shuttle Pathway of Thyroid Hormones During Myoblast Differentiation. Cells 2019;8:E1565. [PMID: 31817149 DOI: 10.3390/cells8121565] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
126 Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021;6:17. [PMID: 33772028 DOI: 10.1038/s41536-021-00127-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
127 de la Vega E, González N, Cabezas F, Montecino F, Blanco N, Olguín H. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors. FEBS J 2020;287:4659-77. [PMID: 32115872 DOI: 10.1111/febs.15269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
128 De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019;30:1553-98. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
129 Martin KS, Kegelman CD, Virgilio KM, Passipieri JA, Christ GJ, Blemker SS, Peirce SM. In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Ann Biomed Eng 2017;45:747-60. [PMID: 27718091 DOI: 10.1007/s10439-016-1707-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
130 Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS, Thornton CA, Zheng TS, Mahadevan MS. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 2015;24:2035-48. [PMID: 25504044 DOI: 10.1093/hmg/ddu617] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
131 Aguilar CA, Pop R, Shcherbina A, Watts A, Matheny RW Jr, Cacchiarelli D, Han WM, Shin E, Nakhai SA, Jang YC, Carrigan CT, Gifford CA, Kottke MA, Cesana M, Lee J, Urso ML, Meissner A. Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports 2016;7:983-97. [PMID: 27773702 DOI: 10.1016/j.stemcr.2016.09.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
132 Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021;12:673404. [PMID: 33959042 DOI: 10.3389/fphys.2021.673404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
133 Brown JL, Lawrence MM, Borowik A, Oliver L, Peelor FF 3rd, Van Remmen H, Miller BF. Tumor burden negatively impacts protein turnover as a proteostatic process in noncancerous liver, heart, and muscle, but not brain. J Appl Physiol (1985) 2021;131:72-82. [PMID: 34013745 DOI: 10.1152/japplphysiol.01026.2020] [Reference Citation Analysis]
134 Consalvi S, Saccone V, Mozzetta C. Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy. Epigenomics 2014;6:547-60. [PMID: 25431946 DOI: 10.2217/epi.14.36] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
135 Saclier M, Ben Larbi S, My Ly H, Moulin E, Mounier R, Chazaud B, Juban G. Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in mdx mice. J Cell Sci 2021;134:jcs258429. [PMID: 34471933 DOI: 10.1242/jcs.258429] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
136 Bechshøft CJL, Jensen SM, Schjerling P, Andersen JL, Svensson RB, Eriksen CS, Mkumbuzi NS, Kjaer M, Mackey AL. Age and prior exercise in vivo determine the subsequent in vitro molecular profile of myoblasts and nonmyogenic cells derived from human skeletal muscle. Am J Physiol Cell Physiol 2019;316:C898-912. [PMID: 30917034 DOI: 10.1152/ajpcell.00049.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
137 Juban G. [Targeting macrophages in muscular dystrophies?]. Med Sci (Paris) 2021;37 Hors série n° 1:15-8. [PMID: 34878387 DOI: 10.1051/medsci/2021184] [Reference Citation Analysis]
138 Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021;31. [PMID: 33733717 DOI: 10.4081/ejtm.2021.9743] [Reference Citation Analysis]
139 Saenz-Pipaon G, Martinez-Aguilar E, Orbe J, González Miqueo A, Fernandez-Alonso L, Paramo JA, Roncal C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int J Mol Sci 2021;22:3601. [PMID: 33808453 DOI: 10.3390/ijms22073601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
140 Madaro L, Latella L. Forever young: rejuvenating muscle satellite cells. Front Aging Neurosci 2015;7:37. [PMID: 25954192 DOI: 10.3389/fnagi.2015.00037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
141 Stevens S, Agten A, Timmermans A, Vandenabeele F. Unilateral changes of the multifidus in persons with lumbar disc herniation: a systematic review and meta-analysis. Spine J 2020;20:1573-85. [PMID: 32325246 DOI: 10.1016/j.spinee.2020.04.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
142 Riquelme-Guzmán C, Contreras O, Brandan E. Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis. Am J Physiol Cell Physiol 2018;314:C415-27. [PMID: 29351412 DOI: 10.1152/ajpcell.00013.2017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
143 Feige P, Tsai EC, Rudnicki MA. Analysis of human satellite cell dynamics on cultured adult skeletal muscle myofibers. Skelet Muscle 2021;11:1. [PMID: 33397479 DOI: 10.1186/s13395-020-00256-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
144 De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle 2020;10:19. [PMID: 32624006 DOI: 10.1186/s13395-020-00236-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
145 Sharma P, Ruel TD, Kocha KM, Liao S, Huang P. Single cell dynamics of embryonic muscle progenitor cells in zebrafish. Development 2019;146:dev178400. [PMID: 31253635 DOI: 10.1242/dev.178400] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
146 Song C, Wang J, Ma Y, Yang Z, Dong D, Li H, Yang J, Huang Y, Plath M, Ma Y, Chen H. Linc-smad7 promotes myoblast differentiation and muscle regeneration via sponging miR-125b. Epigenetics 2018;13:591-604. [PMID: 29912619 DOI: 10.1080/15592294.2018.1481705] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
147 Sassoli C, Pierucci F, Zecchi-Orlandini S, Meacci E. Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019;20:E5545. [PMID: 31703256 DOI: 10.3390/ijms20225545] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
148 Petrilli LL, Spada F, Palma A, Reggio A, Rosina M, Gargioli C, Castagnoli L, Fuoco C, Cesareni G. High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells 2020;9:E1723. [PMID: 32708412 DOI: 10.3390/cells9071723] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
149 Girard D, Torossian F, Oberlin E, Alexander KA, Gueguen J, Tseng HW, Genêt F, Lataillade JJ, Salga M, Levesque JP, Le Bousse-Kerdilès MC, Banzet S. Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Front Cell Dev Biol 2021;9:611842. [PMID: 33748104 DOI: 10.3389/fcell.2021.611842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, Papp Z, Dezso B, Pintye E, Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 2017;595:5815-42. [PMID: 28714082 DOI: 10.1113/JP274361] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
151 Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015;5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Cited by in Crossref: 220] [Cited by in F6Publishing: 203] [Article Influence: 36.7] [Reference Citation Analysis]
152 Haas GJ, Dunn AJ, Marcinczyk M, Talovic M, Schwartz M, Scheidt R, Patel AD, Hixon KR, Elmashhady H, McBride-Gagyi SH, Sell SA, Garg K. Biomimetic sponges for regeneration of skeletal muscle following trauma. J Biomed Mater Res A 2019;107:92-103. [PMID: 30394640 DOI: 10.1002/jbm.a.36535] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
153 Venter C, Myburgh KH, Niesler CU. Co-culture of pro-inflammatory macrophages and myofibroblasts: Evaluating morphological phenotypes and screening the effects of signaling pathway inhibitors. Physiol Rep 2021;9:e14704. [PMID: 33463904 DOI: 10.14814/phy2.14704] [Reference Citation Analysis]
154 Saber J, Lin AYT, Rudnicki MA. Single-cell analyses uncover granularity of muscle stem cells. F1000Res 2020;9:F1000 Faculty Rev-31. [PMID: 32025292 DOI: 10.12688/f1000research.20856.1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
155 Lukjanenko L, Jung MJ, Hegde N, Perruisseau-Carrier C, Migliavacca E, Rozo M, Karaz S, Jacot G, Schmidt M, Li L, Metairon S, Raymond F, Lee U, Sizzano F, Wilson DH, Dumont NA, Palini A, Fässler R, Steiner P, Descombes P, Rudnicki MA, Fan CM, von Maltzahn J, Feige JN, Bentzinger CF. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med 2016;22:897-905. [PMID: 27376579 DOI: 10.1038/nm.4126] [Cited by in Crossref: 138] [Cited by in F6Publishing: 116] [Article Influence: 23.0] [Reference Citation Analysis]
156 von Maltzahn J. Regulation of muscle stem cell function. Vitam Horm 2021;116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Reference Citation Analysis]
157 Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 2019;76:2559-70. [PMID: 30976839 DOI: 10.1007/s00018-019-03093-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
158 Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 2015;36:377-93. [PMID: 26728750 DOI: 10.1007/s10974-015-9438-9] [Cited by in Crossref: 130] [Cited by in F6Publishing: 112] [Article Influence: 21.7] [Reference Citation Analysis]
159 Feige P, Rudnicki MA. Isolation of satellite cells and transplantation into mice for lineage tracing in muscle. Nat Protoc 2020;15:1082-97. [PMID: 31965111 DOI: 10.1038/s41596-019-0278-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
160 Papah MB, Brannick EM, Schmidt CJ, Abasht B. Evidence and role of phlebitis and lipid infiltration in the onset and pathogenesis of Wooden Breast Disease in modern broiler chickens. Avian Pathology 2017;46:623-43. [DOI: 10.1080/03079457.2017.1339346] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 11.6] [Reference Citation Analysis]
161 Lee U, Stuelsatz P, Karaz S, Mckellar DW, Russeil J, Deak M, De Vlaminck I, Lepper C, Deplancke B, Cosgrove BD, Feige JN. A Tead1-Apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle. iScience 2022;25:104589. [DOI: 10.1016/j.isci.2022.104589] [Reference Citation Analysis]
162 Duchesne E, Dufresne SS, Dumont NA. Impact of Inflammation and Anti-inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Physical Therapy 2017;97:807-17. [DOI: 10.1093/ptj/pzx056] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
163 Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J Cell Commun Signal 2020;14:147-58. [PMID: 32088838 DOI: 10.1007/s12079-020-00553-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
164 Gutiérrez J, Gonzalez D, Escalona-Rivano R, Takahashi C, Brandan E. Reduced RECK levels accelerate skeletal muscle differentiation, improve muscle regeneration, and decrease fibrosis. FASEB J 2021;35:e21503. [PMID: 33811686 DOI: 10.1096/fj.202001646RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Dammone G, Karaz S, Lukjanenko L, Winkler C, Sizzano F, Jacot G, Migliavacca E, Palini A, Desvergne B, Gilardi F, Feige JN. PPARγ Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration. Int J Mol Sci 2018;19:E2044. [PMID: 30011852 DOI: 10.3390/ijms19072044] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
166 Ness KK, DeLany JP, Kaste SC, Mulrooney DA, Pui CH, Chemaitilly W, Karlage RE, Lanctot JQ, Howell CR, Lu L, Srivastava DK, Robison LL, Hudson MM. Energy balance and fitness in adult survivors of childhood acute lymphoblastic leukemia. Blood 2015;125:3411-9. [PMID: 25814529 DOI: 10.1182/blood-2015-01-621680] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
167 Moyle LA, Cheng RY, Liu H, Davoudi S, Ferreira SA, Nissar AA, Sun Y, Gentleman E, Simmons CA, Gilbert PM. Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions. Mol Biol Cell 2020;31:1703-13. [PMID: 32491970 DOI: 10.1091/mbc.E20-01-0078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
168 Manetti M, Tani A, Rosa I, Chellini F, Squecco R, Idrizaj E, Zecchi-Orlandini S, Ibba-Manneschi L, Sassoli C. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Sci Rep 2019;9:14515. [PMID: 31601891 DOI: 10.1038/s41598-019-51078-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
169 Collao N, Farup J, De Lisio M. Role of Metabolic Stress and Exercise in Regulating Fibro/Adipogenic Progenitors. Front Cell Dev Biol 2020;8:9. [PMID: 32047748 DOI: 10.3389/fcell.2020.00009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
170 Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022;13:835099. [DOI: 10.3389/fgene.2022.835099] [Reference Citation Analysis]
171 Ziemkiewicz N, Talovic M, Madsen J, Hill L, Scheidt R, Patel A, Haas G, Marcinczyk M, Zustiak SP, Garg K. Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro. Biomed Mater 2018;13:065007. [PMID: 30089708 DOI: 10.1088/1748-605X/aad915] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
172 Quarta M, Cromie M, Chacon R, Blonigan J, Garcia V, Akimenko I, Hamer M, Paine P, Stok M, Shrager JB, Rando TA. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun 2017;8:15613. [PMID: 28631758 DOI: 10.1038/ncomms15613] [Cited by in Crossref: 117] [Cited by in F6Publishing: 107] [Article Influence: 23.4] [Reference Citation Analysis]
173 Suhr F. Detection of fusion events in Mammalian skeletal muscle. Methods Mol Biol 2015;1313:115-29. [PMID: 25947660 DOI: 10.1007/978-1-4939-2703-6_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
174 Jakobsen JR, Jakobsen NR, Mackey AL, Knudsen AB, Hannibal J, Koch M, Kjaer M, Krogsgaard MR. Adipocytes are present at human and murine myotendinous junctions. Transl Sports Med 2021;4:223-30. [DOI: 10.1002/tsm2.212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Chang H, Hwang S, Lim S, Eo S, Minn KW, Hong KY. Long-term Fate of Denervated Skeletal Muscle After Microvascular Flap Transfer. Annals of Plastic Surgery 2018;80:644-7. [DOI: 10.1097/sap.0000000000001397] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
176 Yadava RS, Mandal M, Giese JM, Rigo F, Bennett CF, Mahadevan MS. Modeling muscle regeneration in RNA toxicity mice. Hum Mol Genet 2021;30:1111-30. [PMID: 33864373 DOI: 10.1093/hmg/ddab108] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
177 Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, D'Amico A, Bertini E, Cecconi F, Puri PL, Latella L. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 2016;23:1839-49. [PMID: 27447110 DOI: 10.1038/cdd.2016.70] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 10.0] [Reference Citation Analysis]
178 Riuzzi F, Beccafico S, Sagheddu R, Chiappalupi S, Giambanco I, Bereshchenko O, Riccardi C, Sorci G, Donato R. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Sci Rep 2017;7:12537. [PMID: 28970581 DOI: 10.1038/s41598-017-12880-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
179 Chaturvedi V, Naskar D, Kinnear BF, Grenik E, Dye DE, Grounds MD, Kundu SC, Coombe DR. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. J Tissue Eng Regen Med 2017;11:3178-92. [PMID: 27878977 DOI: 10.1002/term.2227] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
180 Zhou M, Li B, Liu C, Hu M, Tang J, Min J, Cheng J, Hong L. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol 2021;101:108223. [PMID: 34634686 DOI: 10.1016/j.intimp.2021.108223] [Reference Citation Analysis]
181 Nelissen JL, Sinkus R, Nicolay K, Nederveen AJ, Oomens CWJ, Strijkers GJ. Magnetic resonance elastography of skeletal muscle deep tissue injury. NMR Biomed 2019;32:e4087. [PMID: 30897280 DOI: 10.1002/nbm.4087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
182 Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021;11:16. [PMID: 34210364 DOI: 10.1186/s13395-021-00265-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Chellini F, Tani A, Zecchi-Orlandini S, Sassoli C. Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration. Int J Mol Sci 2019;20:E683. [PMID: 30764506 DOI: 10.3390/ijms20030683] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
184 Cappato S, Tonachini L, Giacopelli F, Tirone M, Galietta LJ, Sormani M, Giovenzana A, Spinelli AE, Canciani B, Brunelli S, Ravazzolo R, Bocciardi R. High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva. Dis Model Mech 2016;9:685-96. [PMID: 27125279 DOI: 10.1242/dmm.023929] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
185 Singh P, Chazaud B. Benefits and pathologies associated with the inflammatory response. Exp Cell Res 2021;409:112905. [PMID: 34736921 DOI: 10.1016/j.yexcr.2021.112905] [Reference Citation Analysis]
186 Gallardo FS, Córdova-Casanova A, Brandan E. The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin-lysophosphatidic acid as a new therapeutic target? J Cell Commun Signal 2021;15:317-34. [PMID: 33689121 DOI: 10.1007/s12079-021-00610-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
187 Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, Ruf-Zamojski F, Nair VD, Wang X, Zhou L, Zaslavsky E, Trappe TA, Trappe S, Sealfon SC. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020;10:229. [PMID: 31937892 DOI: 10.1038/s41598-019-57110-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 21.0] [Reference Citation Analysis]
188 Ueta CB, Gomes KS, Ribeiro MA, Mochly-Rosen D, Ferreira JC. Disruption of mitochondrial quality control in peripheral artery disease: New therapeutic opportunities. Pharmacol Res 2017;115:96-106. [PMID: 27876411 DOI: 10.1016/j.phrs.2016.11.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
189 Sun KT, Cheung KK, Au SWN, Yeung SS, Yeung EW. Overexpression of Mechano-Growth Factor Modulates Inflammatory Cytokine Expression and Macrophage Resolution in Skeletal Muscle Injury. Front Physiol 2018;9:999. [PMID: 30140235 DOI: 10.3389/fphys.2018.00999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
190 Wei X, Nicoletti C, Puri PL. Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Semin Cell Dev Biol 2021:S1084-9521(21)00200-7. [PMID: 34332886 DOI: 10.1016/j.semcdb.2021.07.013] [Reference Citation Analysis]
191 Verma M, Asakura Y, Murakonda BSR, Pengo T, Latroche C, Chazaud B, McLoon LK, Asakura A. Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch Signaling. Cell Stem Cell 2018; 23: 530-543. e9. [PMID: 30290177 DOI: 10.1016/j.stem.2018.09.007] [Cited by in Crossref: 90] [Cited by in F6Publishing: 86] [Article Influence: 30.0] [Reference Citation Analysis]
192 Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology (Bethesda) 2015;30:417-27. [PMID: 26525341 DOI: 10.1152/physiol.00026.2015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
193 Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev. 2019;28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
194 Koike TE, Dell Aquila RA, Silva KS, Aoki MS, Miyabara EH. Glutamine supplementation improves contractile function of regenerating soleus muscles from rats. J Muscle Res Cell Motil 2022. [PMID: 35201551 DOI: 10.1007/s10974-022-09615-3] [Reference Citation Analysis]
195 Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K. The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Engineering Part A 2019;25:1001-12. [DOI: 10.1089/ten.tea.2018.0200] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
196 Dufresne SS, Frenette J, Dumont NA. [Inflammation and muscle regeneration, a double-edged sword]. Med Sci (Paris) 2016;32:591-7. [PMID: 27406769 DOI: 10.1051/medsci/20163206022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]