BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dougherty PG, Sahni A, Pei D. Understanding Cell Penetration of Cyclic Peptides. Chem Rev 2019;119:10241-87. [PMID: 31083977 DOI: 10.1021/acs.chemrev.9b00008] [Cited by in Crossref: 123] [Cited by in F6Publishing: 103] [Article Influence: 41.0] [Reference Citation Analysis]
Number Citing Articles
1 Song J, Qian Z, Sahni A, Chen K, Pei D. Cyclic Cell-Penetrating Peptides with Single Hydrophobic Groups. Chembiochem 2019;20:2085-8. [PMID: 31298779 DOI: 10.1002/cbic.201900370] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
2 Sindhikara D, Wagner M, Gkeka P, Güssregen S, Tiwari G, Hessler G, Yapici E, Li Z, Evers A. Automated Design of Macrocycles for Therapeutic Applications: From Small Molecules to Peptides and Proteins. J Med Chem 2020;63:12100-15. [PMID: 33017535 DOI: 10.1021/acs.jmedchem.0c01500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Jiang Y, Liu S, Tian G, Cheung HJH, Li X, Li XD. Concise solid-phase synthesis enables derivatisation of YEATS domain cyclopeptide inhibitors for improved cellular uptake. Bioorg Med Chem 2021;45:116342. [PMID: 34364221 DOI: 10.1016/j.bmc.2021.116342] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine SNAr Reaction. Org Lett 2022. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Reference Citation Analysis]
6 Du S, Liew SS, Zhang CW, Du W, Lang W, Yao CCY, Li L, Ge J, Yao SQ. Cell-Permeant Bioadaptors for Cytosolic Delivery of Native Antibodies: A "Mix-and-Go" Approach. ACS Cent Sci 2020;6:2362-76. [PMID: 33376798 DOI: 10.1021/acscentsci.0c01379] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
7 Hu Y, Li H, Qu R, He T, Tang X, Chen W, Li L, Bai H, Li C, Wang W, Fu G, Luo G, Xia X, Zhang J. Lysine Stapling Screening Provides Stable and Low Toxic Cationic Antimicrobial Peptides Combating Multidrug-Resistant Bacteria In Vitro and In Vivo. J Med Chem 2021. [PMID: 34968054 DOI: 10.1021/acs.jmedchem.1c01754] [Reference Citation Analysis]
8 Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021;20:1497-545. [PMID: 34705261 DOI: 10.1007/s43630-021-00102-1] [Reference Citation Analysis]
9 Zhou Y, Zou Y, Yang M, Mei S, Liu X, Han H, Zhang CD, Niu MM. Highly Potent, Selective, Biostable, and Cell-Permeable Cyclic d-Peptide for Dual-Targeting Therapy of Lung Cancer. J Am Chem Soc 2022. [PMID: 35417174 DOI: 10.1021/jacs.1c12075] [Reference Citation Analysis]
10 Brožek R, Kabelka I, Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J Phys Chem B 2020;124:5940-7. [PMID: 32603116 DOI: 10.1021/acs.jpcb.0c03291] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, Vácha R. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife 2020;9:e47946. [PMID: 32167466 DOI: 10.7554/eLife.47946] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Ge Y, Zhang S, Erdelyi M, Voelz VA. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2. J Chem Inf Model 2021;61:2353-67. [PMID: 33905247 DOI: 10.1021/acs.jcim.1c00029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X. Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today 2020;35:101006. [DOI: 10.1016/j.nantod.2020.101006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Passioura T. The Road Ahead for the Development of Macrocyclic Peptide Ligands. Biochemistry 2020;59:139-45. [PMID: 31592645 DOI: 10.1021/acs.biochem.9b00802] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
15 Furukawa A, Schwochert J, Pye CR, Asano D, Edmondson QD, Turmon AC, Klein VG, Ono S, Okada O, Lokey RS. Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity. Angew Chem Int Ed Engl 2020;59:21571-7. [PMID: 32789999 DOI: 10.1002/anie.202004550] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
16 Salim H, Song J, Sahni A, Pei D. Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1-Nrf2 Interaction. J Org Chem 2020;85:1416-24. [PMID: 31609620 DOI: 10.1021/acs.joc.9b02367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Ciobanasu C. Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 2021;:1-17. [PMID: 33775187 DOI: 10.1080/1061186X.2021.1906885] [Reference Citation Analysis]
18 Digiesi V, de la Oliva Roque V, Vallaro M, Caron G, Ermondi G. Permeability prediction in the beyond-Rule-of 5 chemical space: Focus on cyclic hexapeptides. Eur J Pharm Biopharm 2021;165:259-70. [PMID: 34038796 DOI: 10.1016/j.ejpb.2021.05.017] [Reference Citation Analysis]
19 Wen J, Liao H, Stachowski K, Hempfling JP, Qian Z, Yuan C, Foster MP, Pei D. Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif. Bioorg Med Chem 2020;28:115711. [PMID: 33069067 DOI: 10.1016/j.bmc.2020.115711] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020;13:E140. [PMID: 32629797 DOI: 10.3390/ph13070140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Lohman R, Nielsen DS, Kok WM, Hoang HN, Hill TA, Fairlie DP. Mirror image pairs of cyclic hexapeptides have different oral bioavailabilities and metabolic stabilities. Chem Commun 2019;55:13362-5. [DOI: 10.1039/c9cc06234c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
22 Sengupta S, Mehta G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org Biomol Chem 2020;18:1851-76. [PMID: 32101232 DOI: 10.1039/c9ob02765c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 9.5] [Reference Citation Analysis]
23 Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021;27:69-88. [PMID: 32914455 DOI: 10.1002/chem.202003779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022;:102107. [PMID: 35671825 DOI: 10.1016/j.jbc.2022.102107] [Reference Citation Analysis]
25 Tietz O, Cortezon-Tamarit F, Chalk R, Able S, Vallis KA. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat Chem 2022. [PMID: 35145246 DOI: 10.1038/s41557-021-00866-0] [Reference Citation Analysis]
26 Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon MH, Hong S, Lund R, Jenssen H, Shin SY, Seo J. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. ACS Infect Dis 2020;6:2732-44. [PMID: 32865961 DOI: 10.1021/acsinfecdis.0c00356] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
27 Kitagawa H, Kikuchi M, Sato S, Watanabe H, Umezawa N, Kato M, Hisamatsu Y, Umehara T, Higuchi T. Structure-Based Identification of Potent Lysine-Specific Demethylase 1 Inhibitor Peptides and Temporary Cyclization to Enhance Proteolytic Stability and Cell Growth-Inhibitory Activity. J Med Chem 2021;64:3707-19. [PMID: 33754721 DOI: 10.1021/acs.jmedchem.0c01371] [Reference Citation Analysis]
28 Tang R, Song Y, Shi M, Jiang Z, Zhang L, Xiao Y, Tian Y, Zhou S. Rational Design of a Dual-Targeting Natural Toxin-Like Bicyclic Peptide for Selective Bioenergetic Blockage in Cancer Cells. Bioconjug Chem 2021;32:2173-83. [PMID: 34606715 DOI: 10.1021/acs.bioconjchem.1c00366] [Reference Citation Analysis]
29 Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021;64:2064-76. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021;60:6653-9. [PMID: 33319463 DOI: 10.1002/anie.202015203] [Reference Citation Analysis]
31 Tian Y, Zhou S. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1668. [PMID: 32929866 DOI: 10.1002/wnan.1668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
32 Díaz N, Suárez D. Understanding the Conformational Properties of Fluorinated Polypeptides: Molecular Modelling of Unguisin A. J Chem Inf Model 2021;61:223-37. [PMID: 33325701 DOI: 10.1021/acs.jcim.0c00746] [Reference Citation Analysis]
33 Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2020;40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
34 Sohrabi C, Foster A, Tavassoli A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020;4:90-101. [DOI: 10.1038/s41570-019-0159-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 20.0] [Reference Citation Analysis]
35 Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021;16:1696-715. [PMID: 33615736 DOI: 10.1002/cmdc.202100039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021. [PMID: 33599316 DOI: 10.1002/med.21792] [Reference Citation Analysis]
37 Hu QL, Hou KQ, Li J, Ge Y, Song ZD, Chan ASC, Xiong XF. Silanol: a bifunctional group for peptide synthesis and late-stage functionalization. Chem Sci 2020;11:6070-4. [PMID: 34094099 DOI: 10.1039/d0sc02439b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
38 Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020;8:405. [PMID: 32509731 DOI: 10.3389/fchem.2020.00405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. Adv Funct Mater 2020;30:1910566. [DOI: 10.1002/adfm.201910566] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 23.5] [Reference Citation Analysis]
40 Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem . [DOI: 10.1021/acs.jmedchem.1c01456] [Reference Citation Analysis]
41 Matijass M, Neundorf I. Cell-penetrating peptides as part of therapeutics used in cancer research. Medicine in Drug Discovery 2021;10:100092. [DOI: 10.1016/j.medidd.2021.100092] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Mientkiewicz KM, Peraro L, Kritzer JA. Parallel Screening Using the Chloroalkane Penetration Assay Reveals Structure-Penetration Relationships. ACS Chem Biol 2021;16:1184-90. [PMID: 34224243 DOI: 10.1021/acschembio.1c00434] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2021:S0165-6147(21)00225-X. [PMID: 34911657 DOI: 10.1016/j.tips.2021.11.008] [Reference Citation Analysis]
44 Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020;63:13355-88. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Peptide Science. [DOI: 10.1002/pep2.24233] [Reference Citation Analysis]
46 Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020;120:9743-89. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
47 Taguchi S, Suga H. Targeting of extracellular protein-protein interactions with macrocyclic peptides. Curr Opin Chem Biol 2021;62:82-9. [PMID: 33774472 DOI: 10.1016/j.cbpa.2021.02.013] [Reference Citation Analysis]
48 Serra G, Posada L, Hojo H. On-resin synthesis of cyclic peptides via tandem N -to- S acyl migration and intramolecular thiol additive-free native chemical ligation. Chem Commun 2020;56:956-9. [DOI: 10.1039/c9cc07783a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Franco HEO, Chaloux BT, Hartman MCT. Spontaneous, co-translational peptide macrocyclization using p-cyanoacetylene-phenylalanine. Chem Commun (Camb) 2022;58:6737-40. [PMID: 35607950 DOI: 10.1039/d2cc01148d] [Reference Citation Analysis]
50 Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021;12:5977-93. [PMID: 33995995 DOI: 10.1039/d1sc00165e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
51 Sahni A, Pei D. Bacterial Toxins Escape the Endosome by Inducing Vesicle Budding and Collapse. ACS Chem Biol 2021;16:2415-22. [PMID: 34553899 DOI: 10.1021/acschembio.1c00540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Zhao Y, Gao L, Lu H, Li X, Tu Y, Chang T. The non-free draining effect for small cyclics in solution. Polymer 2021;213:123202. [DOI: 10.1016/j.polymer.2020.123202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Moritsugu K, Takeuchi K, Kamiya N, Higo J, Yasumatsu I, Fukunishi Y, Fukuda I. Flexibility and Cell Permeability of Cyclic Ras-Inhibitor Peptides Revealed by the Coupled Nosé-Hoover Equation. J Chem Inf Model 2021;61:1921-30. [PMID: 33835817 DOI: 10.1021/acs.jcim.0c01427] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Mandal S, Mann G, Satish G, Brik A. Enhanced Live-Cell Delivery of Synthetic Proteins Assisted by Cell-Penetrating Peptides Fused to DABCYL. Angew Chem Int Ed Engl 2021;60:7333-43. [PMID: 33615660 DOI: 10.1002/anie.202016208] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
55 Yin H, Huang YH, Deprey K, Condon ND, Kritzer JA, Craik DJ, Wang CK. Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chem Biol 2020;15:1650-61. [PMID: 32315152 DOI: 10.1021/acschembio.0c00297] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
56 Kandler R, Das S, Nag A. Copper-ligand clusters dictate size of cyclized peptide formed during alkyne-azide cycloaddition on solid support. RSC Adv 2021;11:4842-52. [PMID: 34377440 DOI: 10.1039/D0RA07491H] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Illa O, Ospina J, Sánchez-Aparicio JE, Pulido X, Abengozar MÁ, Gaztelumendi N, Carbajo D, Nogués C, Rivas L, Maréchal JD, Royo M, Ortuño RM. Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability. Int J Mol Sci 2021;22:5092. [PMID: 34065025 DOI: 10.3390/ijms22105092] [Reference Citation Analysis]
58 Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021;50:9055-103. [PMID: 34165126 DOI: 10.1039/d1cs00160d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Malik NUA, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides 2021;141:170542. [PMID: 33794283 DOI: 10.1016/j.peptides.2021.170542] [Reference Citation Analysis]
60 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Reference Citation Analysis]
61 Kumar S, Mandal D, El-Mowafi SA, Mozaffari S, Tiwari RK, Parang K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020;12:E842. [PMID: 32899170 DOI: 10.3390/pharmaceutics12090842] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
62 Faugeras V, Duclos O, Bazile D, Thiam AR. Impact of Cyclization and Methylation on Peptide Penetration through Droplet Interface Bilayers. Langmuir 2022. [PMID: 35452243 DOI: 10.1021/acs.langmuir.2c00269] [Reference Citation Analysis]
63 Gray JP, Uddin MN, Chaudhari R, Sutton MN, Yang H, Rask P, Locke H, Engel BJ, Batistatou N, Wang J, Grindel BJ, Bhattacharya P, Gammon ST, Zhang S, Piwnica-Worms D, Kritzer JA, Lu Z, Bast RC Jr, Millward SW. Directed evolution of cyclic peptides for inhibition of autophagy. Chem Sci 2021;12:3526-43. [PMID: 34163626 DOI: 10.1039/d0sc03603j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Ueda H, Hirakawa Y, Tanaka H, Miyano T, Sugita K. Applicability of an Experimental Grade of Hydroxypropyl Methylcellulose Acetate Succinate as a Carrier for Formation of Solid Dispersion with Indomethacin. Pharmaceutics 2021;13:353. [PMID: 33800229 DOI: 10.3390/pharmaceutics13030353] [Reference Citation Analysis]
65 Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021;9:659845. [PMID: 33996753 DOI: 10.3389/fchem.2021.659845] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021;40:819-35. [PMID: 34499267 DOI: 10.1007/s10555-021-09990-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zheng Q, Qin F, Luo R, Jin C, Huang H, Xi H, Xiao W, Guo M, Yang S, He S, Cheng L, Fan N, Yao S, Song X. mRNA‐Loaded Lipid‐Like Nanoparticles for Liver Base Editing Via the Optimization of Central Composite Design. Adv Funct Materials 2021;31:2011068. [DOI: 10.1002/adfm.202011068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Exner RM, Paisey SJ, Redman JE, Pascu SI. Explorations into Peptide Nucleic Acid Contrast Agents as Emerging Scaffolds for Breakthrough Solutions in Medical Imaging and Diagnosis. ACS Omega 2021;6:28455-62. [PMID: 34746541 DOI: 10.1021/acsomega.1c03994] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Park SE, El-Sayed NS, Shamloo K, Lohan S, Kumar S, Sajid MI, Tiwari RK. Targeted Delivery of Cabazitaxel Using Cyclic Cell-Penetrating Peptide and Biomarkers of Extracellular Matrix for Prostate and Breast Cancer Therapy. Bioconjug Chem 2021. [PMID: 34309357 DOI: 10.1021/acs.bioconjchem.1c00319] [Reference Citation Analysis]
70 Kreutzer AG, Krumberger M, Diessner EM, Parrocha CMT, Morris MA, Guaglianone G, Butts CT, Nowick JS. A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Eur J Med Chem 2021;221:113530. [PMID: 34023738 DOI: 10.1016/j.ejmech.2021.113530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021;13:2065. [PMID: 34959346 DOI: 10.3390/pharmaceutics13122065] [Reference Citation Analysis]
72 Sahni A, Qian Z, Pei D. Cell-Penetrating Peptides Escape the Endosome by Inducing Vesicle Budding and Collapse. ACS Chem Biol 2020;15:2485-92. [PMID: 32786250 DOI: 10.1021/acschembio.0c00478] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
73 Ernenwein D, St. John SE, Stewart AJ, Morimoto BH, Chmielewski J, Lipton MA. Structural studies and cyclization of the neuroprotective octapeptide NAPVSIPQ to improve cell permeability. Peptide Science 2020;112. [DOI: 10.1002/pep2.24179] [Reference Citation Analysis]
74 Jurak M, Szafran K, Cea P, Martín S. Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films. Langmuir 2021;37:5601-16. [PMID: 33915045 DOI: 10.1021/acs.langmuir.1c00434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2020;59:270-84. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
76 González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021;26:445. [PMID: 33467010 DOI: 10.3390/molecules26020445] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
77 Park SE, Sajid MI, Parang K, Tiwari RK. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools. Mol Pharm 2019;16:3727-43. [PMID: 31329448 DOI: 10.1021/acs.molpharmaceut.9b00633] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
78 Sugita M, Sugiyama S, Fujie T, Yoshikawa Y, Yanagisawa K, Ohue M, Akiyama Y. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. J Chem Inf Model 2021;61:3681-95. [PMID: 34236179 DOI: 10.1021/acs.jcim.1c00380] [Reference Citation Analysis]
79 Hosono Y, Morimoto J, Sando S. A comprehensive study on the effect of backbone stereochemistry of a cyclic hexapeptide on membrane permeability and microsomal stability. Org Biomol Chem 2021;19:10326-31. [PMID: 34821247 DOI: 10.1039/d1ob02090k] [Reference Citation Analysis]
80 Pace JR, Lampkin BJ, Abakah C, Moyer A, Miao J, Deprey K, Cerulli RA, Lin YS, Baleja JD, Baker D, Kritzer JA. Stapled β-Hairpins Featuring 4-Mercaptoproline. J Am Chem Soc 2021;143:15039-44. [PMID: 34516087 DOI: 10.1021/jacs.1c04378] [Reference Citation Analysis]
81 Dard C, Leforestier B, Francisco Hilário F, Traoré MDM, Lespinasse MA, Pérès B, Molina MC, Pereira de Freitas R, Milet A, Maubon D, Wong YS. Crossing of the Cystic Barriers of Toxoplasma gondii by the Fluorescent Coumarin Tetra-Cyclopeptide. Molecules 2021;26:7506. [PMID: 34946588 DOI: 10.3390/molecules26247506] [Reference Citation Analysis]
82 Li H, Chao J, Zhang Z, Tian G, Li J, Chang N, Qin C. Liquid-Phase Total Synthesis of Plecanatide Aided by Diphenylphosphinyloxyl Diphenyl Ketone (DDK) Derivatives. Org Lett 2020;22:3323-8. [PMID: 32275447 DOI: 10.1021/acs.orglett.0c00616] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
83 Zhang S, Krumberger M, Morris MA, Parrocha CMT, Kreutzer AG, Nowick JS. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. Eur J Med Chem 2021;218:113390. [PMID: 33812315 DOI: 10.1016/j.ejmech.2021.113390] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
84 Deprey K, Kritzer JA. Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay. Methods Enzymol 2020;641:277-309. [PMID: 32713526 DOI: 10.1016/bs.mie.2020.03.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
85 Ping Y. Peptides as molecular Trojan horses. Nat Chem 2022. [PMID: 35228689 DOI: 10.1038/s41557-022-00906-3] [Reference Citation Analysis]
86 Li H, Li J, Chao J, Zhang Z, Qin C. Head-to-tail cyclization for the synthesis of naturally occurring cyclic peptides on organophosphorus small-molecular supports. Org Chem Front . [DOI: 10.1039/d1qo01362a] [Reference Citation Analysis]
87 Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020;11:697. [PMID: 32508641 DOI: 10.3389/fphar.2020.00697] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 21.5] [Reference Citation Analysis]
88 Cipcigan F, Smith P, Crain J, Hogner A, De Maria L, Llinas A, Ratkova E. Membrane Permeability in Cyclic Peptides is Modulated by Core Conformations. J Chem Inf Model 2021;61:263-9. [PMID: 33350828 DOI: 10.1021/acs.jcim.0c00803] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Kondow-McConaghy HM, Muthukrishnan N, Erazo-Oliveras A, Najjar K, Juliano RL, Pellois JP. Impact of the Endosomal Escape Activity of Cell-Penetrating Peptides on the Endocytic Pathway. ACS Chem Biol 2020;15:2355-63. [PMID: 32786263 DOI: 10.1021/acschembio.0c00319] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
90 Sturm S, Dowle A, Audsley N, Isaac RE. Mass spectrometric characterisation of the major peptides of the male ejaculatory duct, including a glycopeptide with an unusual zwitterionic glycosylation. J Proteomics 2021;246:104307. [PMID: 34174476 DOI: 10.1016/j.jprot.2021.104307] [Reference Citation Analysis]
91 Raju M, Kavarthapu R, Anbazhagan R, Hassan SA, Dufau ML. Blockade of GRTH/DDX25 Phosphorylation by Cyclic Peptides Provides an Avenue for Developing a Nonhormonal Male Contraceptive. J Med Chem 2021;64:14715-27. [PMID: 34601876 DOI: 10.1021/acs.jmedchem.1c01201] [Reference Citation Analysis]
92 Bowen J, Schloop AE, Reeves GT, Menegatti S, Rao BM. Discovery of Membrane-Permeating Cyclic Peptides via mRNA Display. Bioconjugate Chem 2020;31:2325-38. [DOI: 10.1021/acs.bioconjchem.0c00413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Mohammed EHM, Mandal D, Mozaffari S, Abdel-Hamied Zahran M, Mostafa Osman A, Kumar Tiwari R, Parang K. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization. Molecules 2020;25:E2581. [PMID: 32498339 DOI: 10.3390/molecules25112581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Sang P, Shi Y, Lu J, Chen L, Yang L, Borcherds W, Abdulkadir S, Li Q, Daughdrill G, Chen J, Cai J. α-Helix-Mimicking Sulfono-γ-AApeptide Inhibitors for p53-MDM2/MDMX Protein-Protein Interactions. J Med Chem 2020;63:975-86. [PMID: 31971801 DOI: 10.1021/acs.jmedchem.9b00993] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
95 Xiao Q, Du W, Dong X, Du S, Ong SY, Tang G, Zhang C, Yang F, Li L, Gao L, Yao SQ. Cell-Penetrating Mitochondrion-Targeting Ligands for the Universal Delivery of Small Molecules, Proteins and Nanomaterials. Chemistry 2021;27:12207-14. [PMID: 34115398 DOI: 10.1002/chem.202101989] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Craik DJ, Kan MW. How can we improve peptide drug discovery? Learning from the past. Expert Opin Drug Discov 2021;:1-4. [PMID: 34344242 DOI: 10.1080/17460441.2021.1961740] [Reference Citation Analysis]
97 Wang H, Shan X, Ren M, Shang M, Zhou C. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Res 2021;49:12306-19. [PMID: 34865123 DOI: 10.1093/nar/gkab1121] [Reference Citation Analysis]
98 Herlan CN, Meschkov A, Schepers U, Bräse S. Cyclic Peptoid-Peptide Hybrids as Versatile Molecular Transporters. Front Chem 2021;9:696957. [PMID: 34249865 DOI: 10.3389/fchem.2021.696957] [Reference Citation Analysis]
99 Cieślak M, Ryszawy D, Pudełek M, Urbanowicz M, Morawiak M, Staszewska-Krajewska O, Czyż J, Urbańczyk-Lipkowska Z. Bioinspired Bola-Type Peptide Dendrimers Inhibit Proliferation and Invasiveness of Glioblastoma Cells in a Manner Dependent on Their Structure and Amphipathic Properties. Pharmaceutics 2020;12:E1106. [PMID: 33217976 DOI: 10.3390/pharmaceutics12111106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Taechalertpaisarn J, Ono S, Okada O, Johnstone TC, Lokey RS. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. J Med Chem 2022. [PMID: 35275623 DOI: 10.1021/acs.jmedchem.2c00010] [Reference Citation Analysis]
101 Takada H, Tsuchiya K, Demizu Y. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity. Bioconjug Chem 2022. [PMID: 35737901 DOI: 10.1021/acs.bioconjchem.2c00199] [Reference Citation Analysis]
102 Wang S, König G, Roth HJ, Fouché M, Rodde S, Riniker S. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. J Med Chem 2021;64:12761-73. [PMID: 34406766 DOI: 10.1021/acs.jmedchem.1c00775] [Reference Citation Analysis]
103 Gomes Dos Reis L, Traini D. Advances in the use of cell penetrating peptides for respiratory drug delivery. Expert Opin Drug Deliv 2020;17:647-64. [PMID: 32138567 DOI: 10.1080/17425247.2020.1739646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
104 Caron G, Kihlberg J, Goetz G, Ratkova E, Poongavanam V, Ermondi G. Steering New Drug Discovery Campaigns: Permeability, Solubility, and Physicochemical Properties in the bRo5 Chemical Space. ACS Med Chem Lett 2021;12:13-23. [PMID: 33488959 DOI: 10.1021/acsmedchemlett.0c00581] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
105 Tu Y, Xia W, Wu X, Wang L. A lysosome-targeted near-infrared photosensitizer for photodynamic therapy and two-photon fluorescence imaging. Org Biomol Chem 2021;19:6098-107. [PMID: 34160527 DOI: 10.1039/d1ob00684c] [Reference Citation Analysis]
106 Zhao L, Yang H, Jiang C, Kan Y, Hu J, Pang W. Studies on the oral absorption of cyclic peptides from Pseudostellaria heterophylla and interacting with membrane receptors. Fitoterapia 2021;:105072. [PMID: 34728327 DOI: 10.1016/j.fitote.2021.105072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Moorthy H, Datta LP, Govindaraju T. Molecular Architectonics-guided Design of Biomaterials. Chem Asian J 2021;16:423-42. [PMID: 33449445 DOI: 10.1002/asia.202001445] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
108 Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem 2021;133:8466-71. [DOI: 10.1002/ange.202012643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
109 Prencipe F, Diaferia C, Rossi F, Ronga L, Tesauro D. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides. Molecules 2021;26:4049. [PMID: 34279392 DOI: 10.3390/molecules26134049] [Reference Citation Analysis]
110 Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021;60:8385-90. [PMID: 33185961 DOI: 10.1002/anie.202012643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
111 Miao J, Descoteaux ML, Lin YS. Structure prediction of cyclic peptides by molecular dynamics + machine learning. Chem Sci 2021;12:14927-36. [PMID: 34820109 DOI: 10.1039/d1sc05562c] [Reference Citation Analysis]
112 Nadal‐bufí F, Henriques ST. How to overcome endosomal entrapment of cell‐penetrating peptides to release the therapeutic potential of peptides? Peptide Science 2020;112. [DOI: 10.1002/pep2.24168] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
113 Wiedmann M, Dranchak PK, Aitha M, Queme B, Collmus CD, Kashipathy MM, Kanter L, Lamy L, Rogers JM, Tao D, Battaile KP, Rai G, Lovell S, Suga H, Inglese J. Structure-activity relationship of ipglycermide binding to phosphoglycerate mutases. J Biol Chem 2021;296:100628. [PMID: 33812994 DOI: 10.1016/j.jbc.2021.100628] [Reference Citation Analysis]
114 Theillet FX. In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chem Rev 2022. [PMID: 35357148 DOI: 10.1021/acs.chemrev.1c00937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021;13:530-9. [PMID: 33859390 DOI: 10.1038/s41557-021-00661-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
116 Vu QN, Young R, Sudhakar HK, Gao T, Huang T, Tan YS, Lau YH. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem 2021;12:887-901. [PMID: 34263169 DOI: 10.1039/d1md00098e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Zhang Z, Gao R, Hu Q, Peacock H, Peacock DM, Dai S, Shokat KM, Suga H. GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS Cent Sci 2020;6:1753-61. [PMID: 33145412 DOI: 10.1021/acscentsci.0c00514] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
118 Chen K, Pei D. Engineering Cell-Permeable Proteins through Insertion of Cell-Penetrating Motifs into Surface Loops. ACS Chem Biol 2020;15:2568-76. [PMID: 32786266 DOI: 10.1021/acschembio.0c00593] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
119 Sang P, Shi Y, Huang B, Xue S, Odom T, Cai J. Sulfono-γ-AApeptides as Helical Mimetics: Crystal Structures and Applications. Acc Chem Res 2020;53:2425-42. [PMID: 32940995 DOI: 10.1021/acs.accounts.0c00482] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
120 Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020;157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 36.5] [Reference Citation Analysis]
121 Sánchez-Navarro M. Advances in peptide-mediated cytosolic delivery of proteins. Adv Drug Deliv Rev 2021;171:187-98. [PMID: 33561452 DOI: 10.1016/j.addr.2021.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
122 Chavali SS, Mali SM, Bonn R, Saseendran A, Bennett RP, Smith HC, Fasan R, Wedekind JE. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 2021;:101390. [PMID: 34767799 DOI: 10.1016/j.jbc.2021.101390] [Reference Citation Analysis]
123 Kelly CN, Townsend CE, Jain AN, Naylor MR, Pye CR, Schwochert J, Lokey RS. Geometrically Diverse Lariat Peptide Scaffolds Reveal an Untapped Chemical Space of High Membrane Permeability. J Am Chem Soc 2021;143:705-14. [PMID: 33381960 DOI: 10.1021/jacs.0c06115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Pei D. How Do Biomolecules Cross the Cell Membrane? Acc Chem Res 2022;55:309-18. [PMID: 35015508 DOI: 10.1021/acs.accounts.1c00560] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
125 Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021;2:1115-43. [PMID: 34458827 DOI: 10.1039/d1cb00024a] [Reference Citation Analysis]
126 Furukawa A, Schwochert J, Pye CR, Asano D, Edmondson QD, Turmon AC, Klein VG, Ono S, Okada O, Lokey RS. Drug‐Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side‐Chain Lipophilicity. Angew Chem 2020;132:21755-61. [DOI: 10.1002/ange.202004550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
127 Ji S, Yang X, Chen X, Li A, Yan D, Xu H, Fei H. Structure-tuned membrane active Ir-complexed oligoarginine overcomes cancer cell drug resistance and triggers immune responses in mice. Chem Sci 2020;11:9126-33. [PMID: 34094193 DOI: 10.1039/d0sc03975f] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
128 Li J, Kannan S, Aronica P, Brown CJ, Partridge AW, Verma CS. Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides. J Chem Phys 2022;156:065101. [DOI: 10.1063/5.0078025] [Reference Citation Analysis]
129 Shalaby K, Aouida M, El-Agnaf O. Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors. Int J Mol Sci 2020;21:E7353. [PMID: 33027946 DOI: 10.3390/ijms21197353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
130 Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121567] [Reference Citation Analysis]
131 Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. Biochim Biophys Acta Biomembr 2022;1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Reference Citation Analysis]
132 Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019;55:13657-60. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
133 Inaba H, Nagata M, Miyake KJ, Kabir AMR, Kakugo A, Sada K, Matsuura K. Cyclic Tau-derived peptides for stabilization of microtubules. Polym J 2020;52:1143-51. [DOI: 10.1038/s41428-020-0356-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
134 Kamenik AS, Kraml J, Hofer F, Waibl F, Quoika PK, Kahler U, Schauperl M, Liedl KR. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. J Chem Inf Model 2020;60:3508-17. [PMID: 32551643 DOI: 10.1021/acs.jcim.0c00280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
135 Wu Y, Chau HF, Thor W, Chan KHY, Ma X, Chan WL, Long NJ, Wong KL. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021;60:20301-7. [PMID: 34272794 DOI: 10.1002/anie.202108885] [Reference Citation Analysis]
136 Frosi Y, Inoue K, Ramlan SR, Lane DP, Watanabe T, Brown CJ. Simultaneous measurement of p53:Mdm2 and p53:Mdm4 protein-protein interactions in whole cells using fluorescence labelled foci. Sci Rep 2019;9:17933. [PMID: 31784573 DOI: 10.1038/s41598-019-54123-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
137 Becker B, Englert S, Schneider H, Yanakieva D, Hofmann S, Dombrowsky C, Macarrón Palacios A, Bitsch S, Elter A, Meckel T, Kugler B, Schirmacher A, Avrutina O, Diederichsen U, Kolmar H. Multivalent dextran hybrids for efficient cytosolic delivery of biomolecular cargoes. J Pept Sci 2021;27:e3298. [PMID: 33458922 DOI: 10.1002/psc.3298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Pei D, Appiah Kubi G. Developments with bead-based screening for novel drug discovery. Expert Opin Drug Discov 2019;14:1097-102. [PMID: 31335229 DOI: 10.1080/17460441.2019.1647164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
139 Takeuchi K, Misaki I, Tokunaga Y, Fujisaki M, Kamoshida H, Takizawa T, Hanzawa H, Shimada I. Conformational Plasticity of Cyclic Ras‐Inhibitor Peptides Defines Cell Permeabilization Activity. Angew Chem Int Ed 2021;60:6567-72. [DOI: 10.1002/anie.202016647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem Biol 2022;3:18-31. [DOI: 10.1039/d1cb00154j] [Reference Citation Analysis]