BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lehto T, Vasconcelos L, Margus H, Figueroa R, Pooga M, Hällbrink M, Langel Ü. Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides. Bioconjug Chem 2017;28:782-92. [PMID: 28209057 DOI: 10.1021/acs.bioconjchem.6b00680] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Porosk L, Arukuusk P, Põhako K, Kurrikoff K, Kiisholts K, Padari K, Pooga M, Langel Ü. Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomater Sci 2019;7:4363-74. [DOI: 10.1039/c9bm00688e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
2 Koo J, Kim G, Nam K, Choi J. Unleashing cell-penetrating peptide applications for immunotherapy. Trends in Molecular Medicine 2022. [DOI: 10.1016/j.molmed.2022.03.010] [Reference Citation Analysis]
3 Bazaz S, Lehto T, Tops R, Gissberg O, Gupta D, Bestas B, Bost J, Wiklander OPB, Sork H, Zaghloul EM, Mamand DR, Hällbrink M, Sillard R, Saher O, Ezzat K, Smith CIE, Andaloussi SE, Lehto T. Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo. Biomedicines 2021;9:1046. [PMID: 34440250 DOI: 10.3390/biomedicines9081046] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gestin M, Helmfors H, Falato L, Lorenzon N, Michalakis FI, Langel Ü. Effect of small molecule signaling in PepFect14 transfection. PLoS One 2020;15:e0228189. [PMID: 31999754 DOI: 10.1371/journal.pone.0228189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Venit T, Dowaidar M, Gestin M, Mahmood SR, Langel Ü, Percipalle P. Transcriptional Profiling Reveals Ribosome Biogenesis, Microtubule Dynamics and Expression of Specific lncRNAs to be Part of a Common Response to Cell-Penetrating Peptides. Biomolecules 2020;10:E1567. [PMID: 33213097 DOI: 10.3390/biom10111567] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
6 Song J, Qian Z, Sahni A, Chen K, Pei D. Cyclic Cell-Penetrating Peptides with Single Hydrophobic Groups. Chembiochem 2019;20:2085-8. [PMID: 31298779 DOI: 10.1002/cbic.201900370] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
7 Hedegaard SF, Bruhn DS, Khandelia H, Cárdenas M, Nielsen HM. Shuffled lipidation pattern and degree of lipidation determines the membrane interaction behavior of a linear cationic membrane-active peptide. Journal of Colloid and Interface Science 2020;578:584-97. [DOI: 10.1016/j.jcis.2020.05.121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Ur Rahim J, Singh G, Shankar S, Katoch M, Rai R. Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents. J Antibiot (Tokyo) 2021;74:480-3. [PMID: 33767455 DOI: 10.1038/s41429-021-00419-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Jian C, Zhang P, Ma J, Jian S, Zhang Q, Liu B, Liang S, Liu M, Zeng Y, Liu Z. The Roles of Fatty-Acid Modification in the Activity of the Anticancer Peptide R-Lycosin-I. Mol Pharmaceutics 2018;15:4612-20. [DOI: 10.1021/acs.molpharmaceut.8b00605] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
10 Morais CM, Cardoso AM, Cunha PP, Aguiar L, Vale N, Lage E, Pinheiro M, Nunes C, Gomes P, Reis S, Castro MMCA, Pedroso de Lima MC, Jurado AS. Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: Relevance of peptide/lipid interactions. Biochim Biophys Acta Biomembr 2018;1860:2619-34. [PMID: 30291923 DOI: 10.1016/j.bbamem.2018.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Vasconcelos L, Lehto T, Madani F, Radoi V, Hällbrink M, Vukojević V, Langel Ü. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:491-504. [DOI: 10.1016/j.bbamem.2017.09.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
12 Zhang P, Ma J, Zhang Q, Jian S, Sun X, Liu B, Nie L, Liu M, Liang S, Zeng Y, Liu Z. Monosaccharide Analogues of Anticancer Peptide R-Lycosin-I: Role of Monosaccharide Conjugation in Complexation and the Potential of Lung Cancer Targeting and Therapy. J Med Chem 2019;62:7857-73. [DOI: 10.1021/acs.jmedchem.9b00634] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
13 Saher O, Rocha CSJ, Zaghloul EM, Wiklander OPB, Zamolo S, Heitz M, Ezzat K, Gupta D, Reymond JL, Zain R, Hollfelder F, Darbre T, Lundin KE, El Andaloussi S, Smith CIE. Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. Eur J Pharm Biopharm 2018;132:29-40. [PMID: 30193928 DOI: 10.1016/j.ejpb.2018.09.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
14 Zhang P, Jian C, Jian S, Zhang Q, Sun X, Nie L, Liu B, Li F, Li J, Liu M, Liang S, Zeng Y, Liu Z. Position Effect of Fatty Acid Modification on the Cytotoxicity and Antimetastasis Potential of the Cytotoxic Peptide Lycosin-I. J Med Chem 2019;62:11108-18. [DOI: 10.1021/acs.jmedchem.9b01126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G, Napolitano M, Scala S, Cosconati S, Marinelli L, Novellino E, Messere A, Di Maro S. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018;26:2539-50. [PMID: 29656988 DOI: 10.1016/j.bmc.2018.04.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Yang S, Wang D, Sun Y, Zheng B. Delivery of antisense oligonucleotide using polyethylenimine-based lipid nanoparticle modified with cell penetrating peptide. Drug Deliv 2019;26:965-74. [PMID: 31544540 DOI: 10.1080/10717544.2019.1667453] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 González-cruz AO, Hernández-juárez J, Ramírez-cabrera MA, Balderas-rentería I, Arredondo-espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. Journal of Drug Delivery Science and Technology 2022;72:103362. [DOI: 10.1016/j.jddst.2022.103362] [Reference Citation Analysis]
18 Carreras-Badosa G, Maslovskaja J, Periyasamy K, Urgard E, Padari K, Vaher H, Tserel L, Gestin M, Kisand K, Arukuusk P, Lou C, Langel Ü, Wengel J, Pooga M, Rebane A. NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials 2020;262:120316. [PMID: 32896817 DOI: 10.1016/j.biomaterials.2020.120316] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
19 Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, Zhu B, Liang S, Zeng Y, Liu Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org Biomol Chem 2017;15:9379-88. [DOI: 10.1039/c7ob02233f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
20 Singh R, Mishra NK, Gupta P, Joshi KB. Self-assembly of a Sequence-shuffled Short Peptide Amphiphile Triggered by Metal Ions into Terraced Nanodome-like Structures. Chem Asian J 2020;15:531-9. [PMID: 31899579 DOI: 10.1002/asia.201901715] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
21 Li F, Wu S, Chen N, Zhu J, Zhao X, Zhang P, Zeng Y, Liu Z. Fatty Acid Modification of the Anticancer Peptide LVTX-9 to Enhance Its Cytotoxicity against Malignant Melanoma Cells. Toxins (Basel) 2021;13:867. [PMID: 34941705 DOI: 10.3390/toxins13120867] [Reference Citation Analysis]
22 Langel Ü. Classes and Applications of Cell-Penetrating Peptides. CPP, Cell-Penetrating Peptides. Singapore: Springer; 2019. pp. 29-82. [DOI: 10.1007/978-981-13-8747-0_2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Falato L, Gestin M, Langel Ü. PepFect14 Signaling and Transfection. Methods Mol Biol 2022;2383:229-46. [PMID: 34766293 DOI: 10.1007/978-1-0716-1752-6_15] [Reference Citation Analysis]
24 Kurrikoff K, Veiman KL, Künnapuu K, Peets EM, Lehto T, Pärnaste L, Arukuusk P, Langel Ü. Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Sci Rep 2017;7:17056. [PMID: 29213085 DOI: 10.1038/s41598-017-17316-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
25 van der Bent ML, Paulino da Silva Filho O, Willemse M, Hällbrink M, Wansink DG, Brock R. The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells. FASEB J 2019;33:11314-25. [PMID: 31311315 DOI: 10.1096/fj.201900263R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
26 Lorents A, Maloverjan M, Padari K, Pooga M. Internalisation and Biological Activity of Nucleic Acids Delivering Cell-Penetrating Peptide Nanoparticles Is Controlled by the Biomolecular Corona. Pharmaceuticals (Basel) 2021;14:667. [PMID: 34358093 DOI: 10.3390/ph14070667] [Reference Citation Analysis]
27 Feiner-Gracia N, Olea RA, Fitzner R, El Boujnouni N, van Asbeck AH, Brock R, Albertazzi L. Super-resolution Imaging of Structure, Molecular Composition, and Stability of Single Oligonucleotide Polyplexes. Nano Lett 2019;19:2784-92. [PMID: 31001985 DOI: 10.1021/acs.nanolett.8b04407] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
28 Song J, Ma P, Huang S, Wang J, Xie H, Jia B, Zhang W. Acylation of the antimicrobial peptide CAMEL for cancer gene therapy. Drug Deliv 2020;27:964-73. [PMID: 32611259 DOI: 10.1080/10717544.2020.1787556] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Amoura M, Illien F, Joliot A, Guitot K, Offer J, Sagan S, Burlina F. Head to tail cyclisation of cell-penetrating peptides: impact on GAG-dependent internalisation and direct translocation. Chem Commun (Camb) 2019;55:4566-9. [PMID: 30931466 DOI: 10.1039/c9cc01265f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]