BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moniruzzaman M, Islam MZ, Sharmin S, Dohra H, Yamazaki M. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes. Biochemistry 2017;56:4419-31. [PMID: 28752991 DOI: 10.1021/acs.biochem.6b01274] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Islam MZ, Sharmin S, Moniruzzaman M, Yamazaki M. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Appl Microbiol Biotechnol 2018;102:3879-92. [DOI: 10.1007/s00253-018-8889-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
2 Shuma ML, Moghal MMR, Yamazaki M. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Biochemistry 2020;59:1780-90. [DOI: 10.1021/acs.biochem.0c00102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Moghal MMR, Hossain F, Yamazaki M. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Biophys Rev 2020;12:339-48. [PMID: 32152921 DOI: 10.1007/s12551-020-00662-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
4 Buck AK, Elmore DE, Darling LE. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med Chem 2019;11:2445-58. [PMID: 31517514 DOI: 10.4155/fmc-2019-0095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Jia TZ, Kuruma Y. Recent Advances in Origins of Life Research by Biophysicists in Japan. Challenges 2019;10:28. [DOI: 10.3390/challe10010028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
6 Hossain F, Moghal MMR, Islam MZ, Moniruzzaman M, Yamazaki M. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. J Biol Chem 2019;294:10449-62. [PMID: 31118274 DOI: 10.1074/jbc.RA119.007762] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Moghal MMR, Shuma ML, Islam MZ, Yamazaki M. A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes. Methods Mol Biol 2022;2383:167-79. [PMID: 34766289 DOI: 10.1007/978-1-0716-1752-6_11] [Reference Citation Analysis]
8 Tanaka M, Suwatthanarak T, Arakaki A, Johnson BRG, Evans SD, Okochi M, Staniland SS, Matsunaga T. Enhanced Tubulation of Liposome Containing Cardiolipin by MamY Protein from Magnetotactic Bacteria. Biotechnol J 2018;13:1800087. [DOI: 10.1002/biot.201800087] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
9 Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018;8:E77. [PMID: 30135402 DOI: 10.3390/biom8030077] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
10 Oikawa K, Islam MM, Horii Y, Yoshizumi T, Numata K. Screening of a Cell-Penetrating Peptide Library in Escherichia coli : Relationship between Cell Penetration Efficiency and Cytotoxicity. ACS Omega 2018;3:16489-99. [DOI: 10.1021/acsomega.8b02348] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
11 Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020;216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Guha S, Ghimire J, Wu E, Wimley WC. Mechanistic Landscape of Membrane-Permeabilizing Peptides. Chem Rev 2019;119:6040-85. [PMID: 30624911 DOI: 10.1021/acs.chemrev.8b00520] [Cited by in Crossref: 78] [Cited by in F6Publishing: 69] [Article Influence: 26.0] [Reference Citation Analysis]
13 Parvez F, Alam JM, Dohra H, Yamazaki M. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:2262-71. [DOI: 10.1016/j.bbamem.2018.08.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
14 Hasan M, Yamazaki M. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Adv Exp Med Biol 2019;1117:17-32. [PMID: 30980351 DOI: 10.1007/978-981-13-3588-4_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
15 Gerbelli BB, da Silva ER, Miranda Soares B, Alves WA, Andreoli de Oliveira E. Multilamellar-to-Unilamellar Transition Induced by Diphenylalanine in Lipid Vesicles. Langmuir 2018;34:2171-9. [PMID: 29284081 DOI: 10.1021/acs.langmuir.7b03869] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
16 Gerbelli BB, Ly I, Pedemay S, Alves WA, de Oliveira EA. The Role of Amylogenic Fiber Aggregation on the Elasticity of a Lipid Membrane. ACS Appl Bio Mater 2020;3:815-22. [PMID: 35019285 DOI: 10.1021/acsabm.9b00861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Vargas-casanova Y, Rodríguez-mayor AV, Cardenas KJ, Leal-castro AL, Muñoz-molina LC, Fierro-medina R, Rivera-monroy ZJ, García-castañeda JE. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv 2019;9:7239-45. [DOI: 10.1039/c9ra00708c] [Cited by in Crossref: 11] [Article Influence: 3.7] [Reference Citation Analysis]
18 Barragán-cárdenas A, Urrea-pelayo M, Niño-ramírez VA, Umaña-pérez A, Vernot JP, Parra-giraldo CM, Fierro-medina R, Rivera-monroy Z, García-castañeda J. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv 2020;10:17593-601. [DOI: 10.1039/d0ra02688c] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Insuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa-Zarzosa A, López-Meza JE, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci 2020;21:E4550. [PMID: 32604743 DOI: 10.3390/ijms21124550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Corrêa JAF, Evangelista AG, Nazareth TDM, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019;8:100494. [DOI: 10.1016/j.mtla.2019.100494] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
21 Guerra JR, Cárdenas AB, Ochoa-zarzosa A, Meza JL, Umaña Pérez A, Fierro-medina R, Rivera Monroy ZJ, García Castañeda JE. The tetrameric peptide LfcinB (20–25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv 2019;9:20497-504. [DOI: 10.1039/c9ra04145a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
22 Moghal MMR, Islam MZ, Sharmin S, Levadnyy V, Moniruzzaman M, Yamazaki M. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chemistry and Physics of Lipids 2018;212:120-9. [DOI: 10.1016/j.chemphyslip.2018.02.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
23 Hossain F, Dohra H, Yamazaki M. Effect of membrane potential on entry of lactoferricin B-derived 6-residue antimicrobial peptide into single Escherichia coli cells and lipid vesicles. J Bacteriol 2021:JB. [PMID: 33558393 DOI: 10.1128/JB.00021-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Hasan M, Moghal MMR, Saha SK, Yamazaki M. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes. Biophys Rev 2019;11:431-48. [PMID: 31093936 DOI: 10.1007/s12551-019-00542-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
25 Moghal MMR, Islam MZ, Hossain F, Saha SK, Yamazaki M. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles. Biophys J 2020;118:57-69. [PMID: 31810658 DOI: 10.1016/j.bpj.2019.11.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]