BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol 2014;73:70-9. [PMID: 24560815 DOI: 10.1016/j.yjmcc.2014.02.006] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014;224:164-75. [PMID: 25452175 DOI: 10.1016/j.cbi.2014.10.016] [Cited by in Crossref: 612] [Cited by in F6Publishing: 511] [Article Influence: 76.5] [Reference Citation Analysis]
2 Sawada N, Arany Z. Metabolic Regulation of Angiogenesis in Diabetes and Aging. Physiology (Bethesda) 2017;32:290-307. [PMID: 28615313 DOI: 10.1152/physiol.00039.2016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
3 Bessler WK, Hudson FZ, Zhang H, Harris V, Wang Y, Mund JA, Downing B, Ingram DA Jr, Case J, Fulton DJ, Stansfield BK. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans. Free Radic Biol Med 2016;97:212-22. [PMID: 27266634 DOI: 10.1016/j.freeradbiomed.2016.06.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
4 Gimenez M, Schickling BM, Lopes LR, Miller FJ Jr. Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin Sci (Lond) 2016;130:151-65. [PMID: 26678171 DOI: 10.1042/CS20150404] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
5 Bae S, Park M, Kang C, Dilmen S, Kang TH, Kang DG, Ke Q, Lee SU, Lee D, Kang PM. Hydrogen Peroxide-Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2016;5:e003697. [PMID: 27930351 DOI: 10.1161/JAHA.116.003697] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
6 You S, Zhang Y, Xu J, Qian H, Wu S, Wu B, Lu S, Sun Y, Zhang N. The Role of BRG1 in Antioxidant and Redox Signaling. Oxid Med Cell Longev 2020;2020:6095673. [PMID: 33014273 DOI: 10.1155/2020/6095673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Wolke C, Bukowska A, Goette A, Lendeckel U. Redox control of cardiac remodeling in atrial fibrillation. Biochim Biophys Acta. 2015;1850:1555-1565. [PMID: 25513966 DOI: 10.1016/j.bbagen.2014.12.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
8 Dietl A, Maack C. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Curr Heart Fail Rep 2017;14:338-49. [PMID: 28656516 DOI: 10.1007/s11897-017-0347-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
9 Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015;116:531-49. [PMID: 25634975 DOI: 10.1161/CIRCRESAHA.116.303584] [Cited by in Crossref: 283] [Cited by in F6Publishing: 151] [Article Influence: 40.4] [Reference Citation Analysis]
10 Jiménez-altayó F, Meirelles T, Crosas-molist E, Sorolla MA, del Blanco DG, López-luque J, Mas-stachurska A, Siegert A, Bonorino F, Barberà L, García C, Condom E, Sitges M, Rodríguez-pascual F, Laurindo F, Schröder K, Ros J, Fabregat I, Egea G. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radical Biology and Medicine 2018;118:44-58. [DOI: 10.1016/j.freeradbiomed.2018.02.023] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
11 Löwe O, Rezende F, Heidler J, Wittig I, Helfinger V, Brandes RP, Schröder K. BIAM switch assay coupled to mass spectrometry identifies novel redox targets of NADPH oxidase 4. Redox Biol 2019;21:101125. [PMID: 30716538 DOI: 10.1016/j.redox.2019.101125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Fuschi P, Carrara M, Voellenkle C, Garcia-Manteiga JM, Righini P, Maimone B, Sangalli E, Villa F, Specchia C, Picozza M, Nano G, Gaetano C, Spinetti G, Puca AA, Magenta A, Martelli F. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY) 2017;9:2559-86. [PMID: 29242407 DOI: 10.18632/aging.101341] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
13 Du W, Ren L, Hamblin MH, Fan Y. Endothelial Cell Glucose Metabolism and Angiogenesis. Biomedicines 2021;9:147. [PMID: 33546224 DOI: 10.3390/biomedicines9020147] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020;76:1055-68. [PMID: 32829664 DOI: 10.1161/HYPERTENSIONAHA.120.15856] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol. 2017;70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Cited by in Crossref: 125] [Cited by in F6Publishing: 117] [Article Influence: 25.0] [Reference Citation Analysis]
16 Obas V, Vasan RS. The aging heart. Clin Sci (Lond) 2018;132:1367-82. [PMID: 29986877 DOI: 10.1042/CS20171156] [Cited by in F6Publishing: 19] [Reference Citation Analysis]
17 Ai W, Bae S, Ke Q, Su S, Li R, Chen Y, Yoo D, Lee E, Jon S, Kang PM. Bilirubin Nanoparticles Protect Against Cardiac Ischemia/Reperfusion Injury in Mice. J Am Heart Assoc 2021;10:e021212. [PMID: 34622671 DOI: 10.1161/JAHA.121.021212] [Reference Citation Analysis]
18 Zheleznova NN, Kumar V, Kurth T, Cowley AW Jr. Hydrogen peroxide (H2O2) mediated activation of mTORC2 increases intracellular Na+ concentration in the renal medullary thick ascending limb of Henle. Sci Rep 2021;11:7300. [PMID: 33790341 DOI: 10.1038/s41598-021-86678-1] [Reference Citation Analysis]
19 Yamagata K. Prevention of Vascular Endothelial Dysfunction by Polyphenols: Role in Cardiovascular Disease Prevention. In: Chauhan DN, Shah K, editors. Phytopharmaceuticals. Wiley; 2021. pp. 223-46. [DOI: 10.1002/9781119682059.ch11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sag CM, Schnelle M, Zhang J, Murdoch CE, Kossmann S, Protti A, Santos CXC, Sawyer G, Zhang X, Mongue-Din H, Richards DA, Brewer AC, Prysyazhna O, Maier LS, Wenzel P, Eaton PJ, Shah AM. Distinct Regulatory Effects of Myeloid Cell and Endothelial Cell NAPDH Oxidase 2 on Blood Pressure. Circulation 2017;135:2163-77. [PMID: 28298457 DOI: 10.1161/CIRCULATIONAHA.116.023877] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
21 Fuschi P, Maimone B, Gaetano C, Martelli F. Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxid Redox Signal 2019;30:992-1010. [PMID: 28683564 DOI: 10.1089/ars.2017.7229] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
22 Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020;14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 15.0] [Reference Citation Analysis]
23 Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radical Biology and Medicine 2014;76:208-26. [DOI: 10.1016/j.freeradbiomed.2014.07.046] [Cited by in Crossref: 355] [Cited by in F6Publishing: 346] [Article Influence: 44.4] [Reference Citation Analysis]
24 Pernomian L, Prado AF, Silva BR, Azevedo A, Pinheiro LC, Tanus-Santos JE, Bendhack LM. C-Type Natriuretic Peptide Induces Anti-contractile Effect Dependent on Nitric Oxide, Oxidative Stress, and NPR-B Activation in Sepsis. Front Physiol 2016;7:226. [PMID: 27445832 DOI: 10.3389/fphys.2016.00226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
25 Burke RM, Berk BC. The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease. Antioxid Redox Signal 2015;22:1243-56. [PMID: 25686626 DOI: 10.1089/ars.2014.6182] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
26 Helfinger V, Freiherr von Gall F, Henke N, Kunze MM, Schmid T, Rezende F, Heidler J, Wittig I, Radeke HH, Marschall V, Anderson K, Shah AM, Fulda S, Brüne B, Brandes RP, Schröder K. Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proc Natl Acad Sci U S A 2021;118:e2020152118. [PMID: 33836590 DOI: 10.1073/pnas.2020152118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 He Y, Zhou L, Fan Z, Liu S, Fang W. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N‑acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. Cell Death Dis 2018;9:568. [PMID: 29752433 DOI: 10.1038/s41419-018-0593-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
28 Santos CX, Raza S, Shah AM. Redox signaling in the cardiomyocyte: From physiology to failure. Int J Biochem Cell Biol 2016;74:145-51. [PMID: 26987585 DOI: 10.1016/j.biocel.2016.03.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
29 Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2015;21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
30 Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017;109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
31 Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Reymann K, Söderkvist P, Groß O, Schwenger V, Pahernik S, Nawroth PP, Gröne HJ, Madhusudhan T, Isermann B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 2015;87:74-84. [PMID: 25075770 DOI: 10.1038/ki.2014.271] [Cited by in Crossref: 180] [Cited by in F6Publishing: 188] [Article Influence: 22.5] [Reference Citation Analysis]
32 Xu X, Jiang T, Li Y, Kong L. Endostatin attenuates heart failure via inhibiting reactive oxygen species in myocardial infarction rats. Biosci Rep 2021;41:BSR20200787. [PMID: 32686821 DOI: 10.1042/BSR20200787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Yu C, Luo X, Duquette N, Thorin-trescases N, Thorin E. Knockdown of angiopoietin like-2 protects against angiotensin II-induced cerebral endothelial dysfunction in mice. American Journal of Physiology-Heart and Circulatory Physiology 2015;308:H386-97. [DOI: 10.1152/ajpheart.00278.2014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kallenborn-Gerhardt W, Schröder K, Schmidtko A. NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022;11:1162. [PMID: 35740059 DOI: 10.3390/antiox11061162] [Reference Citation Analysis]
35 Mistry RK, Murray TVA, Prysyazhna O, Martin D, Burgoyne JR, Santos C, Eaton P, Shah AM, Brewer AC. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling. J Biol Chem 2016;291:1774-88. [PMID: 26620565 DOI: 10.1074/jbc.M115.685578] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 4.7] [Reference Citation Analysis]
36 Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A, Beltran-Alvarez P, Patel K, Mougios V, Swann JR, Kearney MT, Matsakas A. Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity. Free Radic Biol Med 2018;129:504-19. [PMID: 30342191 DOI: 10.1016/j.freeradbiomed.2018.10.422] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
37 Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014;511:167-76. [DOI: 10.1038/nature13312] [Cited by in Crossref: 266] [Cited by in F6Publishing: 246] [Article Influence: 33.3] [Reference Citation Analysis]
38 Ter Horst EN, Hahn NE, Geerts D, Musters RJP, Paulus WJ, van Rossum AC, Meischl C, Piek JJ, Niessen HWM, Krijnen PAJ. p47phox-Dependent Reactive Oxygen Species Stimulate Nuclear Translocation of the FoxO1 Transcription Factor During Metabolic Inhibition in Cardiomyoblasts. Cell Biochem Biophys 2018;76:401-10. [PMID: 29956081 DOI: 10.1007/s12013-018-0847-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
39 Kawakami R, Sunaga H, Iso T, Kaneko R, Koitabashi N, Obokata M, Harada T, Matsui H, Yokoyama T, Kurabayashi M. Ketone body and FGF21 coordinately regulate fasting-induced oxidative stress response in the heart. Sci Rep 2022;12:7338. [PMID: 35513524 DOI: 10.1038/s41598-022-10993-4] [Reference Citation Analysis]
40 Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. Cellular Signalling 2016;28:256-71. [DOI: 10.1016/j.cellsig.2015.12.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 8.3] [Reference Citation Analysis]
41 Zuo ML, Wang AP, Song GL, Yang ZB. miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Biomed Pharmacother 2020;124:109860. [PMID: 32000043 DOI: 10.1016/j.biopha.2020.109860] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
42 Brandes RP, Rezende F. Glycolysis and Inflammation: Partners in Crime! Circ Res 2021;129:30-2. [PMID: 34166079 DOI: 10.1161/CIRCRESAHA.121.319447] [Reference Citation Analysis]
43 Yan Y, Finkel T. Autophagy as a regulator of cardiovascular redox homeostasis. Free Radic Biol Med 2017;109:108-13. [PMID: 27940349 DOI: 10.1016/j.freeradbiomed.2016.12.003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 7.2] [Reference Citation Analysis]
44 Shen Y, Miao NJ, Xu JL, Gan XX, Xu D, Zhou L, Xue H, Zhang W, Lu LM. N-acetylcysteine alleviates angiotensin II-mediated renal fibrosis in mouse obstructed kidneys. Acta Pharmacol Sin 2016;37:637-44. [PMID: 27041464 DOI: 10.1038/aps.2016.12] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
45 Chatterjee S, Nieman GF, Christie JD, Fisher AB. Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Am J Physiol Lung Cell Mol Physiol 2014;307:L668-80. [PMID: 25239915 DOI: 10.1152/ajplung.00198.2014] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
46 Gajos-Draus A, Duda M, Beręsewicz A. Cardiac and renal upregulation of Nox2 and NF-κB and repression of Nox4 and Nrf2 in season- and diabetes-mediated models of vascular oxidative stress in guinea-pig and rat. Physiol Rep 2017;5:e13474. [PMID: 29084841 DOI: 10.14814/phy2.13474] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
47 Duicu OM, Lighezan R, Sturza A, Ceausu RA, Borza C, Vaduva A, Noveanu L, Gaspar M, Ionac A, Feier H, Muntean DM, Mornos C. Monoamine Oxidases as Potential Contributors to Oxidative Stress in Diabetes: Time for a Study in Patients Undergoing Heart Surgery. Biomed Res Int 2015;2015:515437. [PMID: 26101773 DOI: 10.1155/2015/515437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
48 Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019;30:1011-26. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
49 Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015;22:537-52. [PMID: 25545236 DOI: 10.1089/ars.2014.6234] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
50 Li B, Tian J, Sun Y, Xu T, Chi R, Zhang X, Hu X, Zhang Y, Qin F, Zhang W. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2015;1852:805-15. [DOI: 10.1016/j.bbadis.2015.01.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
51 Mao L, Zuo ML, Wang AP, Tian Y, Dong LC, Li TM, Kuang DB, Song GL, Yang ZB. Low expression of miR‑532‑3p contributes to cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Mol Med Rep 2020;22:2415-23. [PMID: 32705253 DOI: 10.3892/mmr.2020.11325] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
52 Zasu A, Hishima F, Thauvin M, Yoneyama Y, Kitani Y, Hakuno F, Volovitch M, Takahashi S, Vriz S, Rampon C, Kamei H. NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Front Endocrinol 2022;13:929668. [DOI: 10.3389/fendo.2022.929668] [Reference Citation Analysis]
53 Buchmann GK, Schürmann C, Warwick T, Schulz MH, Spaeth M, Müller OJ, Schröder K, Jo H, Weissmann N, Brandes RP. Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biol 2020;37:101713. [PMID: 32949971 DOI: 10.1016/j.redox.2020.101713] [Reference Citation Analysis]
54 Zandalinas SI, Mittler R. ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 2018;122:21-7. [PMID: 29203327 DOI: 10.1016/j.freeradbiomed.2017.11.028] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 16.0] [Reference Citation Analysis]
55 García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016;114:110-20. [PMID: 27773825 DOI: 10.1016/j.phrs.2016.10.015] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 12.2] [Reference Citation Analysis]
56 Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Biology and Medicine 2018;117:76-89. [DOI: 10.1016/j.freeradbiomed.2018.01.024] [Cited by in Crossref: 225] [Cited by in F6Publishing: 218] [Article Influence: 56.3] [Reference Citation Analysis]
57 Rudyk O, Eaton P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2014;2:803-13. [PMID: 25009782 DOI: 10.1016/j.redox.2014.06.005] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 8.9] [Reference Citation Analysis]
58 Thakur A, Alam MJ, Ajayakumar MR, Ghaskadbi S, Sharma M, Goswami SK. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 2015;5:243-52. [PMID: 26070033 DOI: 10.1016/j.redox.2015.05.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
59 Romero M, Toral M, Gómez-Guzmán M, Jiménez R, Galindo P, Sánchez M, Olivares M, Gálvez J, Duarte J. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct 2016;7:584-93. [PMID: 26593388 DOI: 10.1039/c5fo01101a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
60 Plotnick MD, D'Urzo KA, Gurd BJ, Pyke KE. The influence of vitamin C on the interaction between acute mental stress and endothelial function. Eur J Appl Physiol 2017;117:1657-68. [PMID: 28612123 DOI: 10.1007/s00421-017-3655-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]