BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song Z, Jadali A, Fritzsch B, Kwan KY. NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors. Stem Cell Reports 2017;9:1516-29. [PMID: 29033307 DOI: 10.1016/j.stemcr.2017.09.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhou P, Yao Z, Ma J, Zhu Z. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solitons & Fractals 2021;145:110751. [DOI: 10.1016/j.chaos.2021.110751] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 29.0] [Reference Citation Analysis]
2 Flitsch LJ, Laupman KE, Brüstle O. Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Front Cell Neurosci 2020;14:121. [PMID: 32508594 DOI: 10.3389/fncel.2020.00121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
3 Shin JO, Lee JJ, Kim M, Chung YW, Min H, Kim JY, Kim HP, Bok J. CTCF Regulates Otic Neurogenesis via Histone Modification in the Neurog1 Locus. Mol Cells 2018;41:695-702. [PMID: 30008200 DOI: 10.14348/molcells.2018.0230] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
4 Aviña-Padilla K, Ramírez-Rafael JA, Herrera-Oropeza GE, Muley VY, Valdivia DI, Díaz-Valenzuela E, García-García A, Varela-Echavarría A, Hernández-Rosales M. Evolutionary Perspective and Expression Analysis of Intronless Genes Highlight the Conservation of Their Regulatory Role. Front Genet 2021;12:654256. [PMID: 34306008 DOI: 10.3389/fgene.2021.654256] [Reference Citation Analysis]
5 He L, Zhang Q, Jiang D, Zhang Y, Wei Y, Yang Y, Li N, Wang S, Yue Y, Zhao Q. Zebrafish foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression. J Genet Genomics 2021:S1673-8527(21)00372-6. [PMID: 34923164 DOI: 10.1016/j.jgg.2021.12.002] [Reference Citation Analysis]
6 Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021;22:4189. [PMID: 33919542 DOI: 10.3390/ijms22084189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021;10:47. [PMID: 34131657 DOI: 10.12703/r/10-47] [Reference Citation Analysis]
8 Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019;376:69-85. [PMID: 30679030 DOI: 10.1016/j.heares.2019.01.007] [Reference Citation Analysis]
9 Chen H, Li S, Xu W, Hong Y, Dou R, Shen H, Liu X, Wu T, He JC. Interleukin-17A promotes the differentiation of bone marrow mesenchymal stem cells into neuronal cells. Tissue Cell 2021;69:101482. [PMID: 33418236 DOI: 10.1016/j.tice.2020.101482] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Song Z, Laureano AS, Patel K, Yip S, Jadali A, Kwan KY. Single-Cell Fluorescence Analysis of Pseudotemporal Ordered Cells Provides Protein Expression Dynamics for Neuronal Differentiation. Front Cell Dev Biol 2019;7:87. [PMID: 31192206 DOI: 10.3389/fcell.2019.00087] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Meas SJ, Zhang CL, Dabdoub A. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Front Mol Neurosci 2018;11:77. [PMID: 29593497 DOI: 10.3389/fnmol.2018.00077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
12 Li X, Bi Z, Sun Y, Li C, Li Y, Liu Z. In vivo ectopic Ngn1 and Neurod1 convert neonatal cochlear glial cells into spiral ganglion neurons. FASEB J 2020;34:4764-82. [PMID: 32027432 DOI: 10.1096/fj.201902118R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Peng T, Peng JJ, Miao GY, Tan ZQ, Liu B, Zhou E. miR‑125/CDK2 axis in cochlear progenitor cell proliferation. Mol Med Rep 2021;23:102. [PMID: 33300064 DOI: 10.3892/mmr.2020.11741] [Reference Citation Analysis]
14 Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022;14:814528. [DOI: 10.3389/fnagi.2022.814528] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front Cell Neurosci. 2017;11:409. [PMID: 29311837 DOI: 10.3389/fncel.2017.00409] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
16 Lai R, Cai C, Wu W, Hu P, Wang Q. Exosomes derived from mouse inner ear stem cells attenuate gentamicin-induced ototoxicity in vitro through the miR-182-5p/FOXO3 axis. J Tissue Eng Regen Med 2020;14:1149-56. [PMID: 32593214 DOI: 10.1002/term.3089] [Reference Citation Analysis]