BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Teng H, Tian J, Sun D, Xiu M, Zhang Y, Qiang X, Tang H, Guo Y. A mitochondria-specific fluorescent probe based on triazolopyridine formation for visualizing endogenous hypochlorous acid in living cells and zebrafish. Sensors and Actuators B: Chemical 2020;319:128288. [DOI: 10.1016/j.snb.2020.128288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Yin X, Hong J, Deng Y, Feng G. A NIR fluorescence probe having significant fluorescence turn-on signal at 700 nm and large Stokes shift for rapid detection of HOCl in vivo. Talanta 2021;223:121768. [DOI: 10.1016/j.talanta.2020.121768] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
2 Wang N, Wang H, Zhang J, Ji X, Su H, Liu J, Wang J, Zhao W. Endogenous peroxynitrite activated fluorescent probe for revealing anti‐tuberculosis drug induced hepatotoxicity. Chinese Chemical Letters 2022;33:1584-8. [DOI: 10.1016/j.cclet.2021.09.046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
3 Xu J, Wang C, Ma Q, Zhang H, Tian M, Sun J, Wang B, Chen Y. Novel Mitochondria-Targeting and Naphthalimide-based Fluorescent Probe for Detecting HClO in Living Cells. ACS Omega 2021;6:14399-409. [PMID: 34124462 DOI: 10.1021/acsomega.1c01271] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
4 Ahmed N, Zareen W, Ye Y. Recent development in fluorescent probes based on attacking of double bond and masking of functional group. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2021.12.092] [Reference Citation Analysis]
5 Tang H, Qiang X, Gao Y, Teng H, Chen X, Zhang Y, Tian J, Qin B, Guo Y. Real-time tracking and dual-mode imaging of hypochlorous acid in vivo by a small-sized fluorescence probe. Dyes and Pigments 2021;188:109219. [DOI: 10.1016/j.dyepig.2021.109219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Qiao L, Yang Y, Li Y, Lv X, Hao J. A fluorescent probe capable of naked eye recognition for the selective detection of biothiols. Journal of Photochemistry and Photobiology A: Chemistry 2022;425:113654. [DOI: 10.1016/j.jphotochem.2021.113654] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Kwon N, Chen Y, Chen X, Kim MH, Yoon J. Recent progress on small molecule-based fluorescent imaging probes for hypochlorous acid (HOCl)/Hypochlorite (OCl−). Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110132] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
8 Sun W, Hu G, Shen W, Xu H, Deng Z, Zhao G, Li F, Hu Y, Yang W. A series of D-π-A and A-π-A’ fluorescent probes were used to explore the influence of terminal groups on the properties of the hemicyanine probes. Journal of Molecular Liquids 2021;340:116846. [DOI: 10.1016/j.molliq.2021.116846] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Afzal MW, Wang S, Gao Y, Qin B, Tian X, Zhang Y, Tang H, Guo Y. A highly water-soluble rhodol-based fluorescent probe for the organic-solvent independent sensing of biological hypochlorous acid. Dyes and Pigments 2022;204:110435. [DOI: 10.1016/j.dyepig.2022.110435] [Reference Citation Analysis]
10 Kafuti YS, Zeng S, Qian M, Zhang C, Liu X, Wang J, Chen Q. A novel NIR fluorescent probe with fast response and large stokes shift for the detection and imaging of hypochlorous acid in living cells. Dyes and Pigments 2022;199:110067. [DOI: 10.1016/j.dyepig.2021.110067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kim A, Lee M, Lee H, So H, Jeong S, Kim K, Kim C. Detecting and bioimaging of hypochlorite by a conjugated fluorescent chemosensor based on thioamide. Journal of Photochemistry and Photobiology A: Chemistry 2021;421:113531. [DOI: 10.1016/j.jphotochem.2021.113531] [Reference Citation Analysis]
12 Shi WJ, Feng LX, Wang X, Huang Y, Wei YF, Huang YY, Ma HJ, Wang W, Xiang M, Gao L. A near-infrared-emission aza-BODIPY-based fluorescent probe for fast, selective, and "turn-on" detection of HClO/ClO. Talanta 2021;233:122581. [PMID: 34215073 DOI: 10.1016/j.talanta.2021.122581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 He C, Zhou Y, Lin X, Duan N, Wang Z, Wu S. Deoxynivalenol-induced cell apoptosis monitoring using a cytochrome c-specific fluorescent probe based on a photoinduced electron transfer reaction. J Hazard Mater 2021;415:125638. [PMID: 33756194 DOI: 10.1016/j.jhazmat.2021.125638] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhang S, Ning L, Song Z, Zhao X, Guan F, Yang XF, Zhang J. Activatable Near-Infrared Fluorescent Organic Nanoprobe for Hypochlorous Acid Detection in the Early Diagnosis of Rheumatoid Arthritis. Anal Chem 2022. [PMID: 35380780 DOI: 10.1021/acs.analchem.1c05184] [Reference Citation Analysis]