BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fayazi M, Taher MA, Afzali D, Mostafavi A. Fe3O4 and MnO2 assembled on halloysite nanotubes: A highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sensors and Actuators B: Chemical 2016;228:1-9. [DOI: 10.1016/j.snb.2015.12.107] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Fayazi M. Removal of mercury(II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes. Environ Sci Pollut Res 2020;27:12270-9. [DOI: 10.1007/s11356-020-07843-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
2 Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;615:126243. [DOI: 10.1016/j.colsurfa.2021.126243] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
3 Ezhil Vilian AT, Shahzad A, Chung J, Choe SR, Kim W, Huh YS, Yu T, Han Y. Square voltammetric sensing of mercury at very low working potential by using oligomer-functionalized Ag@Au core-shell nanoparticles. Microchim Acta 2017;184:3547-56. [DOI: 10.1007/s00604-017-2372-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
4 Ghanei-motlagh M, Baghayeri M. Application of N,S-dual-doped carbon/sepiolite clay hybrid material for electrochemical detection of mercury(II) in water resources. Materials Chemistry and Physics 2022;285:126127. [DOI: 10.1016/j.matchemphys.2022.126127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Huang H, Chen L, Wang S, Kang P, Chen X, Guo Z, Huang X. Electrochemical monitoring of persistent toxic substances using metal oxide and its composite nanomaterials: Design, preparation, and application. TrAC Trends in Analytical Chemistry 2019;119:115636. [DOI: 10.1016/j.trac.2019.115636] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 Liu Z, Mo Z, Niu X, Yang X, Jiang Y, Zhao P, Liu N, Guo R. Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science 2020;566:357-68. [DOI: 10.1016/j.jcis.2020.01.092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
7 Zhao H, Chang Y, Liu R, Li B, Li F, Zhang F, Shi M, Zhou L, Li X. Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem 2021;343:128484. [PMID: 33129617 DOI: 10.1016/j.foodchem.2020.128484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
8 Azmi NA, Ahmad SH, Low SC. Detection of mercury ions in water using a membrane-based colorimetric sensor. RSC Adv 2018;8:251-61. [DOI: 10.1039/c7ra11450h] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
9 Alekseeva OV, Smirnova DN, Noskov AV, Kuznetsov OY, Kirilenko MA, Agafonov AV. Mesoporous halloysite/magnetite composite: Synthesis, characterization and in vitro evaluation of the effect on the bacteria viability. Materials Today Communications 2022;32:103877. [DOI: 10.1016/j.mtcomm.2022.103877] [Reference Citation Analysis]
10 Wang L, Jiang X, Su S, Rao J, Ren Z, Lei T, Bai H, Wang S. A thiol and magnetic polymer-based electrochemical sensor for on-site simultaneous detection of lead and copper in water. Microchemical Journal 2021;168:106493. [DOI: 10.1016/j.microc.2021.106493] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Martínez-Hernández ME, Goicoechea J, Arregui FJ. Hg2+ Optical Fiber Sensor Based on LSPR Generated by Gold Nanoparticles Embedded in LBL Nano-Assembled Coatings. Sensors (Basel) 2019;19:E4906. [PMID: 31717619 DOI: 10.3390/s19224906] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
12 March JG, Maya F, Cerdà V. Kinetic-photometric monitoring of the formation of MnO2 nanoparticles and their application to the determination of iodide. Microchim Acta 2016;183:3127-34. [DOI: 10.1007/s00604-016-1966-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
13 Sawan S, Maalouf R, Errachid A, Jaffrezic-renault N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. TrAC Trends in Analytical Chemistry 2020;131:116014. [DOI: 10.1016/j.trac.2020.116014] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 10.5] [Reference Citation Analysis]
14 Fatimah I, Fadillah G, Yudha SP. Synthesis of iron-based magnetic nanocomposites: A review. Arabian Journal of Chemistry 2021;14:103301. [DOI: 10.1016/j.arabjc.2021.103301] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
15 Bian L, Li Y, Li J, Nie J, Dong F, Song M, Wang L, Dong H, Li H, Nie X, Zhang X, Li X, Xie L. Photovoltage response of (XZn)Fe 2 O 4 -BiFeO 3 (X = Mg, Mn or Ni) interfaces for highly selective Cr 3+ , Cd 2+ , Co 2+ and Pb 2+ ions detection. Journal of Hazardous Materials 2017;336:174-87. [DOI: 10.1016/j.jhazmat.2017.04.071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
16 Fu L, Xie K, Wang A, Lyu F, Ge J, Zhang L, Zhang H, Su W, Hou Y, Zhou C, Wang C, Ruan S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Analytica Chimica Acta 2019;1081:51-8. [DOI: 10.1016/j.aca.2019.06.055] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
17 Fayazi M, Ghanei-motlagh M, Karami C. Application of magnetic nanoparticles modified with L-cysteine for pre-concentration and voltammetric detection of copper(II). Microchemical Journal 2022;181:107652. [DOI: 10.1016/j.microc.2022.107652] [Reference Citation Analysis]
18 Liu Z, Li X, Zhan P, Hu F, Ye X. Removal of cadmium and copper from water by a magnetic adsorbent of PFM: Adsorption performance and micro-structural morphology. Separation and Purification Technology 2018;206:199-207. [DOI: 10.1016/j.seppur.2018.06.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
19 Zhang Y, Cao H, Huang Q, Liu X, Zhang H. Isolation of transferrin by imprinted nanoparticles with magnetic deep eutectic solvents as monomer. Anal Bioanal Chem 2018;410:6237-45. [PMID: 29982934 DOI: 10.1007/s00216-018-1232-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
20 Jiang L, Ye Q, Chen J, Chen Z, Gu Y. Preparation of magnetically recoverable bentonite-Fe3O4-MnO2 composite particles for Cd(II) removal from aqueous solutions. J Colloid Interface Sci 2018;513:748-59. [PMID: 29220689 DOI: 10.1016/j.jcis.2017.11.063] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
21 Eksin E, Erdem A, Fafal T, Kıvçak B. Eco‐friendly Sensors Developed by Herbal Based Silver Nanoparticles for Electrochemical Detection of Mercury (II) Ion. Electroanalysis 2019;31:1075-82. [DOI: 10.1002/elan.201800776] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
22 Fan M, Pan Z, Wang C, Guo Y, Sun J, Liu M, Peng B, Wu J, Fang Y. Quantitative Visual Detection of Mercury Ions With Ratiometric Fluorescent Test Paper Sensor. Front Chem 2022;10:859379. [DOI: 10.3389/fchem.2022.859379] [Reference Citation Analysis]
23 Ansari S, Karimi M. Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta 2017;167:470-85. [PMID: 28340747 DOI: 10.1016/j.talanta.2017.02.049] [Cited by in Crossref: 75] [Cited by in F6Publishing: 56] [Article Influence: 15.0] [Reference Citation Analysis]
24 Veerakumar P, Jaysiva G, Chen SM, Lin KC. Development of Palladium on Bismuth Sulfide Nanorods as a Bifunctional Nanomaterial for Efficient Electrochemical Detection and Photoreduction of Hg(II) Ions. ACS Appl Mater Interfaces 2022;14:5908-20. [PMID: 35042336 DOI: 10.1021/acsami.1c16723] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
25 Ns AK, S A, Malingappa P. Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. Journal of Environmental Chemical Engineering 2018;6:6939-46. [DOI: 10.1016/j.jece.2018.10.041] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
26 Revathi C, Kumar RR. Electro Catalytic Properties of α, β, γ, ϵ - MnO 2 and γ - MnOOH Nanoparticles: Role of Polymorphs on Enzyme Free H 2 O 2 Sensing. Electroanalysis 2017;29:1481-9. [DOI: 10.1002/elan.201600608] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
27 Sriram B, Baby JN, Hsu YF, Wang SF, George M. Toward the Development of Disposable Electrodes Based on Holmium Orthovanadate/f-Boron Nitride: Impacts and Electrochemical Performances of Emerging Inorganic Contaminants. Inorg Chem 2021;60:12425-35. [PMID: 34311546 DOI: 10.1021/acs.inorgchem.1c01678] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Alijani H, Shariatinia Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chemical Engineering Research and Design 2018;129:132-49. [DOI: 10.1016/j.cherd.2017.11.014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
29 Xia J, Wang Q, Yang M, Wu H. Reliable electroanalysis of Hg(II) in water via flower-like porous MnCo2O4: Excellent multilayer adsorption and (Mn, Co)(II)/(Mn, Co)(III) cycles. Sensors and Actuators B: Chemical 2021;326:129008. [DOI: 10.1016/j.snb.2020.129008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
30 Suvina V, Kokulnathan T, Wang TJ, Balakrishna RG. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. Ecotoxicol Environ Saf 2020;190:110098. [PMID: 31901811 DOI: 10.1016/j.ecoenv.2019.110098] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
31 Zhiani R, Ghanei-motlag M, Razavipanah I. Selective voltammetric sensor for nanomolar detection of silver ions using carbon paste electrode modified with novel nanosized Ag(I)-imprinted polymer. Journal of Molecular Liquids 2016;219:554-60. [DOI: 10.1016/j.molliq.2016.03.052] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
32 Goda ES, Gab-allah M, Singu BS, Yoon KR. Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal 2019;147:1083-96. [DOI: 10.1016/j.microc.2019.04.011] [Cited by in Crossref: 51] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
33 Yavuz A, Kaplan K, Bedir M. Metal oxides composite electrode with high areal capacitance formed by thermal oxidation of stainless steel mesh. J Solid State Electrochem. [DOI: 10.1007/s10008-022-05160-8] [Reference Citation Analysis]
34 Mohammadzadeh F, Haddadi-asl V, Yousefi Siavoshani A, Salami-kalajahi M. Preparation of intelligent magnetic halloysite nanotubes/polyurethane nanocomposites: The role of nanotube modification on the shape recovery rate. Materials Research Bulletin 2022;147:111653. [DOI: 10.1016/j.materresbull.2021.111653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv Sci (Weinh) 2021;8:2004951. [PMID: 34194936 DOI: 10.1002/advs.202004951] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
36 Yu J, Zhang K, Duan X, Zhao C, Wei X, Guo Q, Yuan CG. Simultaneous removal of arsenate and arsenite in water using a novel functional halloysite nanotube composite. Environ Sci Pollut Res Int 2022. [PMID: 35676577 DOI: 10.1007/s11356-022-20261-7] [Reference Citation Analysis]
37 Wang L, Lei T, Ren Z, Jiang X, Yang X, Bai H, Wang S. Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive electrochemical detection of trace Pb(II) in water. Journal of Electroanalytical Chemistry 2020;864:114065. [DOI: 10.1016/j.jelechem.2020.114065] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
38 Xu T, Zheng F, Chen Z, Ding Y, Liang Z, Liu Y, Zhu Z, Fong H. Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chemical Engineering Journal 2019;360:280-8. [DOI: 10.1016/j.cej.2018.11.233] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
39 Liu Y, Deng Y, Dong H, Liu K, He N. Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Sci China Chem 2017;60:329-37. [DOI: 10.1007/s11426-016-0253-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
40 Lian J, Liu P, Liu Q. Nano-scale minerals in-situ supporting CeO2 nanoparticles for off-on colorimetric detection of L–penicillamine and Cu2+ ion. Journal of Hazardous Materials 2022;433:128766. [DOI: 10.1016/j.jhazmat.2022.128766] [Reference Citation Analysis]
41 Narasimman S, Balakrishnan L, Meher S, Sivacoumar R, Alex Z. Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses. Journal of Alloys and Compounds 2017;706:186-97. [DOI: 10.1016/j.jallcom.2017.02.160] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
42 Liu Z, Puumala E, Chen A. Sensitive electrochemical detection of Hg(II) via a FeOOH modified nanoporous gold microelectrode. Sensors and Actuators B: Chemical 2019;287:517-25. [DOI: 10.1016/j.snb.2019.02.080] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 8.7] [Reference Citation Analysis]
43 Fizir M, Dramou P, Zhang K, Sun C, Pham-huy C, He H. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. Journal of Colloid and Interface Science 2017;505:476-88. [DOI: 10.1016/j.jcis.2017.04.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
44 Shahabi Nejad M, Sheibani H. Super-efficient removal of arsenic and mercury ions from wastewater by nanoporous biochar-supported poly 2-aminothiophenol. Journal of Environmental Chemical Engineering 2022;10:107363. [DOI: 10.1016/j.jece.2022.107363] [Reference Citation Analysis]
45 Song X, Zhou L, Zhang Y, Chen P, Yang Z. A novel cactus-like Fe3O4/Halloysite nanocomposite for arsenite and arsenate removal from water. Journal of Cleaner Production 2019;224:573-82. [DOI: 10.1016/j.jclepro.2019.03.230] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
46 Liu Y, Wang Y, Dai Q, Zhou Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Analytica Chimica Acta 2016;936:168-78. [DOI: 10.1016/j.aca.2016.07.003] [Cited by in Crossref: 92] [Cited by in F6Publishing: 68] [Article Influence: 15.3] [Reference Citation Analysis]
47 Maleki B, Baghayeri M, Ghanei-motlagh M, Mohammadi Zonoz F, Amiri A, Hajizadeh F, Hosseinifar A, Esmaeilnezhad E. Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement 2019;140:81-8. [DOI: 10.1016/j.measurement.2019.03.052] [Cited by in Crossref: 45] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
48 Zehra S, Gul IH, Hussain Z. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles. Results in Physics 2018;9:1462-7. [DOI: 10.1016/j.rinp.2018.04.063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Jamshidi P, Shemirani F. Adsorption/desorption of acid violet-7 onto magnetic MnO2 prior to its quantification by UV–visible spectroscopy: optimized by fractional factorial design. Res Chem Intermed 2020;46:4403-22. [DOI: 10.1007/s11164-020-04211-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
50 Ghanei-motlagh M, Taher MA. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosensors and Bioelectronics 2018;109:279-85. [DOI: 10.1016/j.bios.2018.02.057] [Cited by in Crossref: 99] [Cited by in F6Publishing: 59] [Article Influence: 24.8] [Reference Citation Analysis]
51 Tchieno FMM, Dmitrieva E, Boye S, Doungmo G, Schiemenz S, Kluge R. Tunable polycationic organohalloysite electrocatalyst: Synthesis and characterisation. Applied Clay Science 2022;226:106565. [DOI: 10.1016/j.clay.2022.106565] [Reference Citation Analysis]
52 Abdolmohammad-zadeh H, Mohammad-rezaei R, Salimi A. Preconcentration of mercury(II) using a magnetite@carbon/dithizone nanocomposite, and its quantification by anodic stripping voltammetry. Microchim Acta 2020;187. [DOI: 10.1007/s00604-019-3937-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
53 Peng H, Zhang D, Liu X, Tang W, Wan H, Xiong H, Ma R. Facile synthesis and characterization of core-shell structured Ag 3 PO 4 @Hal nanocomposites for enhanced photocatalytic properties. Applied Clay Science 2017;141:132-7. [DOI: 10.1016/j.clay.2017.02.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
54 Sedghi R, Heidari B, Javadi H, Sayyari N. Design and synthesis of colorimetric sensor based on dithizone@TiO2/poly (tert-butyl acrylate-acrylic acid) nanocomposite for fast visual detection of mercury, lead and cadmium ions in aqueous media. Environmental Nanotechnology, Monitoring & Management 2022;18:100670. [DOI: 10.1016/j.enmm.2022.100670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ghanei-motlagh M, Karami C, Taher MA, Hosseini-nasab SJ. Stripping voltammetric detection of copper ions using carbon paste electrode modified with aza-crown ether capped gold nanoparticles and reduced graphene oxide. RSC Adv 2016;6:89167-75. [DOI: 10.1039/c6ra10267k] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]