BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schimmang T, Pirvola U. Coupling the cell cycle to development and regeneration of the inner ear. Semin Cell Dev Biol 2013;24:507-13. [PMID: 23665151 DOI: 10.1016/j.semcdb.2013.04.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Cheah KS, Xu P. SOX2 in Neurosensory Fate Determination and Differentiation in the Inner Ear. Sox2. Elsevier; 2016. pp. 263-80. [DOI: 10.1016/b978-0-12-800352-7.00015-3] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
2 Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015;142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 11.3] [Reference Citation Analysis]
3 Jahan I, Pan N, Fritzsch B. Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context. Front Cell Neurosci 2015;9:26. [PMID: 25698932 DOI: 10.3389/fncel.2015.00026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
4 Hou S, Chen J, Yang J. Autophagy precedes apoptosis during degeneration of the Kölliker's organ in the development of rat cochlea. Eur J Histochem 2019;63. [PMID: 31189296 DOI: 10.4081/ejh.2019.3025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
5 Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021;10:47. [PMID: 34131657 DOI: 10.12703/r/10-47] [Reference Citation Analysis]
6 Golden EJ, Benito-Gonzalez A, Doetzlhofer A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc Natl Acad Sci U S A 2015;112:E3864-73. [PMID: 26139524 DOI: 10.1073/pnas.1501077112] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
7 Crispino G, Galindo Ramirez F, Campioni M, Zorzi V, Praetorius M, Di Pasquale G, Chiorini JA, Mammano F. In vivo genetic manipulation of inner ear connexin expression by bovine adeno-associated viral vectors. Sci Rep 2017;7:6567. [PMID: 28779115 DOI: 10.1038/s41598-017-06759-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
8 Jahan I, Pan N, Elliott KL, Fritzsch B. The quest for restoring hearing: Understanding ear development more completely. Bioessays 2015;37:1016-27. [PMID: 26208302 DOI: 10.1002/bies.201500044] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
9 Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014;243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 8.3] [Reference Citation Analysis]
10 Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM Jr, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020;59:101042. [PMID: 32173536 DOI: 10.1016/j.arr.2020.101042] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
11 Tarang S, Pyakurel U, Weston MD, Vijayakumar S, Jones T, Wagner KU, Rocha-Sanchez SM. Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear. Hear Res 2020;390:107951. [PMID: 32244147 DOI: 10.1016/j.heares.2020.107951] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Laos M, Anttonen T, Kirjavainen A, af Hällström T, Laiho M, Pirvola U. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY) 2014;6:496-510. [PMID: 25063730 DOI: 10.18632/aging.100668] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
13 Mammano F, Bortolozzi M. Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2018;70:117-26. [PMID: 28578918 DOI: 10.1016/j.ceca.2017.05.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
14 Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. In: Cramer KS, Coffin AB, Fay RR, Popper AN, editors. Auditory Development and Plasticity. Cham: Springer International Publishing; 2017. pp. 17-48. [DOI: 10.1007/978-3-319-21530-3_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Silva SA, Maass JC. p27Kip1 down-regulation as achieved by two clinically feasible means did not induce proliferation of supporting cells in the rat neonatal cochlea in vivo. Hear Res 2019;373:10-22. [PMID: 30578960 DOI: 10.1016/j.heares.2018.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Fritzsch B, Kopecky BJ, Duncan JS. Development of the Mammalian ‘Vestibular’ System. Development of Auditory and Vestibular Systems. Elsevier; 2014. pp. 339-67. [DOI: 10.1016/b978-0-12-408088-1.00012-9] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
17 Basch ML, Brown RM 2nd, Jen HI, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016;228:233-54. [PMID: 26052920 DOI: 10.1111/joa.12314] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 10.2] [Reference Citation Analysis]