BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Science of The Total Environment 2019;669:258-72. [DOI: 10.1016/j.scitotenv.2019.03.104] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Rezapour S, Asadzadeh F, Barin M, Nouri A. Organic amendments improved the chemical–nutritional quality of saline-sodic soils. Int J Environ Sci Technol 2022;19:4659-72. [DOI: 10.1007/s13762-021-03599-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Růžičková J, Raclavská H, Kucbel M, Grobelak A, Šafář M, Raclavský K, Švédová B, Juchelková D, Moustakas K. The potential environmental risks of the utilization of composts from household food waste. Environ Sci Pollut Res Int 2021;28:24663-79. [PMID: 32705551 DOI: 10.1007/s11356-020-09916-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang Z, Hu M, Bian B, Yang Z, Yang W, Zhang L. Full-scale thermophilic aerobic co-composting of blue-green algae sludge with livestock faeces and straw. Science of The Total Environment 2021;753:142079. [DOI: 10.1016/j.scitotenv.2020.142079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
4 Abakumov E, Zverev A, Suleymanov A, Suleymanov R. Microbiome of post-technogenic soils of quarries in the Republic of Bashkortostan (Russia). Open Agriculture 2020;5:529-38. [DOI: 10.1515/opag-2020-0053] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Zanganeh F, Heidari A, Sepehr A, Rohani A. Bioaugmentation and bioaugmentation-assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L.). Environ Sci Pollut Res Int 2021. [PMID: 34432211 DOI: 10.1007/s11356-021-16061-0] [Reference Citation Analysis]
6 Alvarez AL, Weyers SL, Goemann HM, Peyton BM, Gardner RD. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research 2021;54:102200. [DOI: 10.1016/j.algal.2021.102200] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 29.0] [Reference Citation Analysis]
7 Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J Environ Manage 2021;280:111736. [PMID: 33298389 DOI: 10.1016/j.jenvman.2020.111736] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
8 Jaiswal B, Singh S, Agrawal SB, Agrawal M. Assessment of physiological, biochemical and yield responses of wheat plants under natural saline and non-saline field conditions. Physiol Mol Biol Plants 2021;27:2315-31. [PMID: 34744368 DOI: 10.1007/s12298-021-01070-7] [Reference Citation Analysis]
9 Xiang S, Lin R, Shang H, Xu Y, Zhang Z, Wu X, Zong F. Efficient Degradation of Phenoxyalkanoic Acid Herbicides by the Alkali-Tolerant Cupriavidus oxalaticus Strain X32. J Agric Food Chem 2020;68:3786-95. [PMID: 32133852 DOI: 10.1021/acs.jafc.9b05061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Lin H, Jiang X, Li B, Dong Y, Qian L. Soilless revegetation: An efficient means of improving physicochemical properties and reshaping microbial communities of high-salty gold mine tailings. Ecotoxicol Environ Saf 2021;207:111246. [PMID: 32927157 DOI: 10.1016/j.ecoenv.2020.111246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Li T, Li R, Zhou Q. The application and progress of bioelectrochemical systems (BESs) in soil remediation: A review. Green Energy & Environment 2021;6:50-65. [DOI: 10.1016/j.gee.2020.06.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
12 Liu D, Dong S, Bo K, Miao H, Li C, Zhang Y, Zhang S, Gu X. Identification of QTLs Controlling Salt Tolerance in Cucumber (Cucumis sativus L.) Seedlings. Plants (Basel) 2021;10:E85. [PMID: 33401544 DOI: 10.3390/plants10010085] [Reference Citation Analysis]
13 Poveda J. Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses. Crop Protection 2021;141:105450. [DOI: 10.1016/j.cropro.2020.105450] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Deb Majumder S, Das A. Development of a full-scale cost effective mango peel biochar-sand filter based wastewater treatment chamber in Patharpratima in West Bengal. Ecological Engineering 2022;177:106565. [DOI: 10.1016/j.ecoleng.2022.106565] [Reference Citation Analysis]
15 Amin AEAZ. Comparative effects of different kinds of biochar on ammonia volatilization and chemical properties of saline soil. Archives of Agronomy and Soil Science. [DOI: 10.1080/03650340.2022.2103550] [Reference Citation Analysis]
16 Brito Â, Rocha M, Kaštovský J, Vieira J, Vieira CP, Ramos V, Correia M, Santos M, Mota R, Roque J, Pissarra J, Melo P, Tamagnini P. A new cyanobacterial species with a protective effect on lettuce grown under salinity stress: Envisaging sustainable agriculture practices. J Appl Phycol. [DOI: 10.1007/s10811-022-02692-4] [Reference Citation Analysis]
17 Han X, Qu Y, Li D, Qiu Y, Yu Y, Feng Y. Remediation of saline-sodic soil by plant microbial desalination cell. Chemosphere 2021;277:130275. [PMID: 33774245 DOI: 10.1016/j.chemosphere.2021.130275] [Reference Citation Analysis]
18 Li D, Yuan Y, Cheng D, Zhao Q. Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. Bioresour Technol 2019;291:121783. [PMID: 31326682 DOI: 10.1016/j.biortech.2019.121783] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
19 Chen Y, Jiang Y, Chen Y, Feng W, Liu G, Yu C, Lian B, Zhong F, Zhang J. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis. PLoS One 2020;15:e0236129. [PMID: 32760076 DOI: 10.1371/journal.pone.0236129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Gr S, Yadav RK, Chatrath A, Gerard M, Tripathi K, Govindsamy V, Abraham G. Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants. J Appl Phycol 2021;33:3761-78. [DOI: 10.1007/s10811-021-02570-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Cheng D, Li X, Yuan Y, Zhao Q. Kinetic model for effects of simulated flue gas onto growth profiles of Chlorella sp. AE10 and Chlorella sp. Cv. Biotechnol Appl Biochem 2020;67:783-9. [PMID: 31584216 DOI: 10.1002/bab.1829] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
22 El-Nahhal Y, Safi M, Safi J. Salinity profile in coastal non-agricultural land in Gaza. Environ Sci Pollut Res Int 2020;27:8783-96. [PMID: 31912391 DOI: 10.1007/s11356-019-07514-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Sadeghi SH, Sadeghi Satri M, Kheirfam H, Zarei Darki B. Runoff and soil loss from small plots of erosion-prone marl soil inoculated with bacteria and cyanobacteria under real conditions. European Journal of Soil Biology 2020;101:103214. [DOI: 10.1016/j.ejsobi.2020.103214] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Hu X, Yang YC, Zhou K, Tian G, Liu B, He H, Zhang L, Cao Y, Bian B. Verification of agricultural cleaner production through rice-duck farming system and two-stage aerobic composting of typical organic waste. Journal of Cleaner Production 2022;337:130576. [DOI: 10.1016/j.jclepro.2022.130576] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zhou Z, Hua J, Xue J. Salinity drives shifts in soil microbial community composition and network complexity along vegetation community succession in coastal tidal flats. Estuarine, Coastal and Shelf Science 2022. [DOI: 10.1016/j.ecss.2022.108005] [Reference Citation Analysis]
26 Zahra Z, Choo DH, Lee H, Parveen A. Cyanobacteria: Review of Current Potentials and Applications. Environments 2020;7:13. [DOI: 10.3390/environments7020013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 8.5] [Reference Citation Analysis]
27 Taira H, Baba J, Togashi S, Berdiyar J, Yashima M, Inubushi K. Chemical characteristics of degraded soils in Uzbekistan and remediation by cyanobacteria. Nutr Cycl Agroecosyst 2021;120:193-203. [DOI: 10.1007/s10705-021-10140-x] [Reference Citation Analysis]
28 Rocha F, Esteban Lucas-borja M, Pereira P, Muñoz-rojas M. Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy 2020;10:1321. [DOI: 10.3390/agronomy10091321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhang J, Xiao Q, Guo T, Wang P. Effect of sodium chloride on the expression of genes involved in the salt tolerance of Bacillus sp. strain “SX4” isolated from salinized greenhouse soil. Open Chemistry 2021;19:9-22. [DOI: 10.1515/chem-2020-0181] [Reference Citation Analysis]
30 Bahareh Nowruzi, Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry 2021;192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Reference Citation Analysis]
31 Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019;20:E5693. [PMID: 31739392 DOI: 10.3390/ijms20225693] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
32 Zou Y, Zeng Q, Li H, Liu H, Lu Q. Emerging technologies of algae‐based wastewater remediation for bio‐fertilizer production: a promising pathway to sustainable agriculture. J Chem Technol Biotechnol 2021;96:551-63. [DOI: 10.1002/jctb.6602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Li H, La S, Zhang X, Gao L, Tian Y. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J 2021;15:2865-82. [PMID: 33875820 DOI: 10.1038/s41396-021-00974-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
34 Hafez M, Ge S, Tsivka KI, Popov AI, Rashad M. Enhancing Calcareous and Saline-Sodic Soils Fertility by Increasing Organic Matter Decomposition and Enzyme Activities: An Incubation Study. Communications in Soil Science and Plant Analysis. [DOI: 10.1080/00103624.2022.2071930] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]