BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Muñoz-rojas M, Román J, Roncero-ramos B, Erickson T, Merritt D, Aguila-carricondo P, Cantón Y. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of The Total Environment 2018;636:1149-54. [DOI: 10.1016/j.scitotenv.2018.04.265] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Qi X, Xiao S, Chen X, Ali I, Gou J, Wang D, Zhu B, Zhu W, Shang R, Han M. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. J Hazard Mater 2022;436:129147. [PMID: 35643000 DOI: 10.1016/j.jhazmat.2022.129147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Schultz NL, Sluiter IRK, Allen GG, Machado-de-lima NM, Muñoz-rojas M. Biocrust Amendments to Topsoils Facilitate Biocrust Restoration in a Post-mining Arid Environment. Front Microbiol 2022;13:882673. [DOI: 10.3389/fmicb.2022.882673] [Reference Citation Analysis]
3 Lv Y, Feng Y, Lv C, Liu X. LIPID PEROXIDATION AND ANTIOXIDANT RESPONSES OF MICROCOLEUS VAGINATUS WITH THE AID OF ATTAPULGITE-BASED NANOCOPMPOSITE TO WIND STRESS. Environ Technol 2022;:1-20. [PMID: 35796065 DOI: 10.1080/09593330.2022.2099313] [Reference Citation Analysis]
4 Kheirfam H, Roohi M. Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts. Front Earth Sci . [DOI: 10.1007/s11707-021-0951-4] [Reference Citation Analysis]
5 Rossi F, Mugnai G, De Philippis R. Cyanobacterial biocrust induction: A comprehensive review on a soil rehabilitation-effective biotechnology. Geoderma 2022;415:115766. [DOI: 10.1016/j.geoderma.2022.115766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Martyn TE, Barberán A, Blankinship JC, Miller M, Yang B, Kline A, Gornish ES. Rock structures improve seedling establishment, litter catchment, fungal richness, and soil moisture in the first year after installation. Environ Manage 2022. [PMID: 35487980 DOI: 10.1007/s00267-022-01651-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Maggioli L, Rodríguez-caballero E, Cantón Y, Rodríguez-lozano B, Chamizo S. Design Optimization of Biocrust-Plant Spatial Configuration for Dry Ecosystem Restoration Using Water Redistribution and Erosion Models. Front Ecol Evol 2022;10:765148. [DOI: 10.3389/fevo.2022.765148] [Reference Citation Analysis]
8 Karimi A, Tahmourespour A, Hoodaji M. The formation of biocrust and improvement of soil properties by the exopolysaccharide-producing cyanobacterium: a biogeotechnological study. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02336-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Jiménez-gonzález MA, Machado de Lima N, Chilton AM, Almendros G, Muñoz-rojas M. Biocrust cyanobacteria inoculants biomineralize gypsum and preserve indigenous bacterial communities in dryland topsoil. Geoderma 2022;406:115527. [DOI: 10.1016/j.geoderma.2021.115527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhang Y, Hu Y, You Z, Li Z, Kong M, Han M, Liu Z, Zhang J, Yao Y. Soil Ventilation Benefited Strawberry Growth via Microbial Communities and Nutrient Cycling Under High-Density Planting. Front Microbiol 2021;12:666982. [PMID: 34733241 DOI: 10.3389/fmicb.2021.666982] [Reference Citation Analysis]
11 Gr S, Yadav RK, Chatrath A, Gerard M, Tripathi K, Govindsamy V, Abraham G. Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants. J Appl Phycol 2021;33:3761-78. [DOI: 10.1007/s10811-021-02570-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Young KE, Reed SC, Ferrenberg S, Faist A, Winkler DE, Cort C, Darrouzet-Nardi A. Incorporating Biogeochemistry into Dryland Restoration. Bioscience 2021;71:907-17. [PMID: 34483747 DOI: 10.1093/biosci/biab043] [Reference Citation Analysis]
13 Zanganeh F, Heidari A, Sepehr A, Rohani A. Bioaugmentation and bioaugmentation-assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L.). Environ Sci Pollut Res Int 2021. [PMID: 34432211 DOI: 10.1007/s11356-021-16061-0] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Paz A, Gagen EJ, Levett A, Southam G. Ferrugination of biocrusts grown on crushed ferricrete: Potential for slope stabilisation. Ore Geology Reviews 2021;135:104239. [DOI: 10.1016/j.oregeorev.2021.104239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tang K, Yuan B, Jia L, Pan X, Feng F, Jin K. Spatial and temporal distribution of aerobic anoxygenic phototrophic bacteria: key functional groups in biological soil crusts. Environ Microbiol 2021;23:3554-67. [PMID: 33687799 DOI: 10.1111/1462-2920.15459] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ 2021;794:148636. [PMID: 34323759 DOI: 10.1016/j.scitotenv.2021.148636] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Zhao K, Zhang B, Li J, Li B, Wu Z. The autotrophic community across developmental stages of biocrusts in the Gurbantunggut Desert. Geoderma 2021;388:114927. [DOI: 10.1016/j.geoderma.2021.114927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sharma V, Prasanna R, Hossain F, Muthusamy V, Nain L, Shivay YS, Kumar S. Cyanobacterial inoculation as resource conserving options for improving the soil nutrient availability and growth of maize genotypes. Arch Microbiol 2021;203:2393-409. [PMID: 33661314 DOI: 10.1007/s00203-021-02223-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Machado de Lima NM, Muñoz-rojas M, Vázquez-campos X, Branco LHZ. Biocrust cyanobacterial composition, diversity, and environmental drivers in two contrasting climatic regions in Brazil. Geoderma 2021;386:114914. [DOI: 10.1016/j.geoderma.2020.114914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Román J, Chamizo S, Roncero-ramos B, Adessi A, De Philippis R, Cantón Y. Overcoming field barriers to restore dryland soils by cyanobacteria inoculation. Soil and Tillage Research 2021;207:104799. [DOI: 10.1016/j.still.2020.104799] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
21 Zhang Y, Han M, Song M, Tian J, Song B, Hu Y, Zhang J, Yao Y. Intercropping With Aromatic Plants Increased the Soil Organic Matter Content and Changed the Microbial Community in a Pear Orchard. Front Microbiol 2021;12:616932. [PMID: 33643243 DOI: 10.3389/fmicb.2021.616932] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
22 Román J, Roncero-ramos B, Rodríguez-caballero E, Chamizo S, Cantón Y. Effect of water availability on induced cyanobacterial biocrust development. CATENA 2021;197:104988. [DOI: 10.1016/j.catena.2020.104988] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
23 Li C, Jia Z, Zhai L, Zhang B, Peng X, Liu X, Zhang J. Effects of Mineral-Solubilizing Microorganisms on Root Growth, Soil Nutrient Content, and Enzyme Activities in the Rhizosphere Soil of Robinia pseudoacacia. Forests 2021;12:60. [DOI: 10.3390/f12010060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Masarei MI, Erickson TE, Merritt DJ, Hobbs RJ, Guzzomi AL. Engineering restoration for the future. Ecological Engineering 2021;159:106103. [DOI: 10.1016/j.ecoleng.2020.106103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
25 Stock E, Standish RJ, Muñoz-rojas M, Bell RW, Erickson TE. Field-Deployed Extruded Seed Pellets Show Promise for Perennial Grass Establishment in Arid Zone Mine Rehabilitation. Front Ecol Evol 2020;8:576125. [DOI: 10.3389/fevo.2020.576125] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Rossi F. Beneficial biofilms for land rehabilitation and fertilization. FEMS Microbiol Lett 2020;367:fnaa184. [PMID: 33175104 DOI: 10.1093/femsle/fnaa184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
27 Ahirwal J, Pandey VC. Restoration of mine degraded land for sustainable environmental development. Restor Ecol 2021;29. [DOI: 10.1111/rec.13268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
28 Chamizo S, Adessi A, Torzillo G, De Philippis R. Exopolysaccharide Features Influence Growth Success in Biocrust-forming Cyanobacteria, Moving From Liquid Culture to Sand Microcosms. Front Microbiol 2020;11:568224. [PMID: 33193159 DOI: 10.3389/fmicb.2020.568224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sadeghi SH, Sadeghi Satri M, Kheirfam H, Zarei Darki B. Runoff and soil loss from small plots of erosion-prone marl soil inoculated with bacteria and cyanobacteria under real conditions. European Journal of Soil Biology 2020;101:103214. [DOI: 10.1016/j.ejsobi.2020.103214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
30 Arias DM, Uggetti E, García J. Assessing the potential of soil cyanobacteria for simultaneous wastewater treatment and carbohydrate-enriched biomass production. Algal Research 2020;51:102042. [DOI: 10.1016/j.algal.2020.102042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
31 Román JR, Chilton AM, Cantón Y, Muñoz-Rojas M. Assessing the viability of cyanobacteria pellets for application in arid land restoration. J Environ Manage 2020;270:110795. [PMID: 32721290 DOI: 10.1016/j.jenvman.2020.110795] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
32 Lin H, Jiang X, Li B, Dong Y, Qian L. Soilless revegetation: An efficient means of improving physicochemical properties and reshaping microbial communities of high-salty gold mine tailings. Ecotoxicol Environ Saf 2021;207:111246. [PMID: 32927157 DOI: 10.1016/j.ecoenv.2020.111246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
33 Rocha F, Esteban Lucas-borja M, Pereira P, Muñoz-rojas M. Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy 2020;10:1321. [DOI: 10.3390/agronomy10091321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR. Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts. Sci Total Environ 2020;745:140970. [PMID: 32731072 DOI: 10.1016/j.scitotenv.2020.140970] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Roncero-ramos B, Muñoz-martín M, Cantón Y, Chamizo S, Rodríguez-caballero E, Mateo P. Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil Biology and Biochemistry 2020;146:107824. [DOI: 10.1016/j.soilbio.2020.107824] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
36 Duncan C, Good MK, Sluiter I, Cook S, Schultz NL. Soil reconstruction after mining fails to restore soil function in an Australian arid woodland. Restor Ecol 2020;28. [DOI: 10.1111/rec.13166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
37 Sadeghi SH, Kheirfam H, Zarei Darki B. Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. Journal of Hydrology 2020;585:124814. [DOI: 10.1016/j.jhydrol.2020.124814] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
38 Pan F, Han X, Zou W, Wang C, Zhang Z, Liu H, Xu Y. Shifts of bacterial community structure and function in long-term soybean monoculture. Archives of Agronomy and Soil Science 2021;67:793-808. [DOI: 10.1080/03650340.2020.1759797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
39 Kheirfam H, Asadzadeh F. Stabilizing sand from dried-up lakebeds against wind erosion by accelerating biological soil crust development. European Journal of Soil Biology 2020;98:103189. [DOI: 10.1016/j.ejsobi.2020.103189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
40 Djemiel C, Plassard D, Terrat S, Crouzet O, Sauze J, Mondy S, Nowak V, Wingate L, Ogée J, Maron PA. µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria. Sci Rep 2020;10:5915. [PMID: 32246067 DOI: 10.1038/s41598-020-62555-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kheirfam H, Sadeghi SH, Zarei Darki B. Soil conservation in an abandoned agricultural rain-fed land through inoculation of cyanobacteria. CATENA 2020;187:104341. [DOI: 10.1016/j.catena.2019.104341] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
42 Kheirfam H, Roohi M. Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Sci Total Environ 2020;706:136036. [PMID: 31846874 DOI: 10.1016/j.scitotenv.2019.136036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
43 Li Z, Xiao J, Chen C, Zhao L, Wu Z, Liu L, Cai D. Promoting desert biocrust formation using aquatic cyanobacteria with the aid of MOF-based nanocomposite. Science of The Total Environment 2020;708:134824. [DOI: 10.1016/j.scitotenv.2019.134824] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
44 Faist AM, Antoninka AJ, Belnap J, Bowker MA, Duniway MC, Garcia‐pichel F, Nelson C, Reed SC, Giraldo‐silva A, Velasco‐ayuso S, Barger NN. Inoculation and habitat amelioration efforts in biological soil crust recovery vary by desert and soil texture. Restor Ecol 2020;28. [DOI: 10.1111/rec.13087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
45 Chamizo S, Adessi A, Certini G, De Philippis R. Cyanobacteria inoculation as a potential tool for stabilization of burned soils. Restor Ecol 2020;28. [DOI: 10.1111/rec.13092] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
46 Mugnai G, Rossi F, Chamizo S, Adessi A, De Philippis R. The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii. CATENA 2020;184:104248. [DOI: 10.1016/j.catena.2019.104248] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
47 Chua M, Erickson TE, Merritt DJ, Chilton AM, Ooi MKJ, Muñoz‐rojas M. Bio‐priming seeds with cyanobacteria: effects on native plant growth and soil properties. Restor Ecol 2020;28. [DOI: 10.1111/rec.13040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
48 Moreira-Grez B, Tam K, Cross AT, Yong JWH, Kumaresan D, Nevill P, Farrell M, Whiteley AS. The Bacterial Microbiome Associated With Arid Biocrusts and the Biogeochemical Influence of Biocrusts Upon the Underlying Soil. Front Microbiol 2019;10:2143. [PMID: 31608023 DOI: 10.3389/fmicb.2019.02143] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
49 Roncero-ramos B, Román JR, Rodríguez-caballero E, Chamizo S, Águila-carricondo P, Mateo P, Cantón Y. Assessing the influence of soil abiotic and biotic factors on Nostoc commune inoculation success. Plant Soil 2019;444:57-70. [DOI: 10.1007/s11104-019-04239-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
50 Román JR, Rodríguez-caballero E, Rodríguez-lozano B, Roncero-ramos B, Chamizo S, Águila-carricondo P, Cantón Y. Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts. Remote Sensing 2019;11:1350. [DOI: 10.3390/rs11111350] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
51 Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Science of The Total Environment 2019;669:258-72. [DOI: 10.1016/j.scitotenv.2019.03.104] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 10.7] [Reference Citation Analysis]
52 Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl Microbiol Biotechnol 2019;103:4709-21. [PMID: 31030286 DOI: 10.1007/s00253-019-09811-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
53 Roncero-ramos B, Román JR, Gómez-serrano C, Cantón Y, Acién FG. Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol 2019;31:2217-30. [DOI: 10.1007/s10811-019-1749-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
54 Xiao B, Sun F, Hu K, Kidron GJ. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. Journal of Hydrology 2019;568:792-802. [DOI: 10.1016/j.jhydrol.2018.11.051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
55 Winkler DE, Backer DM, Belnap J, Bradford JB, Butterfield BJ, Copeland SM, Duniway MC, Faist AM, Fick SE, Jensen SL, Kramer AT, Mann R, Massatti RT, Mccormick ML, Munson SM, Olwell P, Parr SD, Pfennigwerth AA, Pilmanis AM, Richardson BA, Samuel E, See K, Young KE, Reed SC. Beyond traditional ecological restoration on the Colorado Plateau: Colorado Plateau ecological restoration. Restor Ecol 2018;26:1055-60. [DOI: 10.1111/rec.12876] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
56 Perring MP, Erickson TE, Brancalion PHS. Rocketing restoration: enabling the upscaling of ecological restoration in the Anthropocene: Upscaling ecological restoration in the Anthropocene. Restor Ecol 2018;26:1017-23. [DOI: 10.1111/rec.12871] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]