BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pannérec A, Marazzi G, Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 2012;18:599-606. [PMID: 22877884 DOI: 10.1016/j.molmed.2012.07.004] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Li Q, Lin J, Rosen SM, Zhang T, Kazerounian S, Luo S, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. Am J Pathol 2020;190:2453-63. [PMID: 32919980 DOI: 10.1016/j.ajpath.2020.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zheng YY, Wang Y, Chen X, Wei LS, Wang H, Tao T, Zhou YW, Jiang ZH, Qiu TT, Sun ZY, Sun J, Wang P, Zhao W, Li YQ, Chen HQ, Zhu MS, Zhang XN. The thymus regulates skeletal muscle regeneration by directly promoting satellite cell expansion. J Biol Chem 2021;:101516. [PMID: 34942145 DOI: 10.1016/j.jbc.2021.101516] [Reference Citation Analysis]
3 Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, Coletti D, Conway de Macario E, Macario AJ, Cappello F, Adamo S, Farina F, Zummo G, Di Felice V. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep 2016;6:19781. [PMID: 26812922 DOI: 10.1038/srep19781] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 6.5] [Reference Citation Analysis]
4 Pierantozzi E, Vezzani B, Badin M, Curina C, Severi FM, Petraglia F, Randazzo D, Rossi D, Sorrentino V. Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability. Stem Cells Dev 2016;25:674-86. [PMID: 26956507 DOI: 10.1089/scd.2015.0336] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
5 Biferali B, Proietti D, Mozzetta C, Madaro L. Fibro-Adipogenic Progenitors Cross-Talk in Skeletal Muscle: The Social Network. Front Physiol 2019;10:1074. [PMID: 31496956 DOI: 10.3389/fphys.2019.01074] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 17.7] [Reference Citation Analysis]
6 Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 2014;14:2. [PMID: 24472470 DOI: 10.1186/1471-213X-14-2] [Cited by in Crossref: 78] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
7 Fanzani A, Monti E, Donato R, Sorci G. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 2013;19:546-54. [PMID: 23890422 DOI: 10.1016/j.molmed.2013.07.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
8 Segalés J, Perdiguero E, Muñoz-Cánoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 2015;282:1571-88. [PMID: 25251895 DOI: 10.1111/febs.13065] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
9 Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019;37:1246-62. [PMID: 30604468 DOI: 10.1002/jor.24212] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
10 D'Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 2013;4:379. [PMID: 24391596 DOI: 10.3389/fphys.2013.00379] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 8.3] [Reference Citation Analysis]
11 Codenotti S, Poli M, Asperti M, Zizioli D, Marampon F, Fanzani A. Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines. J Cancer Res Clin Oncol 2018;144:1717-30. [DOI: 10.1007/s00432-018-2699-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
12 Podbregar M, Lainscak M, Prelovsek O, Mars T. Cytokine response of cultured skeletal muscle cells stimulated with proinflammatory factors depends on differentiation stage. ScientificWorldJournal. 2013;2013:617170. [PMID: 23509435 DOI: 10.1155/2013/617170] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
13 Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021;17:878-99. [PMID: 33349909 DOI: 10.1007/s12015-020-10100-y] [Reference Citation Analysis]
14 Ravalli S, Federico C, Lauretta G, Saccone S, Pricoco E, Roggio F, Di Rosa M, Maugeri G, Musumeci G. Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents. Biomedicines 2021;9:807. [PMID: 34356871 DOI: 10.3390/biomedicines9070807] [Reference Citation Analysis]
15 Vallecillo-García P, Orgeur M, Vom Hofe-Schneider S, Stumm J, Kappert V, Ibrahim DM, Börno ST, Hayashi S, Relaix F, Hildebrandt K, Sengle G, Koch M, Timmermann B, Marazzi G, Sassoon DA, Duprez D, Stricker S. Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development. Nat Commun 2017;8:1218. [PMID: 29084951 DOI: 10.1038/s41467-017-01120-3] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
16 Faggi F, Chiarelli N, Colombi M, Mitola S, Ronca R, Madaro L, Bouche M, Poliani PL, Vezzoli M, Longhena F, Monti E, Salani B, Maggi D, Keller C, Fanzani A. Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Lab Invest 2015;95:585-602. [PMID: 25822667 DOI: 10.1038/labinvest.2015.45] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
17 Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020;331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Lieber RL, Binder-Markey BI. Biochemical and structural basis of the passive mechanical properties of whole skeletal muscle. J Physiol 2021;599:3809-23. [PMID: 34101193 DOI: 10.1113/JP280867] [Reference Citation Analysis]
19 Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, Nakagata N, Nishinakamura R, Valasek P, Yamada G. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 2014;155:2467-79. [PMID: 24742196 DOI: 10.1210/en.2014-1008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
20 Sun K, Lai EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013;14:535-548. [PMID: 23817310 DOI: 10.1038/nrg3471] [Cited by in Crossref: 230] [Cited by in F6Publishing: 214] [Article Influence: 25.6] [Reference Citation Analysis]
21 Purohit G, Dhawan J. Adult Muscle Stem Cells: Exploring the Links Between Systemic and Cellular Metabolism. Front Cell Dev Biol 2019;7:312. [PMID: 31921837 DOI: 10.3389/fcell.2019.00312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hidalgo San Jose L, Stephens P, Song B, Barrow D. Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation. Tissue Eng Part C Methods 2018;24:158-70. [PMID: 29258387 DOI: 10.1089/ten.TEC.2017.0368] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
23 Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KA, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis. 2016;21:252-268. [PMID: 26687129 DOI: 10.1007/s10495-015-1203-4] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
24 Landim-Vieira M, Schipper JM, Pinto JR, Chase PB. Cardiomyocyte nuclearity and ploidy: when is double trouble? J Muscle Res Cell Motil 2020;41:329-40. [PMID: 31317457 DOI: 10.1007/s10974-019-09545-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Talbert EE, Guttridge DC. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol 2016;54:82-91. [PMID: 26385617 DOI: 10.1016/j.semcdb.2015.09.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
26 Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015;72:1663-77. [PMID: 25572293 DOI: 10.1007/s00018-014-1819-5] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
27 Cittadella Vigodarzere G, Mantero S. Skeletal muscle tissue engineering: strategies for volumetric constructs. Front Physiol 2014;5:362. [PMID: 25295011 DOI: 10.3389/fphys.2014.00362] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 7.5] [Reference Citation Analysis]
28 Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current Methods for Skeletal Muscle Tissue Repair and Regeneration. Biomed Res Int 2018;2018:1984879. [PMID: 29850487 DOI: 10.1155/2018/1984879] [Cited by in Crossref: 24] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
29 Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics 2015;16:177. [PMID: 25887672 DOI: 10.1186/s12864-015-1403-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
30 Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013;14:1062-72. [PMID: 24232182 DOI: 10.1038/embor.2013.182] [Cited by in Crossref: 193] [Cited by in F6Publishing: 175] [Article Influence: 21.4] [Reference Citation Analysis]
31 Skuk D, Tremblay JP. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin Biol Ther 2015;15:1307-19. [PMID: 26076715 DOI: 10.1517/14712598.2015.1057564] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
32 Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, Shiojima I, Grosse Kreymborg K, Renz H, Walsh K, Braun T. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 2013;1:397-410. [PMID: 24286028 DOI: 10.1016/j.stemcr.2013.09.004] [Cited by in Crossref: 111] [Cited by in F6Publishing: 93] [Article Influence: 12.3] [Reference Citation Analysis]
33 García-prat L, Sousa-victor P, Muñoz-cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013;280:4051-62. [DOI: 10.1111/febs.12221] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 9.7] [Reference Citation Analysis]
34 Teixeira E, Duarte JA. Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Med 2016;46:783-92. [DOI: 10.1007/s40279-015-0462-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
35 Moresi V, Marroncelli N, Coletti D, Adamo S. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2015;1849:309-16. [DOI: 10.1016/j.bbagrm.2015.01.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
36 Hesse E, Schröder S, Brandt D, Pamperin J, Saito H, Taipaleenmäki H. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI Insight 2019;5:125543. [PMID: 30965315 DOI: 10.1172/jci.insight.125543] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
37 Vezzani B, Pierantozzi E, Sorrentino V. Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells Dev. 2016;25:1549-1558. [PMID: 27549576 DOI: 10.1089/scd.2016.0177] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
38 Caseiro A, Pereira T, Bártolo P, Santos J, Luís A, Maurício A. Mesenchymal Stem Cells and Biomaterials Systems – Perspectives for Skeletal Muscle Tissue Repair and Regeneration. Procedia Engineering 2015;110:90-7. [DOI: 10.1016/j.proeng.2015.07.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
39 Lapin MR, Gonzalez JM, Johnson SE. Substrate elasticity affects bovine satellite cell activation kinetics in vitro. J Anim Sci 2013;91:2083-90. [PMID: 23463548 DOI: 10.2527/jas.2012-5732] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
40 Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721-733. [PMID: 29499228 DOI: 10.1016/j.bbamcr.2018.02.010] [Cited by in Crossref: 302] [Cited by in F6Publishing: 301] [Article Influence: 75.5] [Reference Citation Analysis]
41 Tanaka S, Hamada Y, Yokoyama Y, Yamamoto H, Kogo M. Osteopontin-derived synthetic peptide SVVYGLR upregulates functional regeneration of oral and maxillofacial soft-tissue injury. Jpn Dent Sci Rev 2021;57:174-81. [PMID: 34630775 DOI: 10.1016/j.jdsr.2021.09.002] [Reference Citation Analysis]
42 Petrilli LL, Riccio F, Giuliani G, Palma A, Gargioli C, Vumbaca S, Faron M, Palmieri G, Pasquini L, Sacco F, Cesareni G, Castagnoli L, Fuoco C. Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. J Clin Med 2021;10:823. [PMID: 33671425 DOI: 10.3390/jcm10040823] [Reference Citation Analysis]
43 Park SW. Sarcopenia and neurosurgery. J Korean Neurosurg Soc 2014;56:79-85. [PMID: 25328642 DOI: 10.3340/jkns.2014.56.2.79] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
44 Fujimaki S, Machida M, Hidaka R, Asashima M, Takemasa T, Kuwabara T. Intrinsic ability of adult stem cell in skeletal muscle: an effective and replenishable resource to the establishment of pluripotent stem cells. Stem Cells Int 2013;2013:420164. [PMID: 23818907 DOI: 10.1155/2013/420164] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
45 Donati C, Cencetti F, Bruni P. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol. 2013;4:338. [PMID: 24324439 DOI: 10.3389/fphys.2013.00338] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
46 Kyryachenko S, Formicola L, Ollitrault D, Correra R, Denizot A, Kyrylkova K, Marazzi G, Sassoon D. The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. Encyclopedia of Cell Biology. Elsevier; 2016. pp. 794-806. [DOI: 10.1016/b978-0-12-394447-4.30118-3] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
47 Stumm J, Vallecillo-García P, Vom Hofe-Schneider S, Ollitrault D, Schrewe H, Economides AN, Marazzi G, Sassoon DA, Stricker S. Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury. Stem Cell Res 2018;32:8-16. [PMID: 30149291 DOI: 10.1016/j.scr.2018.08.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
48 Lieber RL, Fridén J. Muscle contracture and passive mechanics in cerebral palsy. J Appl Physiol (1985) 2019;126:1492-501. [PMID: 30571285 DOI: 10.1152/japplphysiol.00278.2018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
49 Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chrétien F, Mounier R, Germain S, Chazaud B. Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports 2017;9:2018-33. [PMID: 29198825 DOI: 10.1016/j.stemcr.2017.10.027] [Cited by in Crossref: 90] [Cited by in F6Publishing: 80] [Article Influence: 18.0] [Reference Citation Analysis]
50 Formicola L, Marazzi G, Sassoon DA. The extraocular muscle stem cell niche is resistant to ageing and disease. Front Aging Neurosci 2014;6:328. [PMID: 25520657 DOI: 10.3389/fnagi.2014.00328] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
51 Chandrashekar P, Manickam R, Ge X, Bonala S, McFarlane C, Sharma M, Wahli W, Kambadur R. Inactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis. Am J Physiol Endocrinol Metab 2015;309:E122-31. [PMID: 25921579 DOI: 10.1152/ajpendo.00586.2014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
52 Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014;50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
53 André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018;9:368. [PMID: 29892259 DOI: 10.3389/fneur.2018.00368] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
54 Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018;9:1255-68. [PMID: 30499235 DOI: 10.1002/jcsm.12363] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
55 He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P, Shah N, Butchbach ME, Ladner K, Adamo S, Rudnicki MA, Keller C, Coletti D, Montanaro F, Guttridge DC. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest 2013;123:4821-35. [PMID: 24084740 DOI: 10.1172/JCI68523] [Cited by in Crossref: 197] [Cited by in F6Publishing: 153] [Article Influence: 24.6] [Reference Citation Analysis]
56 Ahuja N, Awad K, Peper S, Brotto M, Varanasi V. Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021;762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Reference Citation Analysis]
57 Formicola L, Pannérec A, Correra RM, Gayraud-Morel B, Ollitrault D, Besson V, Tajbakhsh S, Lachey J, Seehra JS, Marazzi G, Sassoon DA. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Front Physiol 2018;9:515. [PMID: 29881353 DOI: 10.3389/fphys.2018.00515] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
58 Lewis FC, Henning BJ, Marazzi G, Sassoon D, Ellison GM, Nadal-Ginard B. Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells: isolation, characterization, and long-term culture. Stem Cells Transl Med 2014;3:702-12. [PMID: 24744394 DOI: 10.5966/sctm.2013-0174] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
59 Raveh-Amit H, Berzsenyi S, Vas V, Ye D, Dinnyes A. Tissue resident stem cells: till death do us part. Biogerontology. 2013;14:573-590. [PMID: 24085521 DOI: 10.1007/s10522-013-9469-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
60 Tedesco FS, Moyle LA, Perdiguero E. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle. In: Perdiguero E, Cornelison D, editors. Muscle Stem Cells. New York: Springer; 2017. pp. 129-47. [DOI: 10.1007/978-1-4939-6771-1_7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
61 Zhang J, Xiao Z, Qu C, Cui W, Wang X, Du J. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J Immunol 2014;193:5149-60. [PMID: 25339660 DOI: 10.4049/jimmunol.1303486] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 7.6] [Reference Citation Analysis]
62 Skuk D, Goulet M, Tremblay JP. Electroporation as a method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates. J Neuropathol Exp Neurol 2013;72:723-34. [PMID: 23860026 DOI: 10.1097/NEN.0b013e31829bac22] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
63 Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015;5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Cited by in Crossref: 220] [Cited by in F6Publishing: 203] [Article Influence: 36.7] [Reference Citation Analysis]
64 Lu A, Poddar M, Tang Y, Proto JD, Sohn J, Mu X, Oyster N, Wang B, Huard J. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum Mol Genet 2014;23:4786-800. [PMID: 24781208 DOI: 10.1093/hmg/ddu194] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
65 Huang P, Schulz TJ, Beauvais A, Tseng YH, Gussoni E. Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signalling. Nat Commun 2014;5:4063. [PMID: 24898859 DOI: 10.1038/ncomms5063] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
66 Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2018;126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
67 Bengal E, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Rejuvenating stem cells to restore muscle regeneration in aging. F1000Res 2017;6:76. [PMID: 28163911 DOI: 10.12688/f1000research.9846.1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
68 Riuzzi F, Beccafico S, Sagheddu R, Chiappalupi S, Giambanco I, Bereshchenko O, Riccardi C, Sorci G, Donato R. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Sci Rep 2017;7:12537. [PMID: 28970581 DOI: 10.1038/s41598-017-12880-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
69 Monge C, DiStasio N, Rossi T, Sébastien M, Sakai H, Kalman B, Boudou T, Tajbakhsh S, Marty I, Bigot A, Mouly V, Picart C. Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films. Stem Cell Res Ther 2017;8:104. [PMID: 28464938 DOI: 10.1186/s13287-017-0556-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
70 Montarras D, L'honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 2013;280:4036-50. [DOI: 10.1111/febs.12372] [Cited by in Crossref: 123] [Cited by in F6Publishing: 111] [Article Influence: 13.7] [Reference Citation Analysis]
71 Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015;44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 13.4] [Reference Citation Analysis]
72 Correra RM, Ollitrault D, Valente M, Mazzola A, Adalsteinsson BT, Ferguson-Smith AC, Marazzi G, Sassoon DA. The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal. Sci Rep 2018;8:14649. [PMID: 30279563 DOI: 10.1038/s41598-018-32941-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
73 Yaniz-galende E, Roux M, Nadaud S, Mougenot N, Bouvet M, Claude O, Lebreton G, Blanc C, Pinet F, Atassi F, Perret C, Dierick F, Dussaud S, Leprince P, Trégouët D, Marazzi G, Sassoon D, Hulot J. Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. Journal of the American College of Cardiology 2017;70:728-41. [DOI: 10.1016/j.jacc.2017.06.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
74 Rezza A, Sennett R, Rendl M. Adult stem cell niches: cellular and molecular components. Curr Top Dev Biol. 2014;107:333-372. [PMID: 24439812 DOI: 10.1016/b978-0-12-416022-4.00012-3] [Cited by in Crossref: 68] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
75 Hinds S, Tyhovych N, Sistrunk C, Terracio L. Improved tissue culture conditions for engineered skeletal muscle sheets. ScientificWorldJournal 2013;2013:370151. [PMID: 23533347 DOI: 10.1155/2013/370151] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
76 Zeng P, Han W, Li C, Li H, Zhu D, Zhang Y, Liu X. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice. Acta Biochim Biophys Sin (Shanghai) 2016;48:833-9. [PMID: 27563005 DOI: 10.1093/abbs/gmw077] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
77 Pannérec A, Formicola L, Besson V, Marazzi G, Sassoon DA. Defining skeletal muscle resident progenitors and their cell fate potentials. Development. 2013;140:2879-2891. [PMID: 23739133 DOI: 10.1242/dev.089326] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 10.3] [Reference Citation Analysis]
78 Mertens JP, Sugg KB, Lee JD, Larkin LM. Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 2014;9:89-100. [PMID: 24351009 DOI: 10.2217/rme.13.81] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 6.8] [Reference Citation Analysis]