BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 2014;26:1-20. [DOI: 10.1016/j.jksus.2013.05.001] [Cited by in Crossref: 909] [Cited by in F6Publishing: 294] [Article Influence: 113.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Lin H, Dong Y, Li B, Liu Y. Investigation on microbial community in remediation of lead-contaminated soil by Trifolium repensL. Ecotoxicology and Environmental Safety 2018;165:52-60. [DOI: 10.1016/j.ecoenv.2018.08.054] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
2 Yarzábal LA, Chica EJ, Quichimbo P. Microbial Diversity of Tropical Andean Soils and Low-Input Sustainable Agriculture Development. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A, editors. Agriculturally Important Microbes for Sustainable Agriculture. Singapore: Springer; 2017. pp. 207-34. [DOI: 10.1007/978-981-10-5589-8_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
3 Kaul S, Gupta S, Sharma T, Dhar MK. Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. In: Giri B, Prasad R, Varma A, editors. Root Biology. Cham: Springer International Publishing; 2018. pp. 341-65. [DOI: 10.1007/978-3-319-75910-4_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Thilagam R, Hemalatha N. Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria. J Appl Microbiol 2019;126:1835-49. [PMID: 30901131 DOI: 10.1111/jam.14259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
5 Salvatierra-martinez R, Arancibia W, Araya M, Aguilera S, Olalde V, Bravo J, Stoll A. Colonization ability as an indicator of enhanced biocontrol capacity-An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J Phytopathol 2018;166:601-12. [DOI: 10.1111/jph.12718] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E. A review: what is the spermosphere and how can it be studied? J Appl Microbiol 2015;119:1467-81. [PMID: 26332271 DOI: 10.1111/jam.12946] [Cited by in Crossref: 56] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
7 Kaur J, Anand V, Srivastava S, Bist V, Tripathi P, Naseem M, Nand S, Anshu, Khare P, Srivastava PK, Bisht S, Srivastava S. Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. Ecotoxicol Environ Saf 2020;195:110480. [PMID: 32203774 DOI: 10.1016/j.ecoenv.2020.110480] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu B, Wang X, Yang L, Yang H, Zeng H, Qiu Y, Wang C, Yu J, Li J, Xu D, He Z, Chen S. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Applied Soil Ecology 2016;103:1-12. [DOI: 10.1016/j.apsoil.2016.03.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
9 Moreno Reséndez A, García Mendoza V, Reyes Carrillo JL, Vásquez Arroyo J, Cano Ríos P. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Rev colomb biotecnol 2018;20:68-83. [DOI: 10.15446/rev.colomb.biote.v20n1.73707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kang S, Khan AL, Waqas M, Asaf S, Lee K, Park Y, Kim A, Khan MA, You Y, Lee I. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions 2019;14:416-23. [DOI: 10.1080/17429145.2019.1640294] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
11 Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 2016;183:26-41. [PMID: 26805616 DOI: 10.1016/j.micres.2015.11.007] [Cited by in Crossref: 245] [Cited by in F6Publishing: 101] [Article Influence: 35.0] [Reference Citation Analysis]
12 Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z. Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 2019;219:250-60. [PMID: 30543960 DOI: 10.1016/j.chemosphere.2018.12.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
13 Tsavkelova EA, Egorova MA, Leontieva MR, Malakho SG, Kolomeitseva GL, Netrusov AI. Dendrobium nobile Lindl. seed germination in co-cultures with diverse associated bacteria. Plant Growth Regul 2016;80:79-91. [DOI: 10.1007/s10725-016-0155-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
14 Yadav VK, Raghav M, Sharma SK, Bhagat N; ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Kushmaur, Maunath Bhanjan - 275 103, Uttar Pradesh, India, Amity Institute of Biotechnology, Amity University, Sector 125, Noida - 201 301, Uttar Pradesh, India, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Kushmaur, Maunath Bhanjan - 275 103, Uttar Pradesh, India, Amity Institute of Biotechnology, Amity University, Sector 125, Noida - 201 301, Uttar Pradesh, India. Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. J Pure Appl Microbiol 2020;14:73-92. [DOI: 10.22207/jpam.14.1.10] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P. Current Perspectives on Plant Growth-Promoting Rhizobacteria. J Plant Growth Regul 2016;35:877-902. [DOI: 10.1007/s00344-016-9583-4] [Cited by in Crossref: 74] [Cited by in F6Publishing: 24] [Article Influence: 12.3] [Reference Citation Analysis]
16 Toniutti MA, Fornasero LV, Albicoro FJ, Martini MC, Draghi W, Alvarez F, Lagares A, Pensiero JF, Del Papa MF. Nitrogen-fixing rhizobial strains isolated from Desmodium incanum DC in Argentina: Phylogeny, biodiversity and symbiotic ability. Syst Appl Microbiol 2017;40:297-307. [PMID: 28648724 DOI: 10.1016/j.syapm.2017.04.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
17 Gupta S, Pandey S. Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant Gene 2019;18:100175. [DOI: 10.1016/j.plgene.2019.100175] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
18 Keswani C, Prakash O, Bharti N, Vílchez JI, Sansinenea E, Lally RD, Borriss R, Singh SP, Gupta VK, Fraceto LF, de Lima R, Singh HB. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ 2019;690:841-52. [PMID: 31302549 DOI: 10.1016/j.scitotenv.2019.07.046] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 10.7] [Reference Citation Analysis]
19 Naser HM, Hanan E, Elsheery NI, Kalaji HM. Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera, L.) grown on reclaimed-salinized soil. Trees 2016;30:1149-61. [DOI: 10.1007/s00468-016-1353-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK. Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. In: Kumar A, Meena VS, editors. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Singapore: Springer; 2019. pp. 19-65. [DOI: 10.1007/978-981-13-7553-8_2] [Cited by in Crossref: 70] [Cited by in F6Publishing: 4] [Article Influence: 23.3] [Reference Citation Analysis]
21 Seneviratne M, Seneviratne G, Madawala H, Vithanage M. Role of Rhizospheric Microbes in Heavy Metal Uptake by Plants. In: Singh JS, Seneviratne G, editors. Agro-Environmental Sustainability. Cham: Springer International Publishing; 2017. pp. 147-63. [DOI: 10.1007/978-3-319-49727-3_8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
22 Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Ann Microbiol 2018;68:815-33. [DOI: 10.1007/s13213-018-1388-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 4.8] [Reference Citation Analysis]
23 Bakhshandeh E, Pirdashti H, Gilani Z. Application of mathematical models to describe rice growth and nutrients uptake in the presence of plant growth promoting microorganisms. Applied Soil Ecology 2018;124:171-84. [DOI: 10.1016/j.apsoil.2017.10.040] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Mishra J, Singh R, Arora NK. Plant Growth-Promoting Microbes: Diverse Roles in Agriculture and Environmental Sustainability. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics and Plant Health. Singapore: Springer; 2017. pp. 71-111. [DOI: 10.1007/978-981-10-3473-2_4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Enagbonma BJ, Babalola OO. Unveiling Plant-Beneficial Function as Seen in Bacteria Genes from Termite Mound Soil. J Soil Sci Plant Nutr 2020;20:421-30. [DOI: 10.1007/s42729-019-00124-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
26 Masmoudi F, Abdelmalek N, Tounsi S, Dunlap CA, Trigui M. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol Res 2019;229:126331. [PMID: 31521945 DOI: 10.1016/j.micres.2019.126331] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
27 Chaudhary T, Shukla P. Bioinoculant capability enhancement through metabolomics and systems biology approaches. Brief Funct Genomics 2018;18:159-68. [PMID: 31232454 DOI: 10.1093/bfgp/elz011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
28 Zandi P, Basu SK. Role of Plant Growth-Promoting Rhizobacteria (PGPR) as BioFertilizers in Stabilizing Agricultural Ecosystems. In: Nandwani D, editor. Organic Farming for Sustainable Agriculture. Cham: Springer International Publishing; 2016. pp. 71-87. [DOI: 10.1007/978-3-319-26803-3_3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
29 Liu K, Garrett C, Fadamiro H, Kloepper JW. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control 2016;99:8-13. [DOI: 10.1016/j.biocontrol.2016.04.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
30 Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. International Journal of Phytoremediation 2018;20:581-92. [DOI: 10.1080/15226514.2017.1405378] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
31 El Majdouli MA, Rbouh I, Bougrine S, El Benani B, El Imrani AA. Fireworks algorithm framework for Big Data optimization. Memetic Comp 2016;8:333-47. [DOI: 10.1007/s12293-016-0201-6] [Cited by in Crossref: 19] [Article Influence: 3.2] [Reference Citation Analysis]
32 Mukherjee A, Bhattacharjee P, Das R, Pal A, Paul AK. Endophytic bacteria with plant growth promoting abilities from Ophioglossum reticulatum L. AIMS Microbiol 2017;3:596-612. [PMID: 31294178 DOI: 10.3934/microbiol.2017.3.596] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
33 Rasche F, Blagodatskaya E, Emmerling C, Belz R, Musyoki MK, Zimmermann J, Martin K. A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere 2017;8:e02048. [DOI: 10.1002/ecs2.2048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
34 De Mandal S, Singh SS, Kumar NS. Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity Hotspot. Biocatalysis and Agricultural Biotechnology 2018;15:370-6. [DOI: 10.1016/j.bcab.2018.07.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
35 Bhange K, Chaturvedi V, Bhatt R. Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour Bioprocess 2016;3. [DOI: 10.1186/s40643-016-0091-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
36 Fomina M, Skorochod I. Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. Minerals 2020;10:861. [DOI: 10.3390/min10100861] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
37 Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S. Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: Implication of nitric oxide. J Hazard Mater 2020;390:121806. [PMID: 32058900 DOI: 10.1016/j.jhazmat.2019.121806] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
38 Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management 2017;198:132-43. [DOI: 10.1016/j.jenvman.2017.04.060] [Cited by in Crossref: 93] [Cited by in F6Publishing: 60] [Article Influence: 18.6] [Reference Citation Analysis]
39 Jayamohan NS, Manohar SH, Kumudini BS. Genomic and outer membrane protein diversity fingerprints of siderophore producing fluorescent Pseudomonas spp. using RAPD, Rep-PCR and SDS-PAGE profiling. Biologia 2015;70:1150-8. [DOI: 10.1515/biolog-2015-0133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Li X, Ma L, Li Y, Wang L, Zhang L. Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb2+ stress conditions. Ecotoxicology and Environmental Safety 2019;174:255-62. [DOI: 10.1016/j.ecoenv.2019.02.072] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
41 Rajabi-Khamseh S, Danesh-Shahraki A, Rafieiolhossaini M. Stress tolerance in flax plants inoculated with Bacillus and Azotobacter species under deficit irrigation. Physiol Plant 2020;170:269-79. [PMID: 32542685 DOI: 10.1111/ppl.13154] [Reference Citation Analysis]
42 Xia X, Wu S, Zhou Z, Wang G. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. Journal of Hazardous Materials 2021;401:123685. [DOI: 10.1016/j.jhazmat.2020.123685] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
43 Ajeng AA, Abdullah R, Ling TC, Ismail S, Lau BF, Ong HC, Chew KW, Show PL, Chang J. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation 2020;20:101168. [DOI: 10.1016/j.eti.2020.101168] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
44 Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. J Agric Food Chem 2019;67:3069-85. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 7.7] [Reference Citation Analysis]
45 Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 2018;58:579-89. [DOI: 10.1002/jobm.201700626] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
46 López-reyes L, Carcaño-montiel MG, Lilia T, Medina-de la Rosa G, Armando TR. Antifungal and growth-promoting activity of Azospirillum brasilense in Zea mays L. ssp . mexicana. Archives of Phytopathology and Plant Protection 2017;50:727-43. [DOI: 10.1080/03235408.2017.1372247] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
47 Syed S, Tollamadugu NVKVP, Lian B. Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol Res 2020;240:126562. [PMID: 32739583 DOI: 10.1016/j.micres.2020.126562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Mustafa S, Kabir S, Shabbir U, Batool R. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 2019;78:115-23. [DOI: 10.1007/s13199-019-00602-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
49 Gusmiaty, Restu M, Bachtiar B, Larekeng S. Gibberellin And IAA Production by Rhizobacteria From Various Private Forest. IOP Conf Ser : Earth Environ Sci 2019;270:012018. [DOI: 10.1088/1755-1315/270/1/012018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
50 Al-thani RF, Yasseen BT. Solutes in native plants in the Arabian Gulf region and the role of microorganisms: future research. Journal of Plant Ecology 2018;11:671-84. [DOI: 10.1093/jpe/rtx066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
51 Keshavarz H. Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (<em>Brassica napus</em> L.). Grasas y Aceites 2020;71:373. [DOI: 10.3989/gya.0572191] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Islam MA, Nain Z, Alam MK, Banu NA, Islam MR. In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egypt J Biol Pest Control 2018;28. [DOI: 10.1186/s41938-018-0097-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
53 Hussain A, Amna, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, Ali M, Manghwar H, Jan F, Chaudhary HJ. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany 2019;159:23-33. [DOI: 10.1016/j.envexpbot.2018.12.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 9.7] [Reference Citation Analysis]
54 Kang JP, Huo Y, Kim YJ, Ahn JC, Hurh J, Yang DU, Yang DC. Rhizobium panacihumi sp. nov., an isolate from ginseng-cultivated soil, as a potential plant growth promoting bacterium. Arch Microbiol 2019;201:99-105. [PMID: 30259064 DOI: 10.1007/s00203-018-1578-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
55 Sousa JADJ, Olivares FL. Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 2016;3. [DOI: 10.1186/s40538-016-0073-5] [Cited by in Crossref: 52] [Cited by in F6Publishing: 14] [Article Influence: 8.7] [Reference Citation Analysis]
56 Rubin RL, van Groenigen KJ, Hungate BA. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 2017;416:309-23. [DOI: 10.1007/s11104-017-3199-8] [Cited by in Crossref: 83] [Cited by in F6Publishing: 34] [Article Influence: 16.6] [Reference Citation Analysis]
57 Raimi A, Adeleke R, Roopnarain A, Moral MT. Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food & Agriculture 2017;3:1400933. [DOI: 10.1080/23311932.2017.1400933] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 4.8] [Reference Citation Analysis]
58 Qin D, Shen W, Wang J, Han M, Chai F, Duan X, Yan X, Guo J, Gao T, Zuo S, Dong J. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4.1850. Phytochemistry 2019;158:56-66. [PMID: 30476897 DOI: 10.1016/j.phytochem.2018.11.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
59 Siuly S, Zhang Y. Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis. Data Sci Eng 2016;1:54-64. [DOI: 10.1007/s41019-016-0011-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 5] [Article Influence: 11.2] [Reference Citation Analysis]
60 Aloo B, Makumba B, Mbega E. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research 2019;219:26-39. [DOI: 10.1016/j.micres.2018.10.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 14.7] [Reference Citation Analysis]
61 Kang S, Khan AL, Waqas M, You Y, Hamayun M, Joo G, Shahzad R, Choi K, Lee I. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European Journal of Soil Biology 2015;68:85-93. [DOI: 10.1016/j.ejsobi.2015.02.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 15] [Article Influence: 6.9] [Reference Citation Analysis]
62 Chinnaswamy A, Coba de la Peña T, Stoll A, de la Peña Rojo D, Bravo J, Rincón A, Lucas M, Pueyo J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants: A nodule endophyte enhances growth, nodulation and salt tolerance in alfalfa. Ann Appl Biol 2018;172:295-308. [DOI: 10.1111/aab.12420] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 7.8] [Reference Citation Analysis]
63 Stambulska UY, Bayliak MM. Legume-Rhizobium Symbiosis: Secondary Metabolites, Free Radical Processes, and Effects of Heavy Metals. In: Mérillon J, Ramawat K, editors. Bioactive Molecules in Food. Cham: Springer International Publishing; 2018. pp. 1-32. [DOI: 10.1007/978-3-319-76887-8_43-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
64 Tripathi S, Yadav S, Sharma P, Purchase D, Syed A, Chandra R. Plant growth promoting strain Bacillus cereus (RCS-4 MZ520573.1) enhances phytoremediation potential of Cynodon dactylon L. in distillery sludge. Environ Res 2022;:112709. [PMID: 35032541 DOI: 10.1016/j.envres.2022.112709] [Reference Citation Analysis]
65 Mielke KC, Bertuani RR, Pires FR, Bueno Cotta AJ, Egreja Filho FB, Madalão JC. Does Canavalia ensiformis inoculation with Bradyrhizobium sp. enhance phytoremediation of sulfentrazone-contaminated soil? Chemosphere 2020;255:127033. [PMID: 32417520 DOI: 10.1016/j.chemosphere.2020.127033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
66 Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J. Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 2016;75. [DOI: 10.1007/s12665-015-4902-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
67 Bjelić D, Marinković J, Tintor B, Mrkovački N. Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize ( Zea mays L.) Rhizosphere. Communications in Soil Science and Plant Analysis 2018;49:88-98. [DOI: 10.1080/00103624.2017.1421650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
68 Jan SU, Rehman M, Gul A, Fayyaz M, Rehman SU, Jamil M. Combined application of two Bacillus species enhance phytoremediation potential of Brassica napus in an industrial metal-contaminated soil. Int J Phytoremediation 2021;:1-14. [PMID: 34410841 DOI: 10.1080/15226514.2021.1962797] [Reference Citation Analysis]
69 Ricci E, Schwinghamer T, Fan D, Smith DL, Gravel V. Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Applied Soil Ecology 2019;138:61-8. [DOI: 10.1016/j.apsoil.2019.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
70 Matilla MA, Krell T. Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. In: Egamberdieva D, Ahmad P, editors. Plant Microbiome: Stress Response. Singapore: Springer; 2018. pp. 45-80. [DOI: 10.1007/978-981-10-5514-0_3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
71 Gond SK, Bergen MS, Torres MS, White JF Jr. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 2015;172:79-87. [PMID: 25497916 DOI: 10.1016/j.micres.2014.11.004] [Cited by in Crossref: 159] [Cited by in F6Publishing: 89] [Article Influence: 19.9] [Reference Citation Analysis]
72 Panwar M, Tewari R, Nayyar H. Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the Performance of Plants Growing in Stressed Soils: An Overview. In: Khan MS, Zaidi A, Musarrat J, editors. Phosphate Solubilizing Microorganisms. Cham: Springer International Publishing; 2014. pp. 257-85. [DOI: 10.1007/978-3-319-08216-5_11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Lafuente A, Pérez‐palacios P, Doukkali B, Molina‐sánchez MD, Jiménez‐zurdo JI, Caviedes MA, Rodríguez‐llorente ID, Pajuelo E. Unraveling the effect of arsenic on the model M edicago– E nsifer interaction: a transcriptomic meta‐analysis. New Phytol 2015;205:255-72. [DOI: 10.1111/nph.13009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
74 Yasmeen T, Ahmad A, Arif MS, Mubin M, Rehman K, Shahzad SM, Iqbal S, Rizwan M, Ali S, Alyemeni MN, Wijaya L. Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiol Biochem 2020;156:242-56. [PMID: 32979797 DOI: 10.1016/j.plaphy.2020.09.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
75 Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020;238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 7.5] [Reference Citation Analysis]
76 Zhu H, Teng Y, Wang X, Zhao L, Ren W, Luo Y, Christie P. Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils. Sci Total Environ 2021;767:145473. [PMID: 33636759 DOI: 10.1016/j.scitotenv.2021.145473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Cheema AI, Liu G, Yousaf B, Abbas Q, Zhou H. A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. Sci Total Environ 2020;719:135658. [PMID: 31874752 DOI: 10.1016/j.scitotenv.2019.135658] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
78 Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 2020;104:8549-65. [PMID: 32918584 DOI: 10.1007/s00253-020-10890-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
79 Han L, Wang Z, Li N, Wang Y, Feng J, Zhang X. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Applied Soil Ecology 2019;136:55-66. [DOI: 10.1016/j.apsoil.2018.12.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
80 Diez-mendez A, Menéndez E, García-fraile P, Celador-lera L, Rivas R, Mateos PF. Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 2015;67:135-41. [DOI: 10.1007/s13199-015-0372-9] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
81 Sharma A, Kashyap PL, Srivastava AK, Bansal YK, Kaushik R. Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. Eur J Plant Pathol 2019;153:787-800. [DOI: 10.1007/s10658-018-1592-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
82 Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo–baker AA, Zakir A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J Plant Growth Regul 2020;39:1293-306. [DOI: 10.1007/s00344-020-10065-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 2] [Article Influence: 15.0] [Reference Citation Analysis]
83 Banerjee G, Gorthi S, Chattopadhyay P. Beneficial effects of bio-controlling agent Bacillus cereus IB311 on the agricultural crop production and its biomass optimization through response surface methodology. An Acad Bras Cienc 2018;90:2149-59. [PMID: 29044329 DOI: 10.1590/0001-3765201720170362] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
84 Medina-salazar SA, Rodríguez-aguilar M, Vallejo-pérez MR, Flores-ramírez R, Marín-sánchez J, Aguilar-benítez G, Jarquin-gálvez R, Lara-ávila JP. Biodiversity of epiphytic Pseudomonas strains isolated from leaves of pepper and lettuce. Biologia 2020;75:773-84. [DOI: 10.2478/s11756-019-00392-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
85 Ahmad S, Imran M, Hussain S, Mahmood S, Hussain A, Hasnain M. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. J Sci Food Agric 2017;97:3685-90. [PMID: 28106248 DOI: 10.1002/jsfa.8228] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
86 Sekoai PT, Ghimire A, Ezeokoli OT, Rao S, Ngan WY, Habimana O, Yao Y, Yang P, Yiu Fung AH, Yoro KO, Daramola MO, Hung C. Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept. Renewable and Sustainable Energy Reviews 2021;143:110971. [DOI: 10.1016/j.rser.2021.110971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
87 Silveira Sartori Silva MR, Pereira de Castro A, Krüger RH, Bustamante M. Soil bacterial communities in the Brazilian Cerrado: Response to vegetation type and management. Acta Oecologica 2019;100:103463. [DOI: 10.1016/j.actao.2019.103463] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
88 Sperandio EM, do Vale HMM, de Souza Reis M, de Carvalho Barros Cortes MV, Lanna AC, de Filippi MCC. Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiol Plant 2017;39. [DOI: 10.1007/s11738-017-2547-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
89 Upadhyay A, Kochar M, Upadhyay A, Tripathy S, Rajam MV, Srivastava S. Small RNAs regulate the biocontrol property of fluorescent Pseudomonas strain Psd. Microbiological Research 2017;196:80-8. [DOI: 10.1016/j.micres.2016.12.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
90 Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 2016;563-564:693-703. [PMID: 26524994 DOI: 10.1016/j.scitotenv.2015.10.061] [Cited by in Crossref: 159] [Cited by in F6Publishing: 100] [Article Influence: 22.7] [Reference Citation Analysis]
91 Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 2018;206:131-40. [PMID: 29146250 DOI: 10.1016/j.micres.2017.08.016] [Cited by in Crossref: 312] [Cited by in F6Publishing: 153] [Article Influence: 62.4] [Reference Citation Analysis]
92 Russi A, Almança MAK, Grohs DS, Schwambach J. Biocontrol of black foot disease on grapevine rootstocks using Bacillus subtilis strain F62. Trop plant pathol 2020;45:103-11. [DOI: 10.1007/s40858-019-00319-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Rezaei-chiyaneh E, Amirnia R, Amani Machiani M, Javanmard A, Maggi F, Morshedloo MR. Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Scientia Horticulturae 2020;261:108951. [DOI: 10.1016/j.scienta.2019.108951] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
94 Fatemeh A, Masoud T, Pejman A, Aidin H. Effect of plant growth promoting rhizobacteria (PGPRs) and stratification on germination traits of Crataegus pseudoheterophylla Pojark. seeds. Scientia Horticulturae 2014;172:61-7. [DOI: 10.1016/j.scienta.2014.03.049] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
95 Abdel-rahman HM, Salem AA, Moustafa MMA, El-garhy HAS. A novice Achromobacter sp. EMCC1936 strain acts as a plant-growth-promoting agent. Acta Physiol Plant 2017;39. [DOI: 10.1007/s11738-017-2360-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
96 Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek 2020;113:889-905. [PMID: 32152804 DOI: 10.1007/s10482-020-01399-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
97 Barnawal D, Singh R, Singh RP. Role of Plant Growth Promoting Rhizobacteria in Drought Tolerance. PGPR Amelioration in Sustainable Agriculture. Elsevier; 2019. pp. 107-28. [DOI: 10.1016/b978-0-12-815879-1.00006-9] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
98 Villa-rodríguez E, Parra-cota F, Castro-longoria E, López-cervantes J, de los Santos-villalobos S. Bacillus subtilis TE3: A promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control 2019;132:135-43. [DOI: 10.1016/j.biocontrol.2019.02.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
99 Mishra J, Fatima T, Arora NK. Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. In: Egamberdieva D, Ahmad P, editors. Plant Microbiome: Stress Response. Singapore: Springer; 2018. pp. 127-63. [DOI: 10.1007/978-981-10-5514-0_6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
100 Tewari S, Arora NK, Miransari M. Plant growth promoting rhizobacteria to alleviate soybean growth under abiotic and biotic stresses. Abiotic and Biotic Stresses in Soybean Production. Elsevier; 2016. pp. 131-55. [DOI: 10.1016/b978-0-12-801536-0.00006-2] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
101 Zaheer MS, Raza MAS, Saleem MF, Khan IH, Ahmad S, Iqbal R, Manevski K. Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat ( Triticum aestivum L.). Archives of Agronomy and Soil Science 2019;65:1554-64. [DOI: 10.1080/03650340.2019.1566954] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 4.7] [Reference Citation Analysis]
102 Zhang Y, Komorek R, Son J, Riechers S, Zhu Z, Jansson J, Jansson C, Yu XY. Molecular imaging of plant-microbe interactions on the Brachypodium seed surface. Analyst 2021. [PMID: 34378550 DOI: 10.1039/d1an00205h] [Reference Citation Analysis]
103 Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021;248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Khan AR, Ullah I, Waqas M, Shahzad R, Hong S, Park G, Jung BK, Lee I, Shin J. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 2015;31:1461-6. [DOI: 10.1007/s11274-015-1888-0] [Cited by in Crossref: 55] [Cited by in F6Publishing: 28] [Article Influence: 7.9] [Reference Citation Analysis]
105 Muresu R, Porceddu A, Sulas L, Squartini A. Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the relative importance of culturable rhizobial symbionts and co-infecting endophytes. Microbiol Res 2019;221:10-4. [PMID: 30825937 DOI: 10.1016/j.micres.2019.01.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
106 Gopalakrishnan S, Srinivas V, Samineni S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea ( Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology 2017;11:116-23. [DOI: 10.1016/j.bcab.2017.06.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 4.2] [Reference Citation Analysis]
107 Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicology and Environmental Safety 2016;125:25-34. [DOI: 10.1016/j.ecoenv.2015.11.020] [Cited by in Crossref: 77] [Cited by in F6Publishing: 55] [Article Influence: 12.8] [Reference Citation Analysis]
108 Bashri G, Patel A, Singh R, Parihar P, Prasad SM. Mineral Solubilization by Microorganism: Mitigating Strategy in Mineral Deficient Soil. In: Patra JK, Vishnuprasad CN, Das G, editors. Microbial Biotechnology. Singapore: Springer; 2017. pp. 265-85. [DOI: 10.1007/978-981-10-6847-8_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
109 Mahato S, Kafle A. Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Annals of Agrarian Science 2018;16:250-6. [DOI: 10.1016/j.aasci.2018.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
110 Verma M, Mishra J, Arora NK. Plant Growth-Promoting Rhizobacteria: Diversity and Applications. In: Sobti RC, Arora NK, Kothari R, editors. Environmental Biotechnology: For Sustainable Future. Singapore: Springer; 2019. pp. 129-73. [DOI: 10.1007/978-981-10-7284-0_6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
111 Lopes MJS, Dias-filho MB, Castro THR, Silva GB. Light and plant growth-promoting rhizobacteria effects on Brachiaria brizantha growth and phenotypic plasticity to shade. Grass Forage Sci 2018;73:493-9. [DOI: 10.1111/gfs.12336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
112 Mishra J, Arora NK. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology 2018;125:35-45. [DOI: 10.1016/j.apsoil.2017.12.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 10.3] [Reference Citation Analysis]
113 Abdollahi S, Golchin A, Shahryari F. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. Int Microbiol 2020;23:625-40. [DOI: 10.1007/s10123-020-00133-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Al-hussini HS, Al-rawahi AY, Al-marhoon AA, Al-abri SA, Al-mahmooli IH, Al-sadi AM, Velazhahan R. Biological control of damping-off of tomato caused by Pythium aphanidermatum by using native antagonistic rhizobacteria isolated from Omani soil. J Plant Pathol 2019;101:315-22. [DOI: 10.1007/s42161-018-0184-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
115 Costa-Gutierrez SB, Lami MJ, Santo MCC, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 2020;104:4577-92. [PMID: 32221691 DOI: 10.1007/s00253-020-10516-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
116 Shameer S, Prasad TNVKV. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 2018;84:603-15. [DOI: 10.1007/s10725-017-0365-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 30] [Article Influence: 19.3] [Reference Citation Analysis]
117 Liotti RG, da Silva Figueiredo MI, da Silva GF, de Mendonça EAF, Soares MA. Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 2018;207:8-18. [PMID: 29458872 DOI: 10.1016/j.micres.2017.10.011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
118 Silva CDFBD, Brito TLD, Taniguchi CAK, Lopes LA, Pinto GAS, Carvalho ACPPD. Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Rev bras eng agríc ambient 2018;22:782-7. [DOI: 10.1590/1807-1929/agriambi.v22n11p782-787] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
119 Hussain N, Singh A, Saha S, Venkata Satish Kumar M, Bhattacharyya P, Bhattacharya SS. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: A vermicompost based assessment with vegetable market waste and rice straw feed mixtures. Bioresource Technology 2016;222:165-74. [DOI: 10.1016/j.biortech.2016.09.115] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
120 Neondo JO, Alakonya AE, Kasili RW. Screening for potential Striga hermonthica fungal and bacterial biocontrol agents from suppressive soils in Western Kenya. BioControl 2017;62:705-17. [DOI: 10.1007/s10526-017-9833-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Ochoa-velasco CE, Avila-sosa R, Navarro-cruz AR, López-malo A, Palou E. Biotic and Abiotic Factors to Increase Bioactive Compounds in Fruits and Vegetables. Food Bioconversion. Elsevier; 2017. pp. 317-49. [DOI: 10.1016/b978-0-12-811413-1.00009-7] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
122 Paredes-páliz KI, Mateos-naranjo E, Doukkali B, Caviedes MA, Redondo-gómez S, Rodríguez-llorente ID, Pajuelo E. Modulation of Spartina densiflora plant growth and metal accumulation upon selective inoculation treatments: A comparison of gram negative and gram positive rhizobacteria. Marine Pollution Bulletin 2017;125:77-85. [DOI: 10.1016/j.marpolbul.2017.07.072] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
123 Patel RR, Patel DD, Bhatt J, Thakor P, Triplett LR, Thakkar VR. Induction of pre-chorismate, jasmonate and salicylate pathways by Burkholderia sp. RR18 in peanut seedlings. J Appl Microbiol 2021;131:1417-30. [PMID: 33522007 DOI: 10.1111/jam.15019] [Reference Citation Analysis]
124 Jayaprakashvel M, Chitra C, Mathivanan N. Metabolites of Plant Growth-Promoting Rhizobacteria for the Management of Soilborne Pathogenic Fungi in Crops. In: Singh HB, Keswani C, Reddy MS, Sansinenea E, García-estrada C, editors. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Singapore: Springer; 2019. pp. 293-315. [DOI: 10.1007/978-981-13-5862-3_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 El-Sharkawy HHA, Abbas MS, Soliman AS, Ibrahim SA, El-Nady IAI. Synergistic effect of growth-promoting microorganisms on bio-control of Fusarium oxysporum f. sp. pisi, growth, yield, physiological and anatomical characteristics of pea plants. Pestic Biochem Physiol 2021;178:104939. [PMID: 34446206 DOI: 10.1016/j.pestbp.2021.104939] [Reference Citation Analysis]
126 Tchuisseu Tchakounté GV, Berger B, Patz S, Fankem H, Ruppel S. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiol Res 2018;214:47-59. [PMID: 30031481 DOI: 10.1016/j.micres.2018.05.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
127 Hsu C, Micallef SA. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. International Journal of Food Microbiology 2017;259:1-6. [DOI: 10.1016/j.ijfoodmicro.2017.07.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
128 Rodrigues AA, Forzani MV, Soares RDS, Sibov ST, Vieira JDG. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesqui Agropecu Trop 2016;46:149-58. [DOI: 10.1590/1983-40632016v4639526] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
129 Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020;129:1133-56. [PMID: 32592603 DOI: 10.1111/jam.14754] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
130 Haynes RJ. Nature of the Belowground Ecosystem and Its Development during Pedogenesis. Elsevier; 2014. pp. 43-109. [DOI: 10.1016/b978-0-12-800131-8.00002-9] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
131 Godebo AT, Germida JJ, Walley FL, Naeth MA. Isolation, identification, and assessment of soil bacteria as biocontrol agents of pea root rot caused by Aphanomyces euteiches. Can J Soil Sci 2020;100:206-16. [DOI: 10.1139/cjss-2019-0133] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
132 Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N, editors. Plant Microbiomes for Sustainable Agriculture. Cham: Springer International Publishing; 2020. pp. 1-52. [DOI: 10.1007/978-3-030-38453-1_1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 4] [Article Influence: 14.0] [Reference Citation Analysis]
133 Swamy MK, Akhtar MS, Sinniah UR. Root Exudates and Their Molecular Interactions with Rhizospheric Microbes. In: Hakeem KR, Akhtar MS, editors. Plant, Soil and Microbes. Cham: Springer International Publishing; 2016. pp. 59-77. [DOI: 10.1007/978-3-319-29573-2_4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
134 Amara U, Khalid R, Hayat R. Soil Bacteria and Phytohormones for Sustainable Crop Production. In: Maheshwari DK, editor. Bacterial Metabolites in Sustainable Agroecosystem. Cham: Springer International Publishing; 2015. pp. 87-103. [DOI: 10.1007/978-3-319-24654-3_5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
135 Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 2017;118:479-93. [PMID: 28756346 DOI: 10.1016/j.plaphy.2017.07.017] [Cited by in Crossref: 38] [Cited by in F6Publishing: 23] [Article Influence: 7.6] [Reference Citation Analysis]
136 Tichá M, Illésová P, Hrbáčková M, Basheer J, Novák D, Hlaváčková K, Šamajová O, Niehaus K, Ovečka M, Šamaj J. Tissue culture, genetic transformation, interaction with beneficial microbes, and modern bio-imaging techniques in alfalfa research. Crit Rev Biotechnol 2020;40:1265-80. [PMID: 32942912 DOI: 10.1080/07388551.2020.1814689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
137 Gamez R, Cardinale M, Montes M, Ramirez S, Schnell S, Rodriguez F. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiol Res 2019;220:12-20. [PMID: 30744815 DOI: 10.1016/j.micres.2018.11.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
138 Cherif-silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 2016;66:1087-97. [DOI: 10.1007/s13213-016-1194-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
139 Mariano E, Otto R, Montezano ZF, Cantarella H, Trivelin PC. Soil nitrogen availability indices as predictors of sugarcane nitrogen requirements. European Journal of Agronomy 2017;89:25-37. [DOI: 10.1016/j.eja.2017.06.004] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
140 Zvinavashe AT, Mardad I, Mhada M, Kouisni L, Marelli B. Engineering the Plant Microenvironment To Facilitate Plant-Growth-Promoting Microbe Association. J Agric Food Chem 2021. [PMID: 33929839 DOI: 10.1021/acs.jafc.1c00138] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Gupta K, Dubey NK, Singh SP, Kheni JK, Gupta S, Varshney A. Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. In: Yadav AN, Singh J, Singh C, Yadav N, editors. Current Trends in Microbial Biotechnology for Sustainable Agriculture. Singapore: Springer; 2021. pp. 203-26. [DOI: 10.1007/978-981-15-6949-4_9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
142 Verma PP, Shelake RM, Das S, Sharma P, Kim J. Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF): Potential Biological Control Agents of Diseases and Pests. In: Singh DP, Gupta VK, Prabha R, editors. Microbial Interventions in Agriculture and Environment. Singapore: Springer; 2019. pp. 281-311. [DOI: 10.1007/978-981-13-8391-5_11] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
143 Vishwakarma K, Kumar V, Tripathi DK, Sharma S. Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. Environmental Sustainability 2018;1:253-65. [DOI: 10.1007/s42398-018-0026-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
144 Mir MI, Hameeda B, Quadriya H, Kumar BK, Ilyas N, Kee Zuan AT, El Enshasy HA, Dailin DJ, Kassem HS, Gafur A, Sayyed RZ. Multifarious Indigenous Diazotrophic Rhizobacteria of Rice (Oryza sativa L.) Rhizosphere and Their Effect on Plant Growth Promotion. Front Nutr 2022;8:781764. [DOI: 10.3389/fnut.2021.781764] [Reference Citation Analysis]
145 Mun B, Lee W, Kang S, Lee S, Lee S, Lee DY, Shahid M, Yun B, Lee I. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant Soil 2020;448:87-103. [DOI: 10.1007/s11104-019-04411-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
146 Xiao E, Ning Z, Xiao T, Sun W, Qiu Y, Zhang Y, Chen J, Gou Z, Chen Y. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. Environmental Pollution 2019;253:141-51. [DOI: 10.1016/j.envpol.2019.06.097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
147 Zhang Y, Zhang Y, Wang J, Zheng X. Comparison of classification methods on EEG signals based on wavelet packet decomposition. Neural Comput & Applic 2015;26:1217-25. [DOI: 10.1007/s00521-014-1786-7] [Cited by in Crossref: 29] [Article Influence: 3.6] [Reference Citation Analysis]
148 Jiang H, Wang T, Chi X, Wang M, Chen N, Chen M, Pan L, Qi P. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiology Journal 2020;37:110-8. [DOI: 10.1080/01490451.2019.1666195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
149 Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. - community structure and metabolic potential. Microbiol Res 2016;192:37-51. [PMID: 27664722 DOI: 10.1016/j.micres.2016.05.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
150 Phieler R, Merten D, Roth M, Büchel G, Kothe E. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res 2015;22:19408-16. [DOI: 10.1007/s11356-015-4471-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
151 Padmavathi T, Dikshit R, Seshagiri S. Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Braz J Bot 2015;38:273-80. [DOI: 10.1007/s40415-015-0144-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
152 Khoshru B, Mitra D, Khoshmanzar E, Myo EM, Uniyal N, Mahakur B, Mohapatra PKD, Panneerselvam P, Boutaj H, Alizadeh M, Cely MVT, Senapati A, Rani A. Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition 2020;43:3062-92. [DOI: 10.1080/01904167.2020.1799004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
153 Khoa NĐ, Giàu NĐN, Tuấn TQ. Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control 2016;103:1-10. [DOI: 10.1016/j.biocontrol.2016.07.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
154 Mustafa A, Imran M, Ashraf M, Mahmood K. Perspectives of Using L-Tryptophan for Improving Productivity of Agricultural Crops: A Review. Pedosphere 2018;28:16-34. [DOI: 10.1016/s1002-0160(18)60002-5] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
155 Figueiredo MDVB, Bonifacio A, Rodrigues AC, de Araujo FF. Plant Growth-Promoting Rhizobacteria: Key Mechanisms of Action. In: Choudhary DK, Varma A, editors. Microbial-mediated Induced Systemic Resistance in Plants. Singapore: Springer; 2016. pp. 23-37. [DOI: 10.1007/978-981-10-0388-2_3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
156 Qi G, Pan Z, Sugawa Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Kawamoto K, Ihara I, Umetsu K. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J Mater Cycles Waste Manag 2018;20:1448-57. [DOI: 10.1007/s10163-018-0708-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
157 Wong WS, Tan SN, Ge L, Chen X, Yong JWH. The Importance of Phytohormones and Microbes in Biofertilizers. In: Maheshwari DK, editor. Bacterial Metabolites in Sustainable Agroecosystem. Cham: Springer International Publishing; 2015. pp. 105-58. [DOI: 10.1007/978-3-319-24654-3_6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
158 Kim C, Kang J, Huo Y, Chokkalingam M, Kim Y, Kim D, Yang D. Paenibacillus panacihumi sp. nov., a potential plant growth-promoting bacterium isolated from ginseng-cultivated soil. Arch Microbiol 2018;200:1049-55. [DOI: 10.1007/s00203-018-1517-z] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
159 Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. J Plant Res 2018;131:99-110. [DOI: 10.1007/s10265-017-0971-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
160 M T. Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. J Plant Sci Phytopathol 2017;1:038-43. [DOI: 10.29328/journal.jpsp.1001004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 4] [Article Influence: 5.8] [Reference Citation Analysis]
161 Ali M, Walait S, Farhan Ul Haque M, Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. Environ Sci Pollut Res Int 2021. [PMID: 34282546 DOI: 10.1007/s11356-021-15436-7] [Reference Citation Analysis]
162 Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environ Sci Pollut Res Int 2021;28:14271-84. [PMID: 33528774 DOI: 10.1007/s11356-021-12583-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Thakur P, Singh I. Biocontrol of Soilborne Root Pathogens: An Overview. In: Giri B, Prasad R, Varma A, editors. Root Biology. Cham: Springer International Publishing; 2018. pp. 181-220. [DOI: 10.1007/978-3-319-75910-4_7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
164 Bharti N, Barnawal D. Amelioration of Salinity Stress by PGPR. PGPR Amelioration in Sustainable Agriculture. Elsevier; 2019. pp. 85-106. [DOI: 10.1016/b978-0-12-815879-1.00005-7] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
165 Vitale L, Vitale E, Guercia G, Turano M, Arena C. Effects of different light quality and biofertilizers on structural and physiological traits of spinach plants. Photosynt 2020;58:932-43. [DOI: 10.32615/ps.2020.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Front Environ Sci 2018;6:124. [DOI: 10.3389/fenvs.2018.00124] [Cited by in Crossref: 48] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
167 Ullah A, Heng S, Munis MFH, Fahad S, Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany 2015;117:28-40. [DOI: 10.1016/j.envexpbot.2015.05.001] [Cited by in Crossref: 343] [Cited by in F6Publishing: 174] [Article Influence: 49.0] [Reference Citation Analysis]
168 Ullah A, Mushtaq H, Fahad S, Shah A, Chaudhary HJ; Hakima. Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology 2017;86:119-27. [DOI: 10.1134/s0026261717010155] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
169 Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Journal of Toxicology and Environmental Health, Part A 2015;78:931-44. [DOI: 10.1080/15287394.2015.1051205] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 6.1] [Reference Citation Analysis]
170 Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K. Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology 2017;121:102-17. [DOI: 10.1016/j.apsoil.2017.09.030] [Cited by in Crossref: 81] [Cited by in F6Publishing: 28] [Article Influence: 16.2] [Reference Citation Analysis]
171 Santoyo G, Sánchez-yáñez JM, de los Santos-villalobos S. Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. In: Reinhardt D, Sharma AK, editors. Methods in Rhizosphere Biology Research. Singapore: Springer; 2019. pp. 133-49. [DOI: 10.1007/978-981-13-5767-1_8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
172 Kumar G, Arya K, Verma A, Pankaj P, Khati P, Gangola S, Kumar R, Sharma A, Singh H. Bioremediation of Petrol Engine Oil Polluted Soil Using Microbial Consortium and Wheat Crop. J PURE APPL MICROBIO 2017;11:1583-8. [DOI: 10.22207/jpam.11.3.45] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
173 Gond S, Torres M, Bergen M, Helsel Z, White J. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 2015;60:392-9. [DOI: 10.1111/lam.12385] [Cited by in Crossref: 56] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
174 Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2018;269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
175 Taj ZZ, Rajkumar M. Perspectives of Plant Growth-Promoting Actinomycetes in Heavy Metal Phytoremediation. In: Subramaniam G, Arumugam S, Rajendran V, editors. Plant Growth Promoting Actinobacteria. Singapore: Springer; 2016. pp. 213-31. [DOI: 10.1007/978-981-10-0707-1_14] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
176 Singh BN, Rajawat MVS, Hidangmayum A, Ansari WA, Singh D, Zeyad MT, Kumar SC, Roy M, Kumar M. Importance and Utilization of Plant-Beneficial Rhizobacteria in Agriculture. In: Singh DP, Prabha R, editors. Microbial Interventions in Agriculture and Environment. Singapore: Springer; 2019. pp. 171-87. [DOI: 10.1007/978-981-32-9084-6_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
177 Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021;13:1140. [DOI: 10.3390/su13031140] [Cited by in Crossref: 40] [Cited by in F6Publishing: 3] [Article Influence: 40.0] [Reference Citation Analysis]
178 Paramanandham P, Rajkumari J, Pattnaik S, Busi S. Biocontrol Potential Against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and Tomato Plant Growth Due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 2017;23:294-303. [DOI: 10.1080/19315260.2016.1271850] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
179 Prasad L, Katoch S, Shahid S. Microbial interaction mediated programmed cell death in plants. 3 Biotech 2022;12. [DOI: 10.1007/s13205-021-03099-7] [Reference Citation Analysis]
180 Ansari FA, Ahmad I. Isolation, functional characterization and efficacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie van Leeuwenhoek 2019;112:1827-39. [DOI: 10.1007/s10482-019-01306-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
181 Subramaniam G, Thakur V, Saxena RK, Vadlamudi S, Purohit S, Kumar V, Rathore A, Chitikineni A, Varshney RK. Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Sci Rep 2020;10:10294. [PMID: 32581303 DOI: 10.1038/s41598-020-67153-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
182 Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR. Auxin metabolic network regulates the plant response to metalloids stress. J Hazard Mater 2021;405:124250. [PMID: 33109410 DOI: 10.1016/j.jhazmat.2020.124250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
183 Gupta S, Kaushal R, Sood G. Impact of Plant Growth–Promoting Rhizobacteria on Vegetable Crop Production. International Journal of Vegetable Science 2017;24:289-300. [DOI: 10.1080/19315260.2017.1407984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
184 [DOI: 10.1101/2019.12.12.866210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
185 Hamid S, Ahmad I, Akhtar MJ, Iqbal MN, Shakir M, Tahir M, Rasool A, Sattar A, Khalid M, Ditta A, Zhu B. Bacillus subtilis Y16 and biogas slurry enhanced potassium to sodium ratio and physiology of sunflower (Helianthus annuus L.) to mitigate salt stress. Environ Sci Pollut Res Int 2021;28:38637-47. [PMID: 33735413 DOI: 10.1007/s11356-021-13419-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
186 Moin S, Ali SA, Hasan KA, Tariq A, Sultana V, Ara J, Ehteshamul-haque S. Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Protection 2020;130:105066. [DOI: 10.1016/j.cropro.2019.105066] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
187 Mendoza-Hernández JC, Vázquez-Delgado OR, Castillo-Morales M, Varela-Caselis JL, Santamaría-Juárez JD, Olivares-Xometl O, Arriola Morales J, Pérez-Osorio G. Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria. Microbiol Res 2019;228:126308. [PMID: 31430656 DOI: 10.1016/j.micres.2019.126308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
188 Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020;60:828-61. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
189 Ragula A, Chandra KK. Tree species suitable for roadside afforestation and carbon sequestration in Bilaspur, India. Carbon Management 2020;11:369-80. [DOI: 10.1080/17583004.2020.1790243] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
190 Patil HJ, Solanki MK. Microbial Inoculant: Modern Era of Fertilizers and Pesticides. In: Singh DP, Singh HB, Prabha R, editors. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer India; 2016. pp. 319-43. [DOI: 10.1007/978-81-322-2647-5_19] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
191 Araújo GC, Sousa NR, Ramos MA, Vega AL, Castro PML. Performance of Quercus suber L. at nursery stage—application of two bio-inoculants under two distinct environments. Annals of Forest Science 2018;75. [DOI: 10.1007/s13595-018-0700-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
192 Alori ET, Dare MO, Babalola OO. Microbial Inoculants for Soil Quality and Plant Health. In: Lichtfouse E, editor. Sustainable Agriculture Reviews. Cham: Springer International Publishing; 2017. pp. 281-307. [DOI: 10.1007/978-3-319-48006-0_9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 15] [Article Influence: 8.6] [Reference Citation Analysis]
193 Bhagwat PK, Bhise KK, Bhuimbar MV, Dandge PB. Use of statistical experimental methods for optimization of collagenolytic protease production by Bacillus cereus strain SUK grown on fish scales. Environ Sci Pollut Res 2018;25:28226-36. [DOI: 10.1007/s11356-018-2859-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
194 Sukweenadhi J, Kim Y, Choi E, Koh S, Lee S, Kim Y, Yang DC. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiological Research 2015;172:7-15. [DOI: 10.1016/j.micres.2015.01.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 39] [Article Influence: 7.3] [Reference Citation Analysis]
195 Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK. Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agr 2015;5:123-33. [DOI: 10.1007/s13165-015-0099-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
196 Navarro-torre S, Barcia-piedras JM, Caviedes MA, Pajuelo E, Redondo-gómez S, Rodríguez-llorente ID, Mateos-naranjo E. Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Marine Pollution Bulletin 2017;117:340-7. [DOI: 10.1016/j.marpolbul.2017.02.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
197 Cisternas-Jamet J, Salvatierra-Martínez R, Vega-Gálvez A, Uribe E, Goñi MG, Stoll A. Root inoculation of green bell pepper (Capsicum annum) with Bacillus amyloliquefaciens BBC047: effect on biochemical composition and antioxidant capacity. J Sci Food Agric 2019;99:5131-9. [PMID: 31001829 DOI: 10.1002/jsfa.9758] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
198 Nguyen P, Strub C, Fontana A, Schorr-galindo S. Crop molds and mycotoxins: Alternative management using biocontrol. Biological Control 2017;104:10-27. [DOI: 10.1016/j.biocontrol.2016.10.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
199 Teng Z, Shao W, Zhang K, Huo Y, Li M. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management 2019;231:189-97. [DOI: 10.1016/j.jenvman.2018.10.012] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 14.3] [Reference Citation Analysis]
200 Rendina N, Nuzzaci M, Sofo A, Campiglia P, Scopa A, Sommella E, Pepe G, De Nisco M, Basilicata MG, Manfra M. Yield parameters and antioxidant compounds of tomato fruit: the role of plant defence inducers with or without Cucumber mosaic virus infection. J Sci Food Agric 2019;99:5541-9. [PMID: 31106435 DOI: 10.1002/jsfa.9818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
201 Thapa S, Prasanna R, Ranjan K, Velmourougane K, Ramakrishnan B. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol Res 2017;204:55-64. [PMID: 28870292 DOI: 10.1016/j.micres.2017.07.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 3.2] [Reference Citation Analysis]
202 Youseif SH. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences 2018;63:25-35. [DOI: 10.1016/j.aoas.2018.04.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
203 Nykiel-Szymańska J, Bernat P, Słaba M. Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pestic Biochem Physiol 2020;163:216-26. [PMID: 31973860 DOI: 10.1016/j.pestbp.2019.11.018] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
204 Herrera-Quiterio A, Toledo-Hernández E, Aguirre-Noyola JL, Romero Y, Ramos J, Palemón-Alberto F, Toribio-Jiménez J. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev Argent Microbiol 2020;52:231-9. [PMID: 31982186 DOI: 10.1016/j.ram.2019.08.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
205 Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 2021;248:126763. [PMID: 33892241 DOI: 10.1016/j.micres.2021.126763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
206 Anbi AA, Mirshekari B, Eivazi A, Yarnia M, Behrouzyar EK. PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. Journal of Plant Nutrition 2020;43:108-21. [DOI: 10.1080/01904167.2019.1659342] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
207 Singh N, Singh J, Singh K. Small at Size, Big at Impact: Microorganisms for Sustainable Development. In: Singh J, Sharma D, Kumar G, Sharma NR, editors. Microbial Bioprospecting for Sustainable Development. Singapore: Springer; 2018. pp. 3-28. [DOI: 10.1007/978-981-13-0053-0_1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
208 Prajakta BM, Suvarna PP, Raghvendra SP, Alok RR. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1149-1] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
209 Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry 2019;12:1365-77. [DOI: 10.1016/j.arabjc.2014.11.020] [Cited by in Crossref: 57] [Cited by in F6Publishing: 27] [Article Influence: 19.0] [Reference Citation Analysis]
210 Glandorf DCM. Re-evaluation of biosafety questions on genetically modified biocontrol bacteria. Eur J Plant Pathol 2019;154:43-51. [DOI: 10.1007/s10658-018-1598-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
211 Ahmad F, Ashraf N, Da-Chuan Y, Jabeen H, Anwar S, Wahla AQ, Iqbal S. Application of a novel bacterial consortium BDAM for bioremediation of bispyribac sodium in wheat vegetated soil. J Hazard Mater 2019;374:58-65. [PMID: 30978631 DOI: 10.1016/j.jhazmat.2019.03.130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
212 Gu Y, Meng D, Yang S, Xiao N, Li Z, Liu Z, Li L, Zeng X, Zeng S, Yin H. Invader-resident community similarity contribute to the invasion process and regulate biofertilizer effectiveness. Journal of Cleaner Production 2019;241:118278. [DOI: 10.1016/j.jclepro.2019.118278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N. The microbial symbionts: Potential for crop improvement in changing environments. Advancement in Crop Improvement Techniques. Elsevier; 2020. pp. 233-40. [DOI: 10.1016/b978-0-12-818581-0.00014-0] [Cited by in Crossref: 15] [Article Influence: 7.5] [Reference Citation Analysis]
214 Giongo A, Medina-silva R, Astarita LV, Borges LGDA, Oliveira RR, Simão TLL, Gano KA, Davis-richardson AG, Brown CT, Fagen JR, Arzivenco PM, Neto CP, Abichequer AD, Lindholz CG, Baptista-silva A, Mondin CA, Utz LRP, Triplett EW, Eizirik E. Seasonal Physiological Parameters and Phytotelmata Bacterial Diversity of Two Bromeliad Species (Aechmea gamosepala and Vriesea platynema) from the Atlantic Forest of Southern Brazil. Diversity 2019;11:111. [DOI: 10.3390/d11070111] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
215 Rashad YM, Moussa TAA. Biocontrol Agents for Fungal Plant Diseases Management. In: El-wakeil N, Saleh M, Abu-hashim M, editors. Cottage Industry of Biocontrol Agents and Their Applications. Cham: Springer International Publishing; 2020. pp. 337-63. [DOI: 10.1007/978-3-030-33161-0_11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
216 Khenaka K, Canfora L, Benedetti A, Leulmi N, Boulahrouf A. Effect of Capsicum annuum cultivated in sub-alkaline soil on bacterial community and activities of cultivable plant growth promoting bacteria under field conditions. Archives of Agronomy and Soil Science 2019;65:1417-30. [DOI: 10.1080/03650340.2019.1566711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
217 de Souza JEB, Ferreira EPDB. Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agriculture, Ecosystems & Environment 2017;237:250-7. [DOI: 10.1016/j.agee.2016.12.040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 4.8] [Reference Citation Analysis]
218 Scarcella ASDA, Bizarria Junior R, Bastos RG, Magri MMR. Temperature, pH and carbon source affect drastically indole acetic acid production of plant growth promoting yeasts. Braz J Chem Eng 2017;34:429-38. [DOI: 10.1590/0104-6632.20170342s20150541] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
219 Munir I, Bano A, Faisal M. Impact of phosphate solubilizing bacteria on wheat (Triticum aestivum ) in the presence of pesticides. Braz J Biol 2019;79:29-37. [PMID: 30726453 DOI: 10.1590/1519-6984.172213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
220 Seneviratne M, Gunaratne S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G, Vithanage M. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African Journal of Botany 2016;105:19-24. [DOI: 10.1016/j.sajb.2016.02.206] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
221 Abdul Khalil H, Hossain MS, Rosamah E, Azli N, Saddon N, Davoudpoura Y, Islam MN, Dungani R. The role of soil properties and it’s interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews 2015;43:1006-15. [DOI: 10.1016/j.rser.2014.11.099] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 4.9] [Reference Citation Analysis]
222 Velez PA, Talano MA, Paisio CE, Agostini E, González PS. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation. Environmental Technology 2017;38:2164-72. [DOI: 10.1080/09593330.2016.1247198] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
223 Adem G, Metin T, Ustun S, Fikrettin S, Medine G, Özgül M, Selda O, Ekrem O. The Yield Responses to Crop Bioremediation Practices on Haplustept and Fluvaquent Saline-Sodic Soils. Communications in Soil Science and Plant Analysis 2020;51:2639-57. [DOI: 10.1080/00103624.2020.1836196] [Reference Citation Analysis]
224 Jha Y, Subramanian RB. Reduced cell death and improved cell membrane integrity in rice under salinity by root associated bacteria. Theor Exp Plant Physiol 2015;27:227-35. [DOI: 10.1007/s40626-015-0047-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
225 Adedeji AA, Häggblom MM, Babalola OO. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African 2020;9:e00492. [DOI: 10.1016/j.sciaf.2020.e00492] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
226 Asghar HN, Rafique HM, Zahir ZA, Khan MY, Akhtar MJ, Naveed M, Saleem M. Petroleum Hydrocarbons-Contaminated Soils: Remediation Approaches. In: Hakeem KR, Akhtar J, Sabir M, editors. Soil Science: Agricultural and Environmental Prospectives. Cham: Springer International Publishing; 2016. pp. 105-29. [DOI: 10.1007/978-3-319-34451-5_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
227 Shreya D, Jinal HN, Kartik VP, Amaresan N. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch Microbiol 2020;202:887-94. [PMID: 31893290 DOI: 10.1007/s00203-019-01801-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
228 Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. Rev Environ Contam Toxicol 2020;252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Reference Citation Analysis]
229 Jangir M, Sharma S, Sharma S. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 2019;138:104069. [DOI: 10.1016/j.biocontrol.2019.104069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
230 dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Front Sustain Food Syst 2020;4:136. [DOI: 10.3389/fsufs.2020.00136] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
231 Pawlik M, Piotrowska-Seget Z. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion. J Toxicol Environ Health A 2015;78:860-70. [PMID: 26167752 DOI: 10.1080/15287394.2015.1051200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
232 Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee I, Shin J. Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environmental and Experimental Botany 2017;135:126-35. [DOI: 10.1016/j.envexpbot.2016.03.005] [Cited by in Crossref: 40] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
233 Shahid M, Javed M, Masood S, Akram M, Azeem M, Ali Q, Gilani R, Basit F, Abid A, Lindberg S. Serratia sp. CP ‐13 augments the growth of cadmium (Cd)‐stressed Linum usitatissimum L. by limited Cd uptake, enhanced nutrient acquisition and antioxidative potential. J Appl Microbiol 2019;126:1708-21. [DOI: 10.1111/jam.14252] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
234 Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W. Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture. In: Ansari RA, Mahmood I, editors. Plant Health Under Biotic Stress. Singapore: Springer; 2019. pp. 109-27. [DOI: 10.1007/978-981-13-6040-4_6] [Cited by in Crossref: 21] [Article Influence: 7.0] [Reference Citation Analysis]
235 Hanif MK, Malik KA, Hameed S, Saddique MJ, Ayesha, Fatima K, Naqqash T, Majeed A, Iqbal MJ, Imran A. Growth stimulatory effect of AHL producing Serratia spp. from potato on homologous and non-homologous host plants. Microbiological Research 2020;238:126506. [DOI: 10.1016/j.micres.2020.126506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
236 Kang S, Radhakrishnan R, Lee K, You Y, Ko J, Kim J, Lee I. Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2015;65:637-47. [DOI: 10.1080/09064710.2015.1040830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
237 Tsuji K, Asayama T, Shiraki N, Inoue S, Okuda E, Hayashi C, Nishida K, Hasegawa H, Harada E. Mn accumulation in a submerged plant Egeria densa (Hydrocharitaceae) is mediated by epiphytic bacteria: Biogenic Mn oxide accumulation in submerged plant. Plant, Cell & Environment 2017;40:1163-73. [DOI: 10.1111/pce.12910] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
238 Yasmin H, Nosheen A, Naz R, Bano A, Keyani R. l -tryptophan-assisted PGPR-mediated induction of drought tolerance in maize ( Zea mays L.). Journal of Plant Interactions 2017;12:567-78. [DOI: 10.1080/17429145.2017.1402212] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
239 Sreevidya M, Gopalakrishnan S, Melø TM, Simic N, Bruheim P, Sharma M, Srinivas V, Alekhya G. Biological control of Botrytis cinerea and plant growth promotion potential by Penicillium citrinum in chickpea ( Cicer arietinum L.). Biocontrol Science and Technology 2015;25:739-55. [DOI: 10.1080/09583157.2015.1010483] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
240 Ruzzi M, Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 2015;196:124-34. [DOI: 10.1016/j.scienta.2015.08.042] [Cited by in Crossref: 159] [Cited by in F6Publishing: 35] [Article Influence: 22.7] [Reference Citation Analysis]
241 Rani R, Kumar V, Gupta P, Chandra A. Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil. Chemosphere 2021;279:130589. [DOI: 10.1016/j.chemosphere.2021.130589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
242 Batista BD, Lacava PT, Ferrari A, Teixeira-Silva NS, Bonatelli ML, Tsui S, Mondin M, Kitajima EW, Pereira JO, Azevedo JL, Quecine MC. Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol Res 2018;206:33-42. [PMID: 29146258 DOI: 10.1016/j.micres.2017.09.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
243 Le K, Im W, Paek K, Park S. Biotic elicitation of ginsenoside metabolism of mutant adventitious root culture in Panax ginseng. Appl Microbiol Biotechnol 2018;102:1687-97. [DOI: 10.1007/s00253-018-8751-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
244 Schmidt J, Messmer M, Wilbois K. Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures. Plant Soil 2015;397:411-45. [DOI: 10.1007/s11104-015-2546-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
245 Amin A, Latif Z. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 2017;57:204-17. [PMID: 27911010 DOI: 10.1002/jobm.201600352] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
246 Rai A, Cherif A, Cruz C, Nabti E. Extracts from Marine Macroalgae and Opuntia ficus-indica Cladodes Enhance Halotolerance and Enzymatic Potential of Diazotrophic Rhizobacteria and Their Impact on Wheat Germination Under Salt Stress. Pedosphere 2018;28:241-54. [DOI: 10.1016/s1002-0160(17)60333-3] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
247 Narendra Babu A, Jogaiah S, Ito S, Kestur Nagaraj A, Tran LS. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 2015;231:62-73. [PMID: 25575992 DOI: 10.1016/j.plantsci.2014.11.006] [Cited by in Crossref: 108] [Cited by in F6Publishing: 61] [Article Influence: 13.5] [Reference Citation Analysis]
248 Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. Journal of Environmental Management 2018;222:396-401. [DOI: 10.1016/j.jenvman.2018.05.083] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
249 Charron-Lamoureux V, Thérien M, Konk A, Beauregard PB. Bacillus subtilis and Bacillus velezensis population dynamics and quantification of spores after inoculation on ornamental plants. Can J Microbiol 2020;66:664-9. [PMID: 32497447 DOI: 10.1139/cjm-2020-0174] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Mondal SC, Sarma B, Farooq M, Nath DJ, Gogoi N. Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. Int J Environ Sci Technol 2020;17:153-60. [DOI: 10.1007/s13762-019-02263-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
251 Senthil Kumar C, Jacob T, Devasahayam S, Thomas S, Geethu C. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiological Research 2018;207:153-60. [DOI: 10.1016/j.micres.2017.11.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
252 Akter Mukta J, Rahman M, As Sabir A, Gupta DR, Surovy MZ, Rahman M, Islam MT. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology 2017;11:9-18. [DOI: 10.1016/j.bcab.2017.05.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 4.6] [Reference Citation Analysis]
253 Garantonakis N, Pappas ML, Varikou K, Skiada V, Broufas GD, Kavroulakis N, Papadopoulou KK. Tomato Inoculation With the Endophytic Strain Fusarium solani K Results in Reduced Feeding Damage by the Zoophytophagous Predator Nesidiocoris tenuis. Front Ecol Evol 2018;6:126. [DOI: 10.3389/fevo.2018.00126] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
254 Pavlova AS, Leontieva MR, Smirnova TA, Kolomeitseva GL, Netrusov AI, Tsavkelova EA. Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl. J Appl Microbiol 2017;123:217-32. [PMID: 28457004 DOI: 10.1111/jam.13481] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
255 Jha P, Panwar J, Jha PN. Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Environmental Sustainability 2018;1:25-38. [DOI: 10.1007/s42398-018-0011-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
256 Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Buszewski B. Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 2018;26:316-32. [DOI: 10.1139/er-2018-0023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
257 Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews 2017;171:621-45. [DOI: 10.1016/j.earscirev.2017.06.005] [Cited by in Crossref: 316] [Cited by in F6Publishing: 217] [Article Influence: 63.2] [Reference Citation Analysis]
258 Michaelis J, Diekmann M. Effects of soil types and bacteria inoculum on the cultivation and reintroduction success of rare plant species. Plant Ecol 2018;219:441-53. [DOI: 10.1007/s11258-018-0807-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
259 Przemieniecki SW, Kurowski TP, Kotlarz K, Krawczyk K, Damszel M, Pszczółkowska A, Kacprzak-siuda K, Chareńska A, Mastalerz J. Bacteria Isolated from Treated Wastewater for Biofertilization and Crop Protection Against Fusarium spp. Pathogens. J Soil Sci Plant Nutr 2019;19:1-11. [DOI: 10.1007/s42729-018-0001-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 5.7] [Reference Citation Analysis]
260 Hassan M, Mcinroy J, Kloepper J. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture 2019;9:142. [DOI: 10.3390/agriculture9070142] [Cited by in Crossref: 49] [Cited by in F6Publishing: 12] [Article Influence: 16.3] [Reference Citation Analysis]
261 Ali B, Amna, Javed MT, Ali H, Munis MFH, Chaudhary HJ. Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum. International Journal of Phytoremediation 2016;19:14-22. [DOI: 10.1080/15226514.2016.1216075] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
262 Chen X, Achal V. Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials 2019;368:705-13. [DOI: 10.1016/j.jhazmat.2019.01.108] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 10.7] [Reference Citation Analysis]
263 Heaven MW, Benheim D. Soil Microbial Metabolomics. In: Beale DJ, Kouremenos KA, Palombo EA, editors. Microbial Metabolomics. Cham: Springer International Publishing; 2016. pp. 147-98. [DOI: 10.1007/978-3-319-46326-1_6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
264 Iyer B, Rajput MS, Rajkumar S. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Microbiol Res 2017;202:43-50. [PMID: 28647122 DOI: 10.1016/j.micres.2017.05.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
265 Parab N, Sinha S, Mishra S. Coal fly ash amendment in acidic field: Effect on soil microbial activity and onion yield. Applied Soil Ecology 2015;96:211-6. [DOI: 10.1016/j.apsoil.2015.08.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
266 Filgueiras L, Silva R, Almeida I, Vidal M, Baldani JI, Meneses CHSG. Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil 2020;451:57-73. [DOI: 10.1007/s11104-019-04163-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
267 Tayyab M, Fallah N, Zhang C, Pang Z, Islam W, Lin S, Lin W, Zhang H. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environ Sci Pollut Res Int 2021. [PMID: 34741271 DOI: 10.1007/s11356-021-17229-4] [Reference Citation Analysis]
268 Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation 2017;19:813-24. [PMID: 28699781 DOI: 10.1080/15226514.2017.1290580] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
269 Tekdal D, Çiftçi C, Çingay B, Çetiner S. Isolation and characterization of the most abundant rhizobacterial species associated with Vuralia turcica (Fabaceae: Papilionoideae). An Acad Bras Ciênc 2022;94:e20191460. [DOI: 10.1590/0001-3765202220191460] [Reference Citation Analysis]
270 Tunc T, Sahin U. Yield and Heavy Metal Content of Wastewater-Irrigated Cauliflower and Soil Chemical Properties. Communications in Soil Science and Plant Analysis 2017;48:1194-211. [DOI: 10.1080/00103624.2017.1341910] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
271 Ayangbenro AS, Babalola OO. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology 2021;25:100173. [DOI: 10.1016/j.cpb.2020.100173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
272 Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 2015;22:2505-14. [DOI: 10.1007/s11356-014-3699-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
273 Murgese P, Santamaria P, Leoni B, Crecchio C. Ameliorative Effects of PGPB on Yield, Physiological Parameters, and Nutrient Transporter Genes Expression in Barattiere (Cucumis melo L.). J Soil Sci Plant Nutr 2020;20:784-93. [DOI: 10.1007/s42729-019-00165-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
274 Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 2016;92:fiw112. [PMID: 27222220 DOI: 10.1093/femsec/fiw112] [Cited by in Crossref: 90] [Cited by in F6Publishing: 46] [Article Influence: 15.0] [Reference Citation Analysis]
275 Dash DM, Osborne JW. Biodegradation of monocrotophos by a plant growth promoting Bacillus aryabhattai (VITNNDJ5) strain in artificially contaminated soil. Int J Environ Sci Technol 2020;17:1475-90. [DOI: 10.1007/s13762-019-02432-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
276 Fan D, Smith DL. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Microbiol Spectr 2021;9:e0027921. [PMID: 34190589 DOI: 10.1128/Spectrum.00279-21] [Reference Citation Analysis]
277 Mazumdar D, Saha SP, Ghosh S. Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. International Journal of Vegetable Science 2020;26:333-50. [DOI: 10.1080/19315260.2019.1632401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
278 Bakhshandeh E, Rahimian H, Pirdashti H, Nematzadeh GA. Phosphate solubilization potential and modeling of stress tolerance of rhizobacteria from rice paddy soil in northern Iran. World J Microbiol Biotechnol 2014;30:2437-47. [DOI: 10.1007/s11274-014-1669-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
279 Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. International Journal of Phytoremediation 2017;19:360-70. [DOI: 10.1080/15226514.2016.1225289] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
280 Pérez-palacios P, Romero-aguilar A, Delgadillo J, Doukkali B, Caviedes MA, Rodríguez-llorente ID, Pajuelo E. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environ Sci Pollut Res 2017;24:14910-23. [DOI: 10.1007/s11356-017-9092-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
281 Mishra J, Arora NK. Bioformulations for Plant Growth Promotion and Combating Phytopathogens: A Sustainable Approach. In: Arora NK, Mehnaz S, Balestrini R, editors. Bioformulations: for Sustainable Agriculture. New Delhi: Springer India; 2016. pp. 3-33. [DOI: 10.1007/978-81-322-2779-3_1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
282 de Sousa TP, de Souza ACA, de Filippi MCC, Lanna AC, Cortês MV, Pinheiro HA, da Silva GB. Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res Int 2018;25:3657-68. [PMID: 29164466 DOI: 10.1007/s11356-017-0753-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
283 Qi G, Pan Z, Yamamoto Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Ihara I, Tangtaweewipat S, Umetsu K. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants. Anim Sci J 2019;90:297-303. [PMID: 30554439 DOI: 10.1111/asj.13137] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
284 Seethapathy P, Gurudevan T, Subramanian KS, Kuppusamy P. Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions 2016;11:158-66. [DOI: 10.1080/17429145.2016.1252068] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
285 Mącik M, Gryta A, Frąc M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Elsevier; 2020. pp. 31-87. [DOI: 10.1016/bs.agron.2020.02.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
286 Hernández AG, de Moura GD, Binati RL, Nascimento FXI, Londoño DM, Mamede ACP, da Silva EP, de Armas RD, Giachini AJ, Rossi MJ, Soares CRFS. Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes. Arch Microbiol 2017;199:991-1001. [DOI: 10.1007/s00203-017-1373-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
287 Huang X, Zhou D, Lapsansky ER, Reardon KF, Guo J, Andales MJ, Vivanco JM, Manter DK. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 2017;419:523-39. [DOI: 10.1007/s11104-017-3360-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 4.2] [Reference Citation Analysis]
288 Pradhan A, Pahari A, Mohapatra S, Mishra BB. Phosphate-Solubilizing Microorganisms in Sustainable Agriculture: Genetic Mechanism and Application. In: Adhya TK, Mishra BB, Annapurna K, Verma DK, Kumar U, editors. Advances in Soil Microbiology: Recent Trends and Future Prospects. Singapore: Springer; 2017. pp. 81-97. [DOI: 10.1007/978-981-10-7380-9_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
289 Bakhshandeh E, Rahimian H, Pirdashti H, Nematzadeh GA. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. J Appl Microbiol 2015;119:1371-82. [PMID: 26294004 DOI: 10.1111/jam.12938] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
290 Hassan A, Pariatamby A, Ahmed A, Auta HS, Hamid FS. Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: a Demonstration of Bioaugmentation Potential. Water Air Soil Pollut 2019;230. [DOI: 10.1007/s11270-019-4227-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
291 Ludueña LM, Anzuay MS, Angelini JG, Mcintosh M, Becker A, Rupp O, Goesmann A, Blom J, Fabra A, Taurian T. Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics 2019;111:913-20. [DOI: 10.1016/j.ygeno.2018.05.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
292 Azri MH, Ismail S, Abdullah R. An endophytic Bacillus strain promotes growth of oil palm seedling by fine root biofilm formation. Rhizosphere 2018;5:1-7. [DOI: 10.1016/j.rhisph.2017.10.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
293 Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul 2020;90:123-36. [DOI: 10.1007/s10725-019-00556-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
294 Ullah I, Al-Johny BO, Al-Ghamdi KMS, Al-Zahrani HAA, Anwar Y, Firoz A, Al-Kenani N, Almatry MAA. Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol Environ Saf 2019;174:197-207. [PMID: 30826546 DOI: 10.1016/j.ecoenv.2019.02.074] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
295 Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 2017;24:3315-35. [DOI: 10.1007/s11356-016-8104-0] [Cited by in Crossref: 163] [Cited by in F6Publishing: 61] [Article Influence: 27.2] [Reference Citation Analysis]
296 Nielsen S, Joseph S, Ye J, Chia C, Munroe P, Zwieten LV, Thomas T. Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertiliser on crop yield, soil chemistry and microbial communities. Agriculture, Ecosystems & Environment 2018;255:52-61. [DOI: 10.1016/j.agee.2017.12.020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
297 Tanwir K, Javed MT, Abbas S, Shahid M, Akram MS, Chaudhary HJ, Iqbal M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicol Environ Saf 2021;208:111584. [PMID: 33396107 DOI: 10.1016/j.ecoenv.2020.111584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
298 Saakre M, Baburao TM, Salim AP, Ffancies RM, Achuthan VP, Thomas G, Sivarajan SR. Identification and Characterization of Genes Responsible for Drought Tolerance in Rice Mediated by Pseudomonas fluorescens. Rice Science 2017;24:291-8. [DOI: 10.1016/j.rsci.2017.04.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
299 Kumar S, Choudhary AK, Suyal DC, Makarana G, Goel R. Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater 2021;425:127965. [PMID: 34894510 DOI: 10.1016/j.jhazmat.2021.127965] [Reference Citation Analysis]
300 Pandey A, Yarzábal LA. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 2019;103:643-57. [PMID: 30465306 DOI: 10.1007/s00253-018-9515-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
301 Mukherjee T, Banik A, Mukhopadhyay SK. Plant Growth-Promoting Traits of a Thermophilic Strain of the Klebsiella Group with its Effect on Rice Plant Growth. Curr Microbiol 2020;77:2613-22. [PMID: 32440809 DOI: 10.1007/s00284-020-02032-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
302 Lin H, Liu C, Li B, Dong Y. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials 2021;402:123829. [DOI: 10.1016/j.jhazmat.2020.123829] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 23.0] [Reference Citation Analysis]
303 Płociniczak T, Fic E, Pacwa-płociniczak M, Pawlik M, Piotrowska-seget Z. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. International Journal of Phytoremediation 2017;19:614-20. [DOI: 10.1080/15226514.2016.1278420] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
304 Ouma EW, Asango AM, Maingi J, Njeru EM. Elucidating the Potential of Native Rhizobial Isolates to Improve Biological Nitrogen Fixation and Growth of Common Bean and Soybean in Smallholder Farming Systems of Kenya. International Journal of Agronomy 2016;2016:1-7. [DOI: 10.1155/2016/4569241] [Cited by in Crossref: 20] [Article Influence: 3.3] [Reference Citation Analysis]
305 Pahari A, Pradhan A, Nayak SK, Mishra BB. Bacterial Siderophore as a Plant Growth Promoter. In: Patra JK, Vishnuprasad CN, Das G, editors. Microbial Biotechnology. Singapore: Springer; 2017. pp. 163-80. [DOI: 10.1007/978-981-10-6847-8_7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
306 Cardoso P, Alves A, Silveira P, Sá C, Fidalgo C, Freitas R, Figueira E. Bacteria from nodules of wild legume species: Phylogenetic diversity, plant growth promotion abilities and osmotolerance. Sci Total Environ 2018;645:1094-102. [PMID: 30248834 DOI: 10.1016/j.scitotenv.2018.06.399] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
307 Nagarajan S, Eswaran P, Masilamani RP, Natarajan H. Chicken Feather Compost to Promote the Plant Growth Activity by Using Keratinolytic Bacteria. Waste Biomass Valor 2018;9:531-8. [DOI: 10.1007/s12649-017-0004-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
308 Bakhshandeh E, Pirdashti H, Lendeh KS. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering 2017;103:164-9. [DOI: 10.1016/j.ecoleng.2017.03.008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 17] [Article Influence: 9.8] [Reference Citation Analysis]
309 Przemieniecki SW, Kosewska A, Purwin C, Zapałowska A, Mastalerz J, Kotlarz K, Kolaczek K. Biometric, chemical, and microbiological evaluation of common wheat (Triticum aestivum L.) seedlings fertilized with mealworm (Tenebrio molitor L.) larvae meal. Applied Soil Ecology 2021;167:104037. [DOI: 10.1016/j.apsoil.2021.104037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 Stella M, Theeba M, Illani Z. Organic fertilizer amended with immobilized bacterial cells for extended shelf-life. Biocatalysis and Agricultural Biotechnology 2019;20:101248. [DOI: 10.1016/j.bcab.2019.101248] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
311 Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFR, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. An Acad Bras Cienc 2018;90:3813-29. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
312 Alkowni R, Jodeh S, Hamed R, Samhan S, Daraghmeh H. The impact of Pseudomonas putida UW3 and UW4 strains on photosynthetic activities of selected field crops under saline conditions. Int J Phytoremediation 2019;21:944-52. [PMID: 31025574 DOI: 10.1080/15226514.2019.1583638] [Reference Citation Analysis]
313 Novo LA, Castro PM, Alvarenga P, da Silva EF. Plant Growth–Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils. Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier; 2018. pp. 281-95. [DOI: 10.1016/b978-0-12-812986-9.00016-6] [Cited by in Crossref: 16] [Article Influence: 4.0] [Reference Citation Analysis]
314 Nadeem SM, Ahmad M, Zahir ZA, Kharal MA. Role of Phytohormones in Stress Tolerance of Plants. In: Hakeem KR, Akhtar MS, editors. Plant, Soil and Microbes. Cham: Springer International Publishing; 2016. pp. 385-421. [DOI: 10.1007/978-3-319-29573-2_17] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
315 Etesami H, Adl SM. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. In: Kumar M, Kumar V, Prasad R, editors. Phyto-Microbiome in Stress Regulation. Singapore: Springer; 2020. pp. 147-203. [DOI: 10.1007/978-981-15-2576-6_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
316 Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research 2020;232:126389. [DOI: 10.1016/j.micres.2019.126389] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 15.5] [Reference Citation Analysis]
317 Gallardo-cerda J, Levihuan J, Lavín P, Oses R, Atala C, Torres-díaz C, Cuba-díaz M, Barrera A, Molina-montenegro MA. Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biol 2018;41:1973-82. [DOI: 10.1007/s00300-018-2336-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
318 Melo ROD, Oliveira HPD, Silveira KC, Baldotto LEB, Baldotto MA. Initial performance of maize in response to humic acids and plant growth-promoting bacteria. Rev Ceres 2018;65:271-7. [DOI: 10.1590/0034-737x201865030007] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
319 Mahmood A, Kataoka R. Potential of Biopriming in Enhancing Crop Productivity and Stress Tolerance. In: Rakshit A, Singh HB, editors. Advances in Seed Priming. Singapore: Springer; 2018. pp. 127-45. [DOI: 10.1007/978-981-13-0032-5_9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
320 Paul C, Filippidou S, Jamil I, Kooli W, House GL, Estoppey A, Hayoz M, Junier T, Palmieri F, Wunderlin T, Lehmann A, Bindschedler S, Vennemann T, Chain PSG, Junier P. Bacterial spores, from ecology to biotechnology. Adv Appl Microbiol 2019;106:79-111. [PMID: 30798805 DOI: 10.1016/bs.aambs.2018.10.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
321 Kimani VN, Chen L, Liu Y, Raza W, Zhang N, Mungai LK, Shen Q, Zhang R. Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber: SQR9 biofilm induction by cucumber root exudates. J Basic Microbiol 2016;56:1183-93. [DOI: 10.1002/jobm.201600104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
322 Fasusi OA, Cruz C, Babalola OO. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021;11:163. [DOI: 10.3390/agriculture11020163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
323 Kamal N, Liu Z, Qian C, Wu J, Zhong X. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiol Res 2021;242:126594. [PMID: 33007635 DOI: 10.1016/j.micres.2020.126594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
324 Bruneel O, Mghazli N, Sbabou L, Héry M, Casiot C, Filali-maltouf A. Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration 2019;205:106327. [DOI: 10.1016/j.gexplo.2019.06.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
325 Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018;47:1705-29. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
326 Patil A, Kale A, Ajane G, Sheikh R, Patil S. Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective. In: Hansen AP, Choudhary DK, Agrawal PK, Varma A, editors. Rhizobium Biology and Biotechnology. Cham: Springer International Publishing; 2017. pp. 105-34. [DOI: 10.1007/978-3-319-64982-5_7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
327 Kausar H, Ismail MR, Saud HM, Berahim Z, Habib SH, Othman R, Bhuiyan SH. Microbial Composting of Rice Straw for Improved Stability and Bioefficacy. In: Hakeem KR, Akhtar MS, Abdullah SNA, editors. Plant, Soil and Microbes. Cham: Springer International Publishing; 2016. pp. 271-90. [DOI: 10.1007/978-3-319-27455-3_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
328 Marques da Silva CE, Müller de Quevedo D, Jahno VD. Evaluation of the vermicomposting of Acacia mearnsii De Wild bark bagasse with bovine manure. Journal of Cleaner Production 2020;264:121632. [DOI: 10.1016/j.jclepro.2020.121632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
329 Nosheen S, Ajmal I, Song Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 2021;13:1868. [DOI: 10.3390/su13041868] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
330 Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Shafiq S, Kanwal N, Ali F, Nasir IA. Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews 2016;5:112-9. [DOI: 10.1080/21622515.2016.1259358] [Cited by in Crossref: 33] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
331 Kumar U, Kaviraj M, Rout S, Chakraborty K, Swain P, Nayak PK, Nayak AK. Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiol Res 2021;250:126808. [PMID: 34146939 DOI: 10.1016/j.micres.2021.126808] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
332 Tennakoon P, Rajapaksha R, Hettiarachchi L. Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application. Rhizosphere 2019;10:100146. [DOI: 10.1016/j.rhisph.2019.100146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
333 Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD. A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environmental and Experimental Botany 2018;150:115-26. [DOI: 10.1016/j.envexpbot.2018.03.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
334 Liu W, Huang L, Komorek R, Handakumbura PP, Zhou Y, Hu D, Engelhard MH, Jiang H, Yu X, Jansson C, Zhu Z. Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst 2020;145:393-401. [DOI: 10.1039/c9an01954e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
335 Altaf MM, Ahmad I. In vitro and In vivo biofilm formation by Azotobacter isolates and its relevance to rhizosphere colonization. Rhizosphere 2017;3:138-42. [DOI: 10.1016/j.rhisph.2017.04.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
336 Maung CEH, Gyu Choi T, Hae Nam H, Yong Kim K. Role of Bacillus amyloliquefaciens Y1 in the control of Fusarium wilt disease and growth promotion of tomato. Biocontrol Science and Technology 2017;27:1400-15. [DOI: 10.1080/09583157.2017.1406064] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
337 Paudel BR, Carpenter-boggs L, Higgins S. Influence of brassicaceous soil amendments on potentially beneficial and pathogenic soil microorganisms and seedling growth in Douglas-fir nurseries. Applied Soil Ecology 2016;105:91-100. [DOI: 10.1016/j.apsoil.2016.04.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
338 Kumar A, Subrahmanyam G, Mondal R, Cabral-Pinto MMS, Shabnam AA, Jigyasu DK, Malyan SK, Fagodiya RK, Khan SA, Kumar A, Yu ZG. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021;268:128855. [PMID: 33199107 DOI: 10.1016/j.chemosphere.2020.128855] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]