BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production 2020;253:119770. [DOI: 10.1016/j.jclepro.2019.119770] [Cited by in Crossref: 40] [Cited by in F6Publishing: 50] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Kumar Awasthi M, Yan B, Sar T, Gómez-García R, Ren L, Sharma P, Binod P, Sindhu R, Kumar V, Kumar D, Mohamed BA, Zhang Z, Taherzadeh MJ. Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. Bioresour Technol 2022;360:127620. [PMID: 35840028 DOI: 10.1016/j.biortech.2022.127620] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environ Sci Pollut Res Int 2022. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Rai A, Kamila B, Dutta S, Chakrabarty J. Macromolecules assessment from spent biomass during phycoremediation of pollutants from coke-oven wastewater: A prospective approach for production of value added products. Journal of the Indian Chemical Society 2022. [DOI: 10.1016/j.jics.2022.100555] [Reference Citation Analysis]
4 Feng P, Qin L, Xu Z, Alam MA, Wang Z, Zhu S. Seasonal variation in the growth, lipid accumulation, and fatty acid composition of Chlorella sp. GN1 cultured in flat plate photobioreactors outdoors. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02810-9] [Reference Citation Analysis]
5 Wang S, Mukhambet Y, Esakkimuthu S, Abomohra AE. Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. Journal of Cleaner Production 2022;348:131245. [DOI: 10.1016/j.jclepro.2022.131245] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
6 Chakravarty S, Mallick N. Engineering a cultivation strategy for higher lipid accretion and biodiesel production by the marine microalga Picochlorum soloecismus. Sustainable Chemistry and Pharmacy 2022;26:100635. [DOI: 10.1016/j.scp.2022.100635] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kynshi BL, Sachu M, Syiem MB. Unrestricted availability of α-ketoglutarate influences biomass production in the cyanobacterium Nostoc muscorum Meg 1 by impacting rates of photosynthesis, nitrogen fixation and lipid synthesis. J Appl Phycol. [DOI: 10.1007/s10811-022-02744-9] [Reference Citation Analysis]
8 Maity S, Mallick N. Trends and advances in sustainable bioethanol production by marine microalgae: A critical review. Journal of Cleaner Production 2022;345:131153. [DOI: 10.1016/j.jclepro.2022.131153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
9 Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022;10:836056. [PMID: 35402414 DOI: 10.3389/fbioe.2022.836056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Chockalingam MP, Gunasekaran AP, Santhappan JS. Multi-response optimization on the gasification of cocoa pod (Theobroma cacao) husk and its performance in a multi-fuel engine. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02553-7] [Reference Citation Analysis]
11 Dudek M, Dębowski M, Nowicka A, Kazimierowicz J, Zieliński M. The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield. Resources 2022;11:31. [DOI: 10.3390/resources11030031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Ringgani R, Azis MM, Rochmadi, Budiman A. Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Appl Biochem Biotechnol 2022. [PMID: 35243560 DOI: 10.1007/s12010-022-03806-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Goswami RK, Mehariya S, Karthikeyan OP, Gupta VK, Verma P. Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: A flexible concept for sustainable environment. Journal of Cleaner Production 2022;339:130654. [DOI: 10.1016/j.jclepro.2022.130654] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
14 Yang Q, Zhang M, Alwathnani HA, Usman M, Mohamed BA, Abomohra AE, Salama E. Cultivation of Freshwater Microalgae in Wastewater Under High Salinity for Biomass, Nutrients Removal, and Fatty Acids/Biodiesel Production. Waste Biomass Valor. [DOI: 10.1007/s12649-022-01712-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Verasoundarapandian G, Lim ZS, Radziff SBM, Taufik SH, Puasa NA, Shaharuddin NA, Merican F, Wong C, Lalung J, Ahmad SA. Remediation of Pesticides by Microalgae as Feasible Approach in Agriculture: Bibliometric Strategies. Agronomy 2022;12:117. [DOI: 10.3390/agronomy12010117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Lalrinkimi, Kant Mehta S. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. Bioresour Technol 2021;345:126487. [PMID: 34871720 DOI: 10.1016/j.biortech.2021.126487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 de Carvalho Silvello MA, Severo Gonçalves I, Patrícia Held Azambuja S, Silva Costa S, Garcia Pereira Silva P, Oliveira Santos L, Goldbeck R. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresour Technol 2021;:126304. [PMID: 34752879 DOI: 10.1016/j.biortech.2021.126304] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
18 Li S, Li F, Ho SH. Biohydrogen production from microalgae for environmental sustainability. Chemosphere 2021;:132717. [PMID: 34757051 DOI: 10.1016/j.chemosphere.2021.132717] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 22.0] [Reference Citation Analysis]
19 Hamidian N, Zamani H. Potential of Chlorella sorokiniana Cultivated in Dairy Wastewater for Bioenergy and Biodiesel Production. Bioenerg Res . [DOI: 10.1007/s12155-021-10338-5] [Reference Citation Analysis]
20 Zhao Y, Li J, Ma X, Fang X, Zhu B, Pan K. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents. Environ Sci Pollut Res Int 2021. [PMID: 34462853 DOI: 10.1007/s11356-021-15950-8] [Reference Citation Analysis]
21 Ahmed SF, Mofijur M, Tarannum K, Chowdhury AT, Rafa N, Nuzhat S, Kumar PS, Vo DN, Lichtfouse E, Mahlia TMI. Biogas upgrading, economy and utilization: a review. Environ Chem Lett 2021;19:4137-64. [DOI: 10.1007/s10311-021-01292-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
22 Liu X, Wei L, Zhang J, Zhu K, Zhang H, Hua G, Cheng H. Effects of sulfate ions on growth and lipid synthesis of Scenedesmus obliquus in synthetic wastewater with various carbon-to-nitrogen ratios altered by different ammonium and nitrate additions. Bioresour Technol 2021;341:125766. [PMID: 34416659 DOI: 10.1016/j.biortech.2021.125766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Safavi M, Jafari Olia MS, Abolhasani MH, Amini M, Kianirad M. Optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. Biocatalysis and Agricultural Biotechnology 2021;35:102098. [DOI: 10.1016/j.bcab.2021.102098] [Reference Citation Analysis]
24 Whangchai K, Mathimani T, Sekar M, Shanmugam S, Brindhadevi K, Van Hung T, Chinnathambi A, Alharbi SA, Pugazhendhi A. Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. Journal of Environmental Chemical Engineering 2021;9:105482. [DOI: 10.1016/j.jece.2021.105482] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
25 Li M, Zhou M, Tian X, Tan C, Gu T. Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell. Energy 2021;226:120422. [DOI: 10.1016/j.energy.2021.120422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
26 Pires da Mata Costa L, Micheline Vaz de Miranda D, Couto de Oliveira AC, Falcon L, Stella Silva Pimenta M, Guilherme Bessa I, Juarez Wouters S, Andrade MHS, Pinto JC. Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes 2021;9:759. [DOI: 10.3390/pr9050759] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
27 Shahid A, Usman M, Atta Z, Musharraf SG, Malik S, Elkamel A, Shahid M, Abdulhamid Alkhattabi N, Gull M, Mehmood MA. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Bioresour Technol 2021;333:125194. [PMID: 33910117 DOI: 10.1016/j.biortech.2021.125194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
28 Mandotra SK, Sharma C, Srivastava N, Ahluwalia AS, Ramteke PW. Current prospects and future developments in algal bio-hydrogen production: a review. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-01414-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Pacheco D, Rocha ACS, Garcia A, Bóia A, Pereira L, Verdelhos T. Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. Applied Sciences 2021;11:2207. [DOI: 10.3390/app11052207] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Efroymson RA, Jager HI, Mandal S, Parish ES, Mathews TJ. Better management practices for environmentally sustainable production of microalgae and algal biofuels. Journal of Cleaner Production 2021;289:125150. [DOI: 10.1016/j.jclepro.2020.125150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
31 Zhu Y, Cheng J, Zhang Z, Li H, Wang Z. Promoting extracellular polymeric substances to alleviate phenol toxicity in Arthrospira platensis at high carbon dioxide concentrations. Journal of Cleaner Production 2021;290:125167. [DOI: 10.1016/j.jclepro.2020.125167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Ummalyma SB, Sahoo D, Pandey A. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. Environ Sci Pollut Res Int 2021;28:58837-56. [PMID: 33527238 DOI: 10.1007/s11356-020-11645-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
33 Yadav G, Sekar M, Kim SH, Geo VE, Bhatia SK, Sabir JSM, Chi NTL, Brindhadevi K, Pugazhendhi A. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresour Technol 2021;325:124654. [PMID: 33461123 DOI: 10.1016/j.biortech.2020.124654] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
34 Kaga Y, Kuda T, Taniguchi M, Yamaguchi Y, Takenaka H, Takahashi H, Kimura B. The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. LWT 2021;135:110029. [DOI: 10.1016/j.lwt.2020.110029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Adochite C, Andronic L. Aquatic Toxicity of Photocatalyst Nanoparticles to Green Microalgae Chlorella vulgaris. Water 2021;13:77. [DOI: 10.3390/w13010077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
36 Kleinert C, Griehl C. Identification of suitable Botryococcus braunii strains for non-destructive in situ hydrocarbon extraction. J Appl Phycol 2021;33:785-98. [DOI: 10.1007/s10811-020-02342-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
37 Dębowski M, Zieliński M, Kazimierowicz J, Kujawska N, Talbierz S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020;12:9980. [DOI: 10.3390/su12239980] [Cited by in Crossref: 16] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
38 Taghizadeh S, Morowvat MH, Negahdaripour M, Ebrahiminezhad A, Ghasemi Y. Biosynthesis of Metals and Metal Oxide Nanoparticles Through Microalgal Nanobiotechnology: Quality Control Aspects. BioNanoSci 2021;11:209-26. [DOI: 10.1007/s12668-020-00805-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wang L, Wang L, Manzi HP, Yang Q, Guo Z, Zheng Y, Liu X, Salama E. Isolation and screening of Tetradesmus dimorphus and Desmodesmus asymmetricus from natural habitats in Northwestern China for clean fuel production and N, P removal. Biomass Conv Bioref . [DOI: 10.1007/s13399-020-01034-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
40 Ievina B, Romagnoli F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environmental and Climate Technologies 2020;24:203-20. [DOI: 10.2478/rtuect-2020-0067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
41 Aburai N, Kunishima R, Iijima F, Fujii K. Effects of light-emitting diodes (LEDs) on lipid production of the aerial microalga Coccomyxa sp. KGU-D001 under liquid- and aerial-phase conditions. J Biotechnol 2020;323:274-82. [PMID: 32916185 DOI: 10.1016/j.jbiotec.2020.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Lei Y, Xie C, Wang X, Fang Z, Huang Y, Cao S, Liu B. Thermophilic Anaerobic Digestion of Arundo donax cv. Lvzhou No. 1 for Biogas Production: Structure and Functional Analysis of Microbial Communities. Bioenerg Res 2020;13:866-77. [DOI: 10.1007/s12155-020-10105-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
43 Wang W, Sheng Y. Gene expression concerning fatty acid and amino acid metabolism in Chlorella vulgaris cultured with antibiotics. Appl Microbiol Biotechnol 2020;104:8025-36. [PMID: 32794019 DOI: 10.1007/s00253-020-10822-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
44 Rushan NH, Mat Yasin NH, Mohd Said F, Ramesh N. Immobilised Chlorella vulgaris as An Alternative for The Enhancement of Microalgae Oil and Biodiesel Production. Bull Chem React Eng Catal 2020;15:379-89. [DOI: 10.9767/bcrec.15.2.6905.379-389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Ferrari G, Pezzuolo A, Nizami A, Marinello F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020;13:3714. [DOI: 10.3390/en13143714] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
46 da Costa E, Amaro HM, Melo T, Guedes AC, Domingues MR. Screening for polar lipids, antioxidant, and anti-inflammatory activities of Gloeothece sp. lipid extracts pursuing new phytochemicals from cyanobacteria. J Appl Phycol 2020;32:3015-30. [DOI: 10.1007/s10811-020-02173-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
47 Msanne J, Polle J, Starkenburg S. An assessment of heterotrophy and mixotrophy in Scenedesmus and its utilization in wastewater treatment. Algal Research 2020;48:101911. [DOI: 10.1016/j.algal.2020.101911] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
48 Dourou M, Dritsas P, Baeshen MN, Elazzazy A, Al-farga A, Aggelis G. High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiology Letters 2020;367:fnaa081. [DOI: 10.1093/femsle/fnaa081] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
49 Dębowski M, Zieliński M, Kisielewska M, Kazimierowicz J, Dudek M, Świca I, Rudnicka A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020;8:517. [DOI: 10.3390/pr8050517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
50 Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Sustainable Iron Recovery and Biodiesel Yield by Acid-Adapted Microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, Grown in Synthetic Acid Mine Drainage. ACS Omega 2020;5:6888-94. [PMID: 32258924 DOI: 10.1021/acsomega.0c00255] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]