BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cai H, Liang Z, Huang W, Wen L, Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 2017;532:55-65. [PMID: 28870763 DOI: 10.1016/j.ijpharm.2017.08.084] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Mota C, Danti S. Ear Tissue Engineering. Comprehensive Biotechnology. Elsevier; 2019. pp. 270-85. [DOI: 10.1016/b978-0-444-64046-8.00461-4] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
2 Gausterer JC, Schüßler C, Gabor F. The impact of calcium phosphate on FITC-BSA loading of sonochemically prepared PLGA nanoparticles for inner ear drug delivery elucidated by two different fluorimetric quantification methods. Ultrason Sonochem 2021;79:105783. [PMID: 34653915 DOI: 10.1016/j.ultsonch.2021.105783] [Reference Citation Analysis]
3 An X, Zha D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine (Lond) 2020;15:1981-93. [PMID: 32605499 DOI: 10.2217/nnm-2020-0198] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mittal R, Pena SA, Zhu A, Eshraghi N, Fesharaki A, Horesh EJ, Mittal J, Eshraghi AA. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. Artif Cells Nanomed Biotechnol 2019;47:1312-20. [PMID: 30987439 DOI: 10.1080/21691401.2019.1573182] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
5 Jaudoin C, Agnely F, Nguyen Y, Ferrary E, Bochot A. Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2021;592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
6 Liang Z, Yu H, Lai J, Wen L, Chen G. An easy-to-prepare microshotgun for efficient transmembrane delivery by powering nanoparticles. Journal of Controlled Release 2020;321:119-31. [DOI: 10.1016/j.jconrel.2020.02.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Dindelegan MG, Blebea C, Perde-schrepler M, Buzoianu AD, Maniu AA, Owais M. Recent Advances and Future Research Directions for Hearing Loss Treatment Based on Nanoparticles. Journal of Nanomaterials 2022;2022:1-15. [DOI: 10.1155/2022/7794384] [Reference Citation Analysis]
8 Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 2019;9:381-96. [PMID: 30972284 DOI: 10.1016/j.apsb.2018.12.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
9 Cervantes B, Arana L, Murillo-Cuesta S, Bruno M, Alkorta I, Varela-Nieto I. Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. J Clin Med 2019;8:E1464. [PMID: 31540035 DOI: 10.3390/jcm8091464] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Chester J, Johnston E, Walker D, Jones M, Ionescu CM, Wagle SR, Kovacevic B, Brown D, Mikov M, Mooranian A, Al-Salami H. A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021;13:1041. [PMID: 34371732 DOI: 10.3390/pharmaceutics13071041] [Reference Citation Analysis]
11 Santimetaneedol A, Wang Z, Arteaga DN, Aksit A, Prevoteau C, Yu M, Chiang H, Fafalis D, Lalwani AK, Kysar JW. Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407. Colloids Surf B Biointerfaces 2019;182:110300. [PMID: 31326623 DOI: 10.1016/j.colsurfb.2019.06.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
12 Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020;21:E2536. [PMID: 32268473 DOI: 10.3390/ijms21072536] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
13 Hao J, Li SK. Inner ear drug delivery: Recent advances, challenges, and perspective. European Journal of Pharmaceutical Sciences 2019;126:82-92. [DOI: 10.1016/j.ejps.2018.05.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
14 Sims LB, Miller HA, Halwes ME, Steinbach-Rankins JM, Frieboes HB. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases. Eur J Pharm Biopharm 2019;138:37-47. [PMID: 30195726 DOI: 10.1016/j.ejpb.2018.09.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
15 Naruphontjirakul P, Viravaidya-Pasuwat K. Development of anti-HER2-targeted doxorubicin-core-shell chitosan nanoparticles for the treatment of human breast cancer. Int J Nanomedicine 2019;14:4105-21. [PMID: 31239670 DOI: 10.2147/IJN.S198552] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
16 Xu X, Zheng J, He Y, Lin K, Li S, Zhang Y, Song P, Zhou Y, Chen X. Nanocarriers for Inner Ear Disease Therapy. Front Cell Neurosci 2021;15:791573. [PMID: 34924960 DOI: 10.3389/fncel.2021.791573] [Reference Citation Analysis]
17 Kumar R, Jha D, Panda AK. Antimicrobial therapeutics delivery systems based on biodegradable polylactide/polylactide-co-glycolide particles. Environ Chem Lett 2019;17:1237-49. [DOI: 10.1007/s10311-019-00871-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
18 Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020;11:999. [PMID: 32719605 DOI: 10.3389/fphar.2020.00999] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Rathnam C, Chueng SD, Ying YM, Lee KB, Kwan K. Developments in Bio-Inspired Nanomaterials for Therapeutic Delivery to Treat Hearing Loss. Front Cell Neurosci 2019;13:493. [PMID: 31780898 DOI: 10.3389/fncel.2019.00493] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
20 Ding S, Xie S, Chen W, Wen L, Wang J, Yang F, Chen G. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur J Pharm Sci 2019;126:11-22. [PMID: 29499347 DOI: 10.1016/j.ejps.2018.02.031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
21 Kim DH, Nguyen TN, Han YM, Tran P, Rho J, Lee JY, Son HY, Park JS. Local drug delivery using poly(lactic-co-glycolic acid) nanoparticles in thermosensitive gels for inner ear disease treatment. Drug Deliv 2021;28:2268-77. [PMID: 34668836 DOI: 10.1080/10717544.2021.1992041] [Reference Citation Analysis]
22 Zhang X, Zhang X, Wang X, Wang T, Bai B, Zhang N, Zhao Y, Yu Y, Wang B. Efficient Delivery of Triptolide Plus a miR-30-5p Inhibitor Through the Use of Near Infrared Laser Responsive or CADY Modified MSNs for Efficacy in Rheumatoid Arthritis Therapeutics. Front Bioeng Biotechnol 2020;8:170. [PMID: 32258008 DOI: 10.3389/fbioe.2020.00170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]