BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu H, Ke L, Tang M, Shang H, Zhang Z, Xu W, Fu Y, Wang Y, Tang D, Huang D, Zhang S, Yang H, He X, Gao J. Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly(lactic acid) composites with bone-like strength. International Journal of Biological Macromolecules 2022;216:114-23. [DOI: 10.1016/j.ijbiomac.2022.06.211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Paz-González JA, Velasco-Santos C, Villarreal-Gómez LJ, Alcudia-Zacarias E, Olivas-Sarabia A, Cota-Leal MA, Flores-López LZ, Gochi-Ponce Y. Structural composite based on 3D printing polylactic acid/carbon fiber laminates (PLA/CFRC) as an alternative material for femoral stem prosthesis. J Mech Behav Biomed Mater 2023;138:105632. [PMID: 36543084 DOI: 10.1016/j.jmbbm.2022.105632] [Reference Citation Analysis]
2 Fu Z, Li D, Lin K, Zhao B, Wang X. Enhancing the osteogenic differentiation of aligned electrospun poly(L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires. Int J Biol Macromol 2023;226:1079-87. [PMID: 36436595 DOI: 10.1016/j.ijbiomac.2022.11.224] [Reference Citation Analysis]
3 Guo S, Zhou Z, Yu S, Chen Z, Xiang H, Zhu M. The synergistic effect of heterogeneous nucleation and stress-induced crystallization on supramolecular structure and performances of poly(lactic acid) melt-spun fibers. Int J Biol Macromol 2023;226:1579-87. [PMID: 36503823 DOI: 10.1016/j.ijbiomac.2022.11.270] [Reference Citation Analysis]
4 Tang M, Xu K, Shang H, Li X, He X, Ke L, Xie M, Zhou Z, Liu C, Du S, Wang Y, Gao J, Xu H. Biomineralization of bone-like hydroxyapatite to upgrade the mechanical and osteoblastic performances of poly(lactic acid) scaffolds. Int J Biol Macromol 2023;226:1273-83. [PMID: 36442566 DOI: 10.1016/j.ijbiomac.2022.11.240] [Reference Citation Analysis]
5 Liu H, Zhao Y, Zheng Y, Chen J, Wang J, Gao G, Bai D. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Int J Biol Macromol 2023;:123422. [PMID: 36708887 DOI: 10.1016/j.ijbiomac.2023.123422] [Reference Citation Analysis]
6 Hu Y, Xia D, Shen H, Nan J, Ma N, Guo Z, Wang X, Jin Q. Cold sintering constructed in situ drug-loaded high strength HA-PLA composites: Potential bone substitution material. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.12.014] [Reference Citation Analysis]
7 Xu H, Jiang L, Ke L, Zhu G, Zhang Z, Li X, Tang D, Huang D, Zhang S, He X, Yang H, Gao J. Unexpected Toughening of Poly(lactic acid) by Microwave-Assisted Devulcanization of Waste Latex Rubber. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01502] [Reference Citation Analysis]
8 Lendvai L, Omastova M, Patnaik A, Dogossy G, Singh T. Valorization of Waste Wood Flour and Rice Husk in Poly(Lactic Acid)-Based Hybrid Biocomposites. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02633-9] [Reference Citation Analysis]
9 Wulin S, Shiu B, Yuan Q, Zhangjian H, Lin J, Lou C. Evaluation of Mechanical Properties of Porous Chitosan/Gelatin/Polycaprolactone Bone Scaffold Prepared by Microwave Foaming Method. Polymers 2022;14:4668. [DOI: 10.3390/polym14214668] [Reference Citation Analysis]