BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021;184:170-80. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1051678] [Reference Citation Analysis]
2 Furuseki T, Teranishi S, Matsuo Y. Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite. J Compos Sci 2022;6:360. [DOI: 10.3390/jcs6120360] [Reference Citation Analysis]
3 Turna Demir F. Protective effects of resveratrol against genotoxicity induced by nano and bulk hydroxyapatite in Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A 2022;85:850-865. [DOI: 10.1080/15287394.2022.2101568] [Reference Citation Analysis]
4 Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022;14:3791. [PMID: 36145936 DOI: 10.3390/polym14183791] [Reference Citation Analysis]
5 Xu H, Ke L, Tang M, Shang H, Zhang Z, Xu W, Fu Y, Wang Y, Tang D, Huang D, Zhang S, Yang H, He X, Gao J. Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly(lactic acid) composites with bone-like strength. International Journal of Biological Macromolecules 2022;216:114-23. [DOI: 10.1016/j.ijbiomac.2022.06.211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Lv J, Lv X, Ma M, Oh D, Jiang Z, Fu X. Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120142] [Reference Citation Analysis]
7 Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. IJMS 2022;23:9721. [DOI: 10.3390/ijms23179721] [Reference Citation Analysis]
8 Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022;14:3222. [PMID: 35956735 DOI: 10.3390/polym14153222] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Ming P, Rao P, Wu T, Yang J, Lu S, Yang B, Xiao J, Tao G. Biomimetic Design and Fabrication of Sericin-Hydroxyapatite Based Membranes With Osteogenic Activity for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2022;10:899293. [DOI: 10.3389/fbioe.2022.899293] [Reference Citation Analysis]
10 He Y, Peng Y, Liu L, Hou S, Mu J, Lan L, Cheng L, Shi Z. The Relationship between Osteoinduction and Vascularization: Comparing the Ectopic Bone Formation of Five Different Calcium Phosphate Biomaterials. Materials (Basel) 2022;15:3440. [PMID: 35629467 DOI: 10.3390/ma15103440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Song JE, Lee DH, Choi JH, Lee SW, Khang G, Yoon S. Biomimetic sponge using duck’s feet derived collagen and hydroxyapatite to promote bone regeneration. Journal of Biomaterials Science, Polymer Edition 2022;33:769-782. [DOI: 10.1080/09205063.2021.2019366] [Reference Citation Analysis]
12 Lv S, Cai M, Leng F, Jiang X. Biodegradable carboxymethyl chitin-based hemostatic sponges with high strength and shape memory for non-compressible hemorrhage. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.119369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel) 2022;14:976. [PMID: 35267796 DOI: 10.3390/polym14050976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Pupo YM, Leite LMB, Senegaglia AC, Antunes L, Nadal JM, de Lara EL, Saito RE, Antunes SRM, Lacerda WF, Farago PV. Effect of Hydroxyapatite Microspheres, Amoxicillin-Hydroxyapatite and Collagen-Hydroxyapatite Composites on Human Dental Pulp-Derived Mesenchymal Stem Cells. Materials (Basel) 2021;14:7515. [PMID: 34947112 DOI: 10.3390/ma14247515] [Reference Citation Analysis]
15 Zhang H, Xu R, Yin Z, Yu J, Liang N, Geng Q. Drug-Loaded Chondroitin Sulfate Microspheres Generated from Microfluidic Electrospray for Wound Healing. Macromol Res 2022;30:36-42. [DOI: 10.1007/s13233-022-0001-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Chen Z, Zhang Y, Zheng L, Zhang H, Shi H, Zhang X, Liu B. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Imani SM, Goudarzi AM, Rabiee SM, Dardel M. Prediction of the effective elastic moduli of porous bone scaffolds: Analytical and computational studies. Int J Mod Phys C 2022;33:2250028. [DOI: 10.1142/s0129183122500280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]