BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thanigaivel S, Priya A, Dutta K, Rajendran S, Vasseghian Y. Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel 2022;312:122827. [DOI: 10.1016/j.fuel.2021.122827] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Müller C, Scapini T, Rempel A, Abaide ER, Camargo AF, Nazari MT, Tadioto V, Bonatto C, Tres MV, Zabot GL, Colla LM, Treichel H, Alves SL. Challenges and opportunities for third-generation ethanol production: A critical review. Engineering Microbiology 2023;3:100056. [DOI: 10.1016/j.engmic.2022.100056] [Reference Citation Analysis]
2 Dey N, Vickram S, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Aftermath of nanomaterials on lipid profile of microalgae as a radical fuel supplement – A review. Fuel 2023;333:126444. [DOI: 10.1016/j.fuel.2022.126444] [Reference Citation Analysis]
3 Banerjee S, Ghosh D, Pandit C, Saha S, Mohapatra A, Pandit S, Sharma M, Sridhar K, Stephen Inbaraj B, Prasad R. Microalgal pandora for potent bioenergy production: A way forward? Fuel 2023;333:126253. [DOI: 10.1016/j.fuel.2022.126253] [Reference Citation Analysis]
4 Chen W, Lu C, Chou W, Kumar Sharma A, Saravanakumar A, Tran K. Design and optimization of a crossflow tube reactor system for hydrogen production by combining ethanol steam reforming and water gas shift reaction. Fuel 2023;334:126628. [DOI: 10.1016/j.fuel.2022.126628] [Reference Citation Analysis]
5 Gnanasekaran L, Priya A, Thanigaivel S, Hoang TK, Soto-moscoso M. The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel 2023;331:125668. [DOI: 10.1016/j.fuel.2022.125668] [Reference Citation Analysis]
6 Chuengcharoenphanich N, Watsuntorn W, Qi W, Wang Z, Hu Y, Chulalaksananukul W. The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7. Energy 2023;263:125759. [DOI: 10.1016/j.energy.2022.125759] [Reference Citation Analysis]
7 Dancs G, Kakucska G, Dobrányi S, Ecker J, Fülöp L. Efficient method for the determination of the neutral lipid content of oil-producing microalgae strains required for biodiesel. Fuel 2023;331:125831. [DOI: 10.1016/j.fuel.2022.125831] [Reference Citation Analysis]
8 Olabi AG, Alami AH, Alasad S, Aljaghoub H, Sayed ET, Shehata N, Rezk H, Abdelkareem MA. Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation 2022;8:649. [DOI: 10.3390/fermentation8110649] [Reference Citation Analysis]
9 Thanigaivel S, Rajendran S, Hoang TK, Ahmad A, Luque R. Photobiological effects of converting biomass into hydrogen - Challenges and prospects. Bioresource Technology 2022. [DOI: 10.1016/j.biortech.2022.128278] [Reference Citation Analysis]
10 Munir N, Hasnain M, Sarwar Z, Ali F, Hessini K, Abideen Z. Changes in environmental conditions are critical factors for optimum biomass, lipid pattern and biodiesel production in algal biomass. Biologia. [DOI: 10.1007/s11756-022-01191-8] [Reference Citation Analysis]
11 Karunanithi G, Varadappan AMS. Exploring the effectiveness of novel Coffea Arabica leaf pigment as a natural antioxidant additive for date seed biodiesel. Fuel 2022;324:124561. [DOI: 10.1016/j.fuel.2022.124561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yaashikaa P, Keerthana Devi M, Senthil Kumar P, Pandian E. A review on biodiesel production by algal biomass: Outlook on lifecycle assessment and techno-economic analysis. Fuel 2022;324:124774. [DOI: 10.1016/j.fuel.2022.124774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Thanigaivel S, Priya A, Dutta K, Rajendran S, Sekar K, Jalil A, Soto-moscoso M. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to value-added products. Fuel 2022;322:124236. [DOI: 10.1016/j.fuel.2022.124236] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Dębowski M, Kazimierowicz J, Zieliński M, Bartkowska I. Co-Fermentation of Microalgae Biomass and Miscanthus × giganteus Silage—Assessment of the Substrate, Biogas Production and Digestate Characteristics. Applied Sciences 2022;12:7291. [DOI: 10.3390/app12147291] [Reference Citation Analysis]
15 Aravind Kumar J, Sathish S, Krithiga T, Praveenkumar T, Lokesh S, Prabu D, Annam Renita A, Prakash P, Rajasimman M. A comprehensive review on bio-hydrogen production from brewery industrial wastewater and its treatment methodologies. Fuel 2022;319:123594. [DOI: 10.1016/j.fuel.2022.123594] [Reference Citation Analysis]
16 Pan Y, Shen Y, Zhang H, Ran X, Xie T, Zhang Y, Yao C. Fine-tuned regulation of photosynthetic performance via γ-aminobutyric acid (GABA) supply coupled with high initial cell density culture for economic starch production in microalgae. Bioresour Bioprocess 2022;9. [DOI: 10.1186/s40643-022-00541-3] [Reference Citation Analysis]
17 Taşkan B, Köroğlu EO, Taşkan E. Cladophora sp. as a sustainable feedstock for dark fermentative biohydrogen production. International Journal of Hydrogen Energy 2022;47:15410-8. [DOI: 10.1016/j.ijhydene.2022.03.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]