BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fearing BV, Van Dyke ME. In vitro response of macrophage polarization to a keratin biomaterial. Acta Biomater 2014;10:3136-44. [PMID: 24726958 DOI: 10.1016/j.actbio.2014.04.003] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Podok P, Wang H, Xu L, Xu D, Lu L. Characterization of myeloid-specific peroxidase, keratin 8, and dual specificity phosphatase 1 as innate immune genes involved in the resistance of crucian carp (Carassius auratus gibelio) to Cyprinid herpesvirus 2 infection. Fish & Shellfish Immunology 2014;41:531-40. [DOI: 10.1016/j.fsi.2014.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
2 Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021:S1084-9521(21)00168-3. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Reference Citation Analysis]
3 Su C, Gong JS, Ye JP, He JM, Li RY, Jiang M, Geng Y, Zhang Y, Chen JH, Xu ZH, Shi JS. Enzymatic Extraction of Bioactive and Self-Assembling Wool Keratin for Biomedical Applications. Macromol Biosci 2020;20:e2000073. [PMID: 32691954 DOI: 10.1002/mabi.202000073] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
4 Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O'Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021;13:2161. [PMID: 34959446 DOI: 10.3390/pharmaceutics13122161] [Reference Citation Analysis]
5 Du Z, Yan K, Cao Y, Li Y, Yao Y, Yang G. Regenerated keratin-encapsulated gold nanorods for chemo-photothermal synergistic therapy. Materials Science and Engineering: C 2020;117:111340. [DOI: 10.1016/j.msec.2020.111340] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Dai M, Sui B, Hua Y, Zhang Y, Bao B, Lin Q, Liu X, Zhu L, Sun J. A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners. Biomaterials 2020;240:119841. [DOI: 10.1016/j.biomaterials.2020.119841] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
7 Roy DC, Tomblyn S, Burmeister DM, Wrice NL, Becerra SC, Burnett LR, Saul JM, Christy RJ. Ciprofloxacin-Loaded Keratin Hydrogels Prevent Pseudomonas aeruginosa Infection and Support Healing in a Porcine Full-Thickness Excisional Wound. Adv Wound Care (New Rochelle) 2015;4:457-68. [PMID: 26244102 DOI: 10.1089/wound.2014.0576] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
8 Passipieri JA, Baker HB, Siriwardane M, Ellenburg MD, Vadhavkar M, Saul JM, Tomblyn S, Burnett L, Christ GJ. Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss. Tissue Eng Part A 2017;23:556-71. [PMID: 28169594 DOI: 10.1089/ten.TEA.2016.0458] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 8.4] [Reference Citation Analysis]
9 Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021;10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Reference Citation Analysis]
10 Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. Biomed Mater 2020;15:065006. [PMID: 32485704 DOI: 10.1088/1748-605X/ab98e8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Yang G, Yao Y, Wang X. Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. Mater Sci Eng C Mater Biol Appl 2018;83:1-8. [PMID: 29208266 DOI: 10.1016/j.msec.2017.07.057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
12 Zabarsky ZK, Dean GM, Luo TD, Marquez-Lara A, Jinnah AH, Van Dyke M, Smith TL. Keratin Biomaterials Improve Functional Recovery in a Rat Spinal Cord Injury Model. Spine (Phila Pa 1976) 2021;46:1055-62. [PMID: 34398133 DOI: 10.1097/BRS.0000000000003993] [Reference Citation Analysis]
13 Mori H, Hara M. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. Mater Sci Eng C Mater Biol Appl 2018;91:19-25. [PMID: 30033245 DOI: 10.1016/j.msec.2018.05.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Gao J, Zhang L, Wei Y, Chen T, Ji X, Ye K, Yu J, Tang B, Sun X, Hu J. Human hair keratins promote the regeneration of peripheral nerves in a rat sciatic nerve crush model. J Mater Sci Mater Med 2019;30:82. [PMID: 31273463 DOI: 10.1007/s10856-019-6283-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Cohen DJ, Hyzy SL, Haque S, Olson LC, Boyan BD, Saul JM, Schwartz Z. Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Tissue Eng Part A 2018;24:1616-30. [PMID: 29905087 DOI: 10.1089/ten.TEA.2017.0471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Wissing TB, Bonito V, van Haaften EE, van Doeselaar M, Brugmans MMCP, Janssen HM, Bouten CVC, Smits AIPM. Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture. Front Bioeng Biotechnol 2019;7:87. [PMID: 31080796 DOI: 10.3389/fbioe.2019.00087] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
17 Singh V, Wang S, Ng K. 2.25 Keratin as a Biomaterial. Comprehensive Biomaterials II. Elsevier; 2017. pp. 542-57. [DOI: 10.1016/b978-0-12-803581-8.09317-6] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
18 Baker HB, Passipieri JA, Siriwardane M, Ellenburg MD, Vadhavkar M, Bergman CR, Saul JM, Tomblyn S, Burnett L, Christ GJ. Cell and Growth Factor-Loaded Keratin Hydrogels for Treatment of Volumetric Muscle Loss in a Mouse Model. Tissue Eng Part A 2017;23:572-84. [PMID: 28162053 DOI: 10.1089/ten.TEA.2016.0457] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
19 Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomater. 2016;43:3-13. [PMID: 27395828 DOI: 10.1016/j.actbio.2016.07.003] [Cited by in Crossref: 121] [Cited by in F6Publishing: 118] [Article Influence: 20.2] [Reference Citation Analysis]
20 Agarwal V, Panicker AG, Indrakumar S, Chatterjee K. Comparative study of keratin extraction from human hair. International Journal of Biological Macromolecules 2019;133:382-90. [DOI: 10.1016/j.ijbiomac.2019.04.098] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
21 Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthcare Mater 2016;5:2575-94. [DOI: 10.1002/adhm.201600532] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
22 Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng. 2018;4:1193-1207. [PMID: 29682604 DOI: 10.1021/acsbiomaterials.7b00072] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
23 Shi X, Chen L, Li S, Sun X, Cui F, Ma H. The observed difference of RAW264.7 macrophage phenotype on mineralized collagen and hydroxyapatite. Biomed Mater 2018;13:041001. [DOI: 10.1088/1748-605x/aab523] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang H, Wu X, Wang G, Liu P, Qin S, Xu K, Tong D, Ding H, Tang H, Ji F. Macrophage polarization, inflammatory signaling, and NF-κB activation in response to chemically modified titanium surfaces. Colloids Surf B Biointerfaces 2018;166:269-76. [PMID: 29604569 DOI: 10.1016/j.colsurfb.2018.03.029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
25 Borrelli M, Joepen N, Reichl S, Finis D, Schoppe M, Geerling G, Schrader S. Keratin films for ocular surface reconstruction: Evaluation of biocompatibility in an in-vivo model. Biomaterials 2015;42:112-20. [DOI: 10.1016/j.biomaterials.2014.11.038] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 7.7] [Reference Citation Analysis]
26 Yin Y, Wu RX, He XT, Xu XY, Wang J, Chen FM. Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture. Stem Cell Res Ther. 2017;8:153. [PMID: 28646912 DOI: 10.1186/s13287-017-0608-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
27 Fujioka‐kobayashi M, Ülgür II, Katagiri H, Vuignier S, Schaller B. In vitro observation of macrophage polarization and gingival fibroblast behavior on three‐dimensional xenogeneic collagen matrixes. J Biomed Mater Res 2020;108:1408-18. [DOI: 10.1002/jbm.a.36911] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Akhmetova A, Heinz A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 2020;13:E4. [PMID: 33374930 DOI: 10.3390/pharmaceutics13010004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
29 Morris H, Murray R. Medical textiles. Textile Progress 2020;52:1-127. [DOI: 10.1080/00405167.2020.1824468] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
30 Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun meshes intrinsically promote M2 polarization of microglia under hypoxia and offer protection from hypoxia-driven cell death. Biomed Mater 2021;16. [PMID: 34116516 DOI: 10.1088/1748-605X/ac0a91] [Reference Citation Analysis]
31 Bai J, Zhang Y, Zheng X, Huang M, Cheng W, Shan H, Gao X, Zhang M, Sheng L, Dai J, Deng Y, Zhang H, Zhou X. LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis 2020;11:763. [PMID: 32938906 DOI: 10.1038/s41419-020-02945-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Pan F, Lu Z, Tucker I, Hosking S, Petkov J, Lu JR. Surface active complexes formed between keratin polypeptides and ionic surfactants. J Colloid Interface Sci 2016;484:125-34. [PMID: 27599381 DOI: 10.1016/j.jcis.2016.08.082] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
33 Boersema GS, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages. Biores Open Access 2016;5:6-14. [PMID: 26862468 DOI: 10.1089/biores.2015.0041] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 10.8] [Reference Citation Analysis]
34 Yu Y, Wu RX, Yin Y, Chen FM. Directing immunomodulation using biomaterials for endogenous regeneration. J Mater Chem B. 2016;4:569-584. [PMID: 32262939 DOI: 10.1039/c5tb02199e] [Cited by in Crossref: 32] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
35 Patrucco A, Cristofaro F, Simionati M, Zoccola M, Bruni G, Fassina L, Visai L, Magenes G, Mossotti R, Montarsolo A, Tonin C. Wool fibril sponges with perspective biomedical applications. Materials Science and Engineering: C 2016;61:42-50. [DOI: 10.1016/j.msec.2015.11.073] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
36 Kaewkong P, Kosorn W, Sonthithai P, Lertwimol T, Thavornyutikarn B, Chantaweroad S, Janvikul W. Chondrogenic Differentiation of Human Mesenchymal Stem Cells and Macrophage Polarization on 3D-Printed Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blended Scaffolds with Different Secondary Porous Structures. ACS Appl Bio Mater 2022. [PMID: 35594556 DOI: 10.1021/acsabm.2c00161] [Reference Citation Analysis]
37 Chen X, Zhou L, Wu D, Huang W, Lin Y, Zhou B, Chen J. The Effects of Titanium Surfaces Modified with an Antimicrobial Peptide GL13K by Silanization on Polarization, Anti-Inflammatory, and Proinflammatory Properties of Macrophages. Biomed Res Int 2020;2020:2327034. [PMID: 32775410 DOI: 10.1155/2020/2327034] [Reference Citation Analysis]
38 Becktell L, Matuska AM, Hon S, Delco ML, Cole BJ, Begum L, Zhang S, Fortier LA. Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products. Cartilage 2020;:1947603520976767. [PMID: 33356465 DOI: 10.1177/1947603520976767] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative Scar-Free Skin Wound Healing. Tissue Eng Part B Rev 2019;25:294-311. [PMID: 30938269 DOI: 10.1089/ten.TEB.2018.0350] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
40 Turner EA, Stenson AC, Yazdani SK. HPLC-MS/MS method for quantification of paclitaxel from keratin containing samples. J Pharm Biomed Anal 2017;139:247-51. [PMID: 28324728 DOI: 10.1016/j.jpba.2017.03.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
41 Suarato G, Contardi M, Perotto G, Heredia-Guerrero JA, Fiorentini F, Ceseracciu L, Pignatelli C, Debellis D, Bertorelli R, Athanassiou A. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. Mater Sci Eng C Mater Biol Appl 2020;116:111151. [PMID: 32806258 DOI: 10.1016/j.msec.2020.111151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
42 Goonoo N. Modulating Immunological Responses of Electrospun Fibers for Tissue Engineering. Adv Biosyst 2017;1:e1700093. [PMID: 32646177 DOI: 10.1002/adbi.201700093] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
43 Mclellan J, Thornhill SG, Shelton S, Kumar M. Keratin-Based Biofilms, Hydrogels, and Biofibers. In: Sharma S, Kumar A, editors. Keratin as a Protein Biopolymer. Cham: Springer International Publishing; 2019. pp. 187-200. [DOI: 10.1007/978-3-030-02901-2_7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
44 Wang J, Su Y, Xu L, Li D. Micro-patterned surface construction on BCP ceramics and the regulation on inflammation-involved osteogenic differentiation. Materials Science and Engineering: C 2020;116:111220. [DOI: 10.1016/j.msec.2020.111220] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
45 Qiao G, Zhang M, Li Y, Xu C, Xu D, Zhao Z, Zhang J, Li Q. Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish & Shellfish Immunology 2018;83:140-7. [DOI: 10.1016/j.fsi.2018.09.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
46 Fong D, Ariganello MB, Girard-lauzière J, Hoemann CD. Biodegradable chitosan microparticles induce delayed STAT-1 activation and lead to distinct cytokine responses in differentially polarized human macrophages in vitro. Acta Biomaterialia 2015;12:183-94. [DOI: 10.1016/j.actbio.2014.10.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
47 Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials 2017;112:95-107. [PMID: 27760399 DOI: 10.1016/j.biomaterials.2016.10.019] [Cited by in Crossref: 109] [Cited by in F6Publishing: 99] [Article Influence: 18.2] [Reference Citation Analysis]
48 Li J, Zhang YJ, Lv ZY, Liu K, Meng CX, Zou B, Li KY, Liu FZ, Zhang B. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen. Regen Biomater 2020;7:203-11. [PMID: 32296539 DOI: 10.1093/rb/rbz053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Ferroni C, Sotgiu G, Sagnella A, Varchi G, Guerrini A, Giuri D, Polo E, Orlandi VT, Marras E, Gariboldi M, Monti E, Aluigi A. Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules 2016;17:2882-90. [PMID: 27463471 DOI: 10.1021/acs.biomac.6b00697] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
50 Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022;25:99. [PMID: 35088882 DOI: 10.3892/mmr.2022.12615] [Reference Citation Analysis]
51 Trent A, Van Dyke ME. Development and characterization of a biomimetic coating for percutaneous devices. Colloids and Surfaces B: Biointerfaces 2019;182:110351. [DOI: 10.1016/j.colsurfb.2019.110351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 2018;180:91-103. [PMID: 30031224 DOI: 10.1016/j.biomaterials.2018.07.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
53 Hachim D, Iftikhar A, LoPresti ST, Nolfi AL, Ravichandar S, Skillen CD, Brown BN. Distinct release strategies are required to modulate macrophage phenotype in young versus aged animals. J Control Release 2019;305:65-74. [PMID: 31103676 DOI: 10.1016/j.jconrel.2019.05.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
54 Torculas M, Medina J, Xue W, Hu X. Protein-Based Bioelectronics. ACS Biomater Sci Eng 2016;2:1211-23. [PMID: 33465848 DOI: 10.1021/acsbiomaterials.6b00119] [Cited by in Crossref: 61] [Cited by in F6Publishing: 35] [Article Influence: 10.2] [Reference Citation Analysis]
55 Yi Z, Cui X, Chen G, Chen X, Jiang X, Li X. Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomater Sci Eng 2021;7:1046-57. [PMID: 33512989 DOI: 10.1021/acsbiomaterials.0c01616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
56 Li D, Li Y, Shrestha A, Wang S, Wu Q, Li L, Guan C, Wang C, Fu T, Liu W, Huang Y, Ji P, Chen T. Effects of Programmed Local Delivery from a Micro/Nano‐Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv Healthcare Mater 2019;8:1900002. [DOI: 10.1002/adhm.201900002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
57 Waters M, Vandevord P, Van Dyke M. Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro. Acta Biomaterialia 2018;66:213-23. [DOI: 10.1016/j.actbio.2017.10.042] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
58 Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2019;97:1036-51. [PMID: 30678895 DOI: 10.1016/j.msec.2019.01.061] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 18.3] [Reference Citation Analysis]
59 Lock A, Cornish J, Musson DS. The Role of In Vitro Immune Response Assessment for Biomaterials. J Funct Biomater 2019;10:E31. [PMID: 31336893 DOI: 10.3390/jfb10030031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]