BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2018;126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Snoeck HW. Calcium regulation of stem cells. EMBO Rep 2020;21:e50028. [PMID: 32419314 DOI: 10.15252/embr.202050028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
2 Prüller J, Mannhardt I, Eschenhagen T, Zammit PS, Figeac N. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. PLoS One 2018;13:e0202574. [PMID: 30222770 DOI: 10.1371/journal.pone.0202574] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
3 Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020;9:E1659. [PMID: 32660168 DOI: 10.3390/cells9071659] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
4 Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021;10:3267. [PMID: 34943775 DOI: 10.3390/cells10123267] [Reference Citation Analysis]
5 Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018;285:1973-84. [PMID: 29473995 DOI: 10.1111/febs.14417] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
6 Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021. [PMID: 33942976 DOI: 10.1111/jcmm.16427] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021;9:738978. [PMID: 34616743 DOI: 10.3389/fcell.2021.738978] [Reference Citation Analysis]
8 Schüler SC, Kirkpatrick JM, Schmidt M, Santinha D, Koch P, Di Sanzo S, Cirri E, Hemberg M, Ori A, von Maltzahn J. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep 2021;35:109223. [PMID: 34107247 DOI: 10.1016/j.celrep.2021.109223] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2021;9:785712. [PMID: 35004684 DOI: 10.3389/fcell.2021.785712] [Reference Citation Analysis]
10 Sala D, Cunningham TJ, Stec MJ, Etxaniz U, Nicoletti C, Dall'Agnese A, Puri PL, Duester G, Latella L, Sacco A. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun 2019;10:1796. [PMID: 30996264 DOI: 10.1038/s41467-019-09746-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
11 Salzer MC, Lafzi A, Berenguer-llergo A, Youssif C, Castellanos A, Solanas G, Peixoto FO, Stephan-otto Attolini C, Prats N, Aguilera M, Martín-caballero J, Heyn H, Benitah SA. Identity Noise and Adipogenic Traits Characterize Dermal Fibroblast Aging. Cell 2018;175:1575-1590.e22. [DOI: 10.1016/j.cell.2018.10.012] [Cited by in Crossref: 75] [Cited by in F6Publishing: 66] [Article Influence: 18.8] [Reference Citation Analysis]
12 Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 2020;9:e60445. [PMID: 33001028 DOI: 10.7554/eLife.60445] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
13 de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021;10:595. [PMID: 33800355 DOI: 10.3390/cells10030595] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021;12:673404. [PMID: 33959042 DOI: 10.3389/fphys.2021.673404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Taye N, Stanley S, Hubmacher D. Stable Knockdown of Genes Encoding Extracellular Matrix Proteins in the C2C12 Myoblast Cell Line Using Small-Hairpin (sh)RNA. J Vis Exp 2020. [PMID: 32116296 DOI: 10.3791/60824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Bossone KA, Ellis JA, Holaska JM. Histone acetyltransferase inhibition rescues differentiation of emerin-deficient myogenic progenitors. Muscle Nerve 2020;62:128-36. [PMID: 32304242 DOI: 10.1002/mus.26892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Noviello C, Kobon K, Delivry L, Guilbert T, Britto F, Julienne F, Maire P, Randrianarison-huetz V, Sotiropoulos A. RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience 2022;25:103616. [DOI: 10.1016/j.isci.2021.103616] [Reference Citation Analysis]
18 Bentzinger CF. Best supporting actors. Science 2019;363:1051. [PMID: 30846594 DOI: 10.1126/science.aaw3613] [Reference Citation Analysis]
19 Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020;11:536. [PMID: 33308295 DOI: 10.1186/s13287-020-02053-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Rogeri PS, Gasparini SO, Martins GL, Costa LKF, Araujo CC, Lugaresi R, Kopfler M, Lancha AH Jr. Crosstalk Between Skeletal Muscle and Immune System: Which Roles Do IL-6 and Glutamine Play? Front Physiol 2020;11:582258. [PMID: 33178046 DOI: 10.3389/fphys.2020.582258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Malatesta M, Costanzo M, Cisterna B, Zancanaro C. Satellite Cells in Skeletal Muscle of the Hibernating Dormouse, a Natural Model of Quiescence and Re-Activation: Focus on the Cell Nucleus. Cells 2020;9:E1050. [PMID: 32340154 DOI: 10.3390/cells9041050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Coller HA. Regulation of Cell Cycle Entry and Exit: A Single Cell Perspective. Compr Physiol 2019;10:317-44. [PMID: 31853969 DOI: 10.1002/cphy.c190014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Kitajima Y, Tsukahara R, Nakamoto S, Yasuda T. Efficient Isolation of Lymphocytes and Myogenic Cells from the Tissue of Muscle Regeneration. Cells 2022;11:1754. [DOI: 10.3390/cells11111754] [Reference Citation Analysis]
24 Henze H, Jung MJ, Ahrens HE, Steiner S, von Maltzahn J. Skeletal muscle aging – Stem cells in the spotlight. Mechanisms of Ageing and Development 2020;189:111283. [DOI: 10.1016/j.mad.2020.111283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
25 Novoseletskaya ES, Grigorieva OA, Efimenko AY, Kalinina NI. Extracellular Matrix in the Regulation of Stem Cell Differentiation. Biochemistry Moscow 2019;84:232-40. [DOI: 10.1134/s0006297919030052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
26 Gudagudi KB, Myburgh KH. Methods to Mimic In Vivo Muscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research. OMICS 2021;25:176-89. [PMID: 33635139 DOI: 10.1089/omi.2020.0211] [Reference Citation Analysis]
27 Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. Ann Transl Med 2019;7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
28 Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2021. [PMID: 34928395 DOI: 10.1007/s00421-021-04865-4] [Reference Citation Analysis]
29 Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti 5th. Perspectives on skeletal muscle stem cells. Nat Commun 2021;12:692. [PMID: 33514709 DOI: 10.1038/s41467-020-20760-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
30 Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Mdfi Promotes C2C12 Cell Differentiation and Positively Modulates Fast-to-Slow-Twitch Muscle Fiber Transformation. Front Cell Dev Biol 2021;9:605875. [PMID: 33553177 DOI: 10.3389/fcell.2021.605875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhou M, Li B, Liu C, Hu M, Tang J, Min J, Cheng J, Hong L. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol 2021;101:108223. [PMID: 34634686 DOI: 10.1016/j.intimp.2021.108223] [Reference Citation Analysis]
32 Kann AP, Krauss RS. Multiplexed RNAscope and immunofluorescence on whole-mount skeletal myofibers and their associated stem cells. Development 2019;146:dev179259. [PMID: 31519691 DOI: 10.1242/dev.179259] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
33 Jones FK, Hardman GE, Ferries S, Eyers CE, Pisconti A. Myoblast Phosphoproteomics as a Tool to Investigate Global Signaling Events During Myogenesis. Methods Mol Biol 2019;1889:301-17. [PMID: 30367422 DOI: 10.1007/978-1-4939-8897-6_18] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Lukjanenko L, Karaz S, Stuelsatz P, Gurriaran-Rodriguez U, Michaud J, Dammone G, Sizzano F, Mashinchian O, Ancel S, Migliavacca E, Liot S, Jacot G, Metairon S, Raymond F, Descombes P, Palini A, Chazaud B, Rudnicki MA, Bentzinger CF, Feige JN. Aging Disrupts Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic Progenitors. Cell Stem Cell 2019;24:433-446.e7. [PMID: 30686765 DOI: 10.1016/j.stem.2018.12.014] [Cited by in Crossref: 76] [Cited by in F6Publishing: 64] [Article Influence: 25.3] [Reference Citation Analysis]
35 Sassoli C, Pierucci F, Zecchi-Orlandini S, Meacci E. Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019;20:E5545. [PMID: 31703256 DOI: 10.3390/ijms20225545] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
36 Zhao Y, Chen M, Lian D, Li Y, Li Y, Wang J, Deng S, Yu K, Lian Z. Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells 2019;8:E988. [PMID: 31461973 DOI: 10.3390/cells8090988] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
37 Perdiguero E, Moiseeva V, Muñoz-cánoves P. Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies. In: Turksen K, editor. Stem Cells and Aging. New York: Springer; 2019. pp. 13-23. [DOI: 10.1007/7651_2019_210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 2019;76:2559-70. [PMID: 30976839 DOI: 10.1007/s00018-019-03093-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
39 Luo S, Rosen SM, Li Q, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021;22:5732. [PMID: 34072258 DOI: 10.3390/ijms22115732] [Reference Citation Analysis]
40 Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022;7:16. [PMID: 35177651 DOI: 10.1038/s41536-022-00204-z] [Reference Citation Analysis]
41 Hashemolhosseini S. The role of protein kinase CK2 in skeletal muscle: Myogenesis, neuromuscular junctions, and rhabdomyosarcoma. Neuroscience Letters 2020;729:135001. [DOI: 10.1016/j.neulet.2020.135001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Vumbaca S, Giuliani G, Fiorentini V, Tortolici F, Cerquone Perpetuini A, Riccio F, Sennato S, Gargioli C, Fuoco C, Castagnoli L, Cesareni G. Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules 2021;11:1171. [PMID: 34439837 DOI: 10.3390/biom11081171] [Reference Citation Analysis]