BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol. 2002;3:248-268. [PMID: 12382101 DOI: 10.1007/s101620020028] [Cited by in Crossref: 328] [Cited by in F6Publishing: 279] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Kujawa SG, Liberman MC. Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear Res 2019;377:44-52. [PMID: 30903954 DOI: 10.1016/j.heares.2019.03.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
2 Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26:2115-2123. [PMID: 16481444 DOI: 10.1523/jneurosci.4985-05.2006] [Cited by in Crossref: 378] [Cited by in F6Publishing: 172] [Article Influence: 25.2] [Reference Citation Analysis]
3 Koizumi Y, Ito T, Mizutari K, Kakehata S. Regenerative Effect of a ROCK Inhibitor, Y-27632, on Excitotoxic Trauma in an Organotypic Culture of the Cochlea. Front Cell Neurosci 2020;14:572434. [PMID: 33328888 DOI: 10.3389/fncel.2020.572434] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021;10:1686. [PMID: 34359856 DOI: 10.3390/cells10071686] [Reference Citation Analysis]
5 Mulders WHAM, Chin IL, Robertson D. Persistent hair cell malfunction contributes to hidden hearing loss. Hear Res 2018;361:45-51. [PMID: 29477697 DOI: 10.1016/j.heares.2018.02.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
6 Ying YL, Balaban CD. Regional distribution of manganese superoxide dismutase 2 (Mn SOD2) expression in rodent and primate spiral ganglion cells. Hear Res. 2009;253:116-124. [PMID: 19376215 DOI: 10.1016/j.heares.2009.04.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
7 Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N, Liu L, Ogawa M, Schulte BA. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol. 2006;496:187-201. [PMID: 16538683 DOI: 10.1002/cne.20929] [Cited by in Crossref: 95] [Cited by in F6Publishing: 77] [Article Influence: 6.3] [Reference Citation Analysis]
8 Ohlemiller KK. Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 2006;1091:89-102. [PMID: 16631134 DOI: 10.1016/j.brainres.2006.03.017] [Cited by in Crossref: 129] [Cited by in F6Publishing: 103] [Article Influence: 8.6] [Reference Citation Analysis]
9 Gröschel M, Basta D, Ernst A, Mazurek B, Szczepek AJ. Acute Noise Exposure Is Associated With Intrinsic Apoptosis in Murine Central Auditory Pathway. Front Neurosci 2018;12:312. [PMID: 29867323 DOI: 10.3389/fnins.2018.00312] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
10 Wu PZ, O'Malley JT, de Gruttola V, Liberman MC. Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. J Neurosci 2021;41:4439-47. [PMID: 33883202 DOI: 10.1523/JNEUROSCI.3238-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N, Perfettini I, Zelles T, Aller M, Meyer A, Emptoz A, Giraudet F, Leibovici M, Dartevelle S, Soubigou G, Thiry M, Vizi E, Safieddine S, Hardelin J, Avan P, Petit C. Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes. Cell 2015;163:894-906. [DOI: 10.1016/j.cell.2015.10.023] [Cited by in Crossref: 89] [Cited by in F6Publishing: 63] [Article Influence: 14.8] [Reference Citation Analysis]
12 Plontke SK. Diagnostics and therapy of sudden hearing loss. GMS Curr Top Otorhinolaryngol Head Neck Surg 2017;16:Doc05. [PMID: 29503670 DOI: 10.3205/cto000144] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 2014;5:287. [PMID: 25566079 DOI: 10.3389/fphar.2014.00287] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 8.7] [Reference Citation Analysis]
14 Katz E, Elgoyhen AB. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front Syst Neurosci 2014;8:224. [PMID: 25520631 DOI: 10.3389/fnsys.2014.00224] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
15 Taranda J, Maison SF, Ballestero JA, Katz E, Savino J, Vetter DE, Boulter J, Liberman MC, Fuchs PA, Elgoyhen AB. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biol 2009;7:e18. [PMID: 19166271 DOI: 10.1371/journal.pbio.1000018] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 5.4] [Reference Citation Analysis]
16 Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neuroscience & Biobehavioral Reviews 2011;35:1089-109. [DOI: 10.1016/j.neubiorev.2010.11.003] [Cited by in Crossref: 223] [Cited by in F6Publishing: 169] [Article Influence: 22.3] [Reference Citation Analysis]
17 Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, Balough BJ. NAC for noise: from the bench top to the clinic. Hear Res. 2007;226:114-125. [PMID: 17184943 DOI: 10.1016/j.heares.2006.10.008] [Cited by in Crossref: 100] [Cited by in F6Publishing: 77] [Article Influence: 6.7] [Reference Citation Analysis]
18 Harding GW, Bohne BA, Vos JD. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Hear Res 2005;204:90-100. [PMID: 15925194 DOI: 10.1016/j.heares.2005.01.004] [Cited by in Crossref: 45] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
19 Tan WJ, Thorne PR, Vlajkovic SM. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 2016;146:219-30. [PMID: 27109494 DOI: 10.1007/s00418-016-1436-5] [Cited by in Crossref: 62] [Cited by in F6Publishing: 47] [Article Influence: 12.4] [Reference Citation Analysis]
20 Teitz T, Fang J, Goktug AN, Bonga JD, Diao S, Hazlitt RA, Iconaru L, Morfouace M, Currier D, Zhou Y, Umans RA, Taylor MR, Cheng C, Min J, Freeman B, Peng J, Roussel MF, Kriwacki R, Guy RK, Chen T, Zuo J. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 2018;215:1187-203. [PMID: 29514916 DOI: 10.1084/jem.20172246] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
21 Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014;283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
22 Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, Yang A, Liang R, Ohlemiller KK. Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 2013;304:33-40. [PMID: 23792074 DOI: 10.1016/j.heares.2013.06.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
23 Kindt KS, Sheets L. Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish. Front Cell Dev Biol 2018;6:114. [PMID: 30258843 DOI: 10.3389/fcell.2018.00114] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
24 Etchelecou MC, Coulet O, Derkenne R, Tomasi M, Noreña AJ. Temporary off-frequency listening after noise trauma. Hear Res 2011;282:81-91. [PMID: 21986211 DOI: 10.1016/j.heares.2011.09.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
25 Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 2008;9:44-64. [PMID: 18057986 DOI: 10.1007/s10162-007-0105-8] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 7.4] [Reference Citation Analysis]
26 Darrow KN, Maison SF, Liberman MC. Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. J Neurophysiol 2007;97:1775-85. [PMID: 17093118 DOI: 10.1152/jn.00955.2006] [Cited by in Crossref: 85] [Cited by in F6Publishing: 63] [Article Influence: 5.7] [Reference Citation Analysis]
27 Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2017;26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Cited by in Crossref: 51] [Cited by in F6Publishing: 37] [Article Influence: 10.2] [Reference Citation Analysis]
28 Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014;8:110. [PMID: 24904256 DOI: 10.3389/fnins.2014.00110] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
29 Lahne M, Gale JE. Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 2008;28:4918-28. [PMID: 18463245 DOI: 10.1523/JNEUROSCI.4914-07.2008] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
30 Mulders WH, Ding D, Salvi R, Robertson D. Relationship between auditory thresholds, central spontaneous activity, and hair cell loss after acoustic trauma. J Comp Neurol 2011;519:2637-47. [PMID: 21491427 DOI: 10.1002/cne.22644] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 5.9] [Reference Citation Analysis]
31 Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. In: Cramer KS, Coffin AB, Fay RR, Popper AN, editors. Auditory Development and Plasticity. Cham: Springer International Publishing; 2017. pp. 17-48. [DOI: 10.1007/978-3-319-21530-3_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Turay CB, Ozer F, Yildirim T, Erbek S. Evaluation of the possible effect of magnetic resonance imaging noise on peripheral hearing organ with the otoacoustic emission. Am J Otolaryngol 2020;41:102586. [PMID: 32629148 DOI: 10.1016/j.amjoto.2020.102586] [Reference Citation Analysis]
33 Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 2011;158:38-53. [PMID: 21708355 DOI: 10.1016/j.trsl.2011.02.006] [Cited by in Crossref: 47] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
34 Shi L, Chang Y, Li X, Aiken S, Liu L, Wang J. Cochlear Synaptopathy and Noise-Induced Hidden Hearing Loss. Neural Plast 2016;2016:6143164. [PMID: 27738526 DOI: 10.1155/2016/6143164] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
35 Ohlemiller KK, Gagnon PM. Genetic dependence of cochlear cells and structures injured by noise. Hear Res 2007;224:34-50. [PMID: 17175124 DOI: 10.1016/j.heares.2006.11.005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
36 Maison SF, Le M, Larsen E, Lee SK, Rosowski JJ, Thomas SA, Liberman MC. Mice lacking adrenergic signaling have normal cochlear responses and normal resistance to acoustic injury but enhanced susceptibility to middle-ear infection. J Assoc Res Otolaryngol 2010;11:449-61. [PMID: 20503062 DOI: 10.1007/s10162-010-0220-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
37 Fetoni AR, Eramo SL, Paciello F, Rolesi R, Samengo D, Paludetti G, Troiani D, Pani G. The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss. Sci Rep 2016;6:25450. [PMID: 27157635 DOI: 10.1038/srep25450] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
38 Bird JE, Daudet N, Warchol ME, Gale JE. Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear. J Neurosci 2010;30:12545-56. [PMID: 20844149 DOI: 10.1523/JNEUROSCI.3042-10.2010] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
39 Picciotti P, Fetoni A, Paludetti G, Wolf F, Torsello A, Troiani D, Ferraresi A, Pola R, Sergi B. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Hearing Research 2006;214:76-83. [DOI: 10.1016/j.heares.2006.02.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
40 Henderson D, Hu B, Bielefeld E. Patterns and Mechanisms of Noise-Induced Cochlear Pathology. In: Schacht J, Popper AN, Fay RR, editors. Auditory Trauma, Protection, and Repair. Boston: Springer US; 2008. pp. 195-217. [DOI: 10.1007/978-0-387-72561-1_7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
41 Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015;329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
42 Mills DM. Determining the cause of hearing loss: differential diagnosis using a comparison of audiometric and otoacoustic emission responses. Ear Hear 2006;27:508-25. [PMID: 16957501 DOI: 10.1097/01.aud.0000233885.02706.ad] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
43 Lin S, Lin X, Ye S, Lin Y, Shu B, Hu J, Lin D. Is there "hidden hearing loss" in patients with chronic rhinosinusitis? Int J Audiol 2020;59:124-31. [PMID: 31522578 DOI: 10.1080/14992027.2019.1658906] [Reference Citation Analysis]
44 Park SN, Back SA, Park KH, Seo JH, Noh HI, Akil O, Lustig LR, Yeo SW. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss. Auris Nasus Larynx 2013;40:11-7. [PMID: 22364846 DOI: 10.1016/j.anl.2011.11.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
45 Wang J, Tymczyszyn N, Yu Z, Yin S, Bance M, Robertson GS. Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice. Gene Ther 2011;18:560-8. [PMID: 21228883 DOI: 10.1038/gt.2010.172] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
46 Tan WJT, Song L, Graham M, Schettino A, Navaratnam D, Yarbrough WG, Santos-Sacchi J, Ivanova AV. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear. Antioxid Redox Signal 2017;27:489-509. [PMID: 28135838 DOI: 10.1089/ars.2016.6851] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
47 Neubauer H, Heil P. Towards a unifying basis of auditory thresholds: the effects of hearing loss on temporal integration reconsidered. J Assoc Res Otolaryngol 2004;5:436-58. [PMID: 15675006 DOI: 10.1007/s10162-004-5031-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
48 Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience. 2009;160:530-539. [PMID: 19285117 DOI: 10.1016/j.neuroscience.2009.02.073] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
49 Fernandez KA, Watabe T, Tong M, Meng X, Tani K, Kujawa SG, Edge AS. Trk agonist drugs rescue noise-induced hidden hearing loss. JCI Insight 2021;6:142572. [PMID: 33373328 DOI: 10.1172/jci.insight.142572] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, Lonsbury-Martin BL, Vázquez AE. Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res 2011;277:211-26. [PMID: 21187137 DOI: 10.1016/j.heares.2010.12.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
51 Burton JA, Mackey CA, MacDonald KS, Hackett TA, Ramachandran R. Changes in audiometric threshold and frequency selectivity correlate with cochlear histopathology in macaque monkeys with permanent noise-induced hearing loss. Hear Res 2020;398:108082. [PMID: 33045479 DOI: 10.1016/j.heares.2020.108082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Anttonen T, Herranen A, Virkkala J, Kirjavainen A, Elomaa P, Laos M, Liang X, Ylikoski J, Behrens A, Pirvola U. c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea. eNeuro 2016;3:ENEURO. [PMID: 27257624 DOI: 10.1523/ENEURO.0047-16.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
53 Jun HJ, Chang J, Im GJ, Kwon SY, Jung H, Choi J. Analysis of frequency loss as a prognostic factor in idiopathic sensorineural hearing loss. Acta Otolaryngol 2012;132:590-6. [PMID: 22497556 DOI: 10.3109/00016489.2011.652306] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
54 Tian C, Kim YH, Kim YC, Park KT, Kim SW, Kim YJ, Lim HJ, Choung YH. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice. Neurotoxicology 2013;34:42-50. [PMID: 23164932 DOI: 10.1016/j.neuro.2012.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
55 Brown KD, Maqsood S, Huang JY, Pan Y, Harkcom W, Li W, Sauve A, Verdin E, Jaffrey SR. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab 2014;20:1059-68. [PMID: 25470550 DOI: 10.1016/j.cmet.2014.11.003] [Cited by in Crossref: 157] [Cited by in F6Publishing: 140] [Article Influence: 26.2] [Reference Citation Analysis]
56 Debacker JR, Harrison RT, Bielefeld EC. Long-Term Synergistic Interaction of Cisplatin- and Noise-Induced Hearing Losses: . Ear and Hearing 2017;38:282-91. [DOI: 10.1097/aud.0000000000000391] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
57 Vázquez AE, Jimenez AM, Martin GK, Luebke AE, Lonsbury-Martin BL. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hear Res 2004;194:87-96. [PMID: 15276680 DOI: 10.1016/j.heares.2004.03.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
58 Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW, Bance M, Robertson GS, Wang J. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther 2012;19:255-63. [PMID: 21697953 DOI: 10.1038/gt.2011.91] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
59 Mizutari K. Update on treatment options for blast-induced hearing loss. Curr Opin Otolaryngol Head Neck Surg 2019;27:376-80. [PMID: 31348022 DOI: 10.1097/MOO.0000000000000563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Turner JG, Parrish JL, Zuiderveld L, Darr S, Hughes LF, Caspary DM, Idrezbegovic E, Canlon B. Acoustic experience alters the aged auditory system. Ear Hear 2013;34:151-9. [PMID: 23086424 DOI: 10.1097/AUD.0b013e318269ca5b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
61 Dobie RA, Humes LE. Commentary on the regulatory implications of noise-induced cochlear neuropathy. International Journal of Audiology 2017;56:74-8. [DOI: 10.1080/14992027.2016.1255359] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 8.6] [Reference Citation Analysis]
62 Liu W, Wang X, Wang M, Wang H. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. In: Li H, Chai R, editors. Hearing Loss: Mechanisms, Prevention and Cure. Singapore: Springer; 2019. pp. 93-107. [DOI: 10.1007/978-981-13-6123-4_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Herranen A, Ikäheimo K, Virkkala J, Pirvola U. The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions-Possible Role in Mediating Noise Vulnerability. J Assoc Res Otolaryngol 2018;19:637-52. [PMID: 30191426 DOI: 10.1007/s10162-018-00691-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
64 Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2018;526:824-35. [PMID: 29218724 DOI: 10.1002/cne.24369] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
65 Maulucci G, Troiani D, Eramo SL, Paciello F, Podda MV, Paludetti G, Papi M, Maiorana A, Palmieri V, De Spirito M, Fetoni AR. Time evolution of noise induced oxidation in outer hair cells: role of NAD(P)H and plasma membrane fluidity. Biochim Biophys Acta 2014;1840:2192-202. [PMID: 24735797 DOI: 10.1016/j.bbagen.2014.04.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
66 Lu J, Li W, Du X, Ewert DL, West MB, Stewart C, Floyd RA, Kopke RD. Antioxidants reduce cellular and functional changes induced by intense noise in the inner ear and cochlear nucleus. J Assoc Res Otolaryngol 2014;15:353-72. [PMID: 24497307 DOI: 10.1007/s10162-014-0441-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
67 Adelman C, Freeman S, Paz Z, Sohmer H. Salicylic acid injection before noise exposure reduces permanent threshold shift. Audiol Neurootol 2008;13:266-72. [PMID: 18259079 DOI: 10.1159/000115436] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
68 Monroe JD, Rajadinakaran G, Smith ME. Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 2015;9:131. [PMID: 25954154 DOI: 10.3389/fncel.2015.00131] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
69 Flores EN, Duggan A, Madathany T, Hogan AK, Márquez FG, Kumar G, Seal RP, Edwards RH, Liberman MC, García-Añoveros J. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr Biol 2015;25:606-12. [PMID: 25639244 DOI: 10.1016/j.cub.2015.01.009] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
70 Lichtenhan JT, Hartsock J, Dornhoffer JR, Donovan KM, Salt AN. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral. J Neurosci Methods 2016;273:201-9. [PMID: 27506463 DOI: 10.1016/j.jneumeth.2016.08.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
71 Schettino AE, Lauer AM. The efficiency of design-based stereology in estimating spiral ganglion populations in mice. Hear Res 2013;304:153-8. [PMID: 23876522 DOI: 10.1016/j.heares.2013.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
72 Strenzke N, Pauli-magnus D, Meyer A, Brandt A, Maier H, Moser T. Update zur Physiologie und Pathophysiologie des Innenohrs: Pathomechanismen der sensorineuralen Schwerhörigkeit. HNO 2008;56:27-36. [DOI: 10.1007/s00106-007-1640-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
73 Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015;7:58. [PMID: 25954196 DOI: 10.3389/fnagi.2015.00058] [Cited by in Crossref: 94] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
74 Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res. 2008;245:5-17. [PMID: 18790034 DOI: 10.1016/j.heares.2008.08.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 4.5] [Reference Citation Analysis]
75 Du X, Choi CH, Chen K, Cheng W, Floyd RA, Kopke RD. Reduced formation of oxidative stress biomarkers and migration of mononuclear phagocytes in the cochleae of chinchilla after antioxidant treatment in acute acoustic trauma. Int J Otolaryngol. 2011;2011:612690. [PMID: 21961007 DOI: 10.1155/2011/612690] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
76 Maison SF, Yin Y, Liberman LD, Liberman MC. Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice. Hear Res 2016;335:94-104. [PMID: 26944177 DOI: 10.1016/j.heares.2016.02.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
77 Müller U, Barr-Gillespie PG. New treatment options for hearing loss. Nat Rev Drug Discov 2015;14:346-65. [PMID: 25792261 DOI: 10.1038/nrd4533] [Cited by in Crossref: 88] [Cited by in F6Publishing: 72] [Article Influence: 14.7] [Reference Citation Analysis]
78 Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K. CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol 2006;7:361-72. [PMID: 17075702 DOI: 10.1007/s10162-006-0051-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 2.2] [Reference Citation Analysis]
79 Adams JC. Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol 2009;10:369-82. [PMID: 19277783 DOI: 10.1007/s10162-009-0165-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
80 Bielefeld EC. Protection from noise-induced hearing loss with Src inhibitors. Drug Discov Today 2015;20:760-5. [PMID: 25637168 DOI: 10.1016/j.drudis.2015.01.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
81 Maison SF, Liu XP, Vetter DE, Eatock RA, Nathanson NM, Wess J, Liberman MC. Muscarinic signaling in the cochlea: presynaptic and postsynaptic effects on efferent feedback and afferent excitability. J Neurosci 2010;30:6751-62. [PMID: 20463237 DOI: 10.1523/JNEUROSCI.5080-09.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
82 Berger JI, Coomber B. Tinnitus-related changes in the inferior colliculus. Front Neurol 2015;6:61. [PMID: 25870582 DOI: 10.3389/fneur.2015.00061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
83 Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 2017;353:213-23. [PMID: 28712672 DOI: 10.1016/j.heares.2017.07.003] [Cited by in Crossref: 100] [Cited by in F6Publishing: 65] [Article Influence: 25.0] [Reference Citation Analysis]
84 Stone MA, Moore BC, Greenish H. Discrimination of envelope statistics reveals evidence of sub-clinical hearing damage in a noise-exposed population with ‘normal’ hearing thresholds. International Journal of Audiology 2009;47:737-50. [DOI: 10.1080/14992020802290543] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
85 Bramhall NF, McMillan GP, Mashburn AN. Subclinical Auditory Dysfunction: Relationship Between Distortion Product Otoacoustic Emissions and the Audiogram. Am J Audiol 2021;:1-16. [PMID: 33465327 DOI: 10.1044/2020_AJA-20-00056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge AS. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013;77:58-69. [PMID: 23312516 DOI: 10.1016/j.neuron.2012.10.032] [Cited by in Crossref: 232] [Cited by in F6Publishing: 195] [Article Influence: 29.0] [Reference Citation Analysis]
87 Hoya N, Okamoto Y, Kamiya K, Fujii M, Matsunaga T. A novel animal model of acute cochlear mitochondrial dysfunction. NeuroReport 2004;15:1597-600. [DOI: 10.1097/01.wnr.0000133226.94662.80] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
88 Rybalko N, Chumak T, Bureš Z, Popelář J, Šuta D, Syka J. Development of the acoustic startle response in rats and its change after early acoustic trauma. Behavioural Brain Research 2015;286:212-21. [DOI: 10.1016/j.bbr.2015.02.046] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
89 Dai M, Yang Y, Omelchenko I, Nuttall AL, Kachelmeier A, Xiu R, Shi X. Bone marrow cell recruitment mediated by inducible nitric oxide synthase/stromal cell-derived factor-1alpha signaling repairs the acoustically damaged cochlear blood-labyrinth barrier. Am J Pathol. 2010;177:3089-3099. [PMID: 21057001 DOI: 10.2353/ajpath.2010.100340] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
90 Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, Montoliu L. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res 2010;23:72-83. [PMID: 19843244 DOI: 10.1111/j.1755-148X.2009.00646.x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
91 Ohlemiller KK, Gagnon PM. Apical-to-basal gradients in age-related cochlear degeneration and their relationship to "primary" loss of cochlear neurons. J Comp Neurol 2004;479:103-16. [PMID: 15389608 DOI: 10.1002/cne.20326] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
92 Sanz L, Murillo-Cuesta S, Cobo P, Cediel-Algovia R, Contreras J, Rivera T, Varela-Nieto I, Avendaño C. Swept-sine noise-induced damage as a hearing loss model for preclinical assays. Front Aging Neurosci 2015;7:7. [PMID: 25762930 DOI: 10.3389/fnagi.2015.00007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
93 Street VA, Kujawa SG, Manichaikul A, Broman KW, Kallman JC, Shilling DJ, Iwata AJ, Robinson LC, Robbins CA, Li J, Liberman MC, Tempel BL. Resistance to noise-induced hearing loss in 129S6 and MOLF mice: identification of independent, overlapping, and interacting chromosomal regions. J Assoc Res Otolaryngol 2014;15:721-38. [PMID: 24952082 DOI: 10.1007/s10162-014-0472-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
94 Gröschel M, Müller S, Götze R, Ernst A, Basta D. The possible impact of noise-induced Ca 2+ -dependent activity in the central auditory pathway: A manganese-enhanced MRI study. NeuroImage 2011;57:190-7. [DOI: 10.1016/j.neuroimage.2011.04.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
95 Wang Y, O'Donohue H, Manis P. Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear Res 2011;279:131-9. [PMID: 21586317 DOI: 10.1016/j.heares.2011.04.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
96 Schick B, Praetorius M, Eigenthaler M, Jung V, Müller M, Walter U, Knipper M. Increased noise sensitivity and altered inner ear MENA distribution in VASP-/- mice. Cell Tissue Res 2004;318:493-502. [PMID: 15578270 DOI: 10.1007/s00441-004-0964-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
97 Reynolds R, Garner A, Norton J. Sound and Vibration as Research Variables in Terrestrial Vertebrate Models. ILAR J 2020;60:159-74. [PMID: 32602530 DOI: 10.1093/ilar/ilaa004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, Masuda M, Mihara M, Ohsugi Y, Ogawa K. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66:345-352. [PMID: 20026135 DOI: 10.1016/j.neures.2009.12.008] [Cited by in Crossref: 94] [Cited by in F6Publishing: 67] [Article Influence: 7.8] [Reference Citation Analysis]
99 Towers ER, Kelly JJ, Sud R, Gale JE, Dawson SJ. Caprin-1 is a target of the deafness gene Pou4f3 and is recruited to stress granules in cochlear hair cells in response to ototoxic damage. J Cell Sci 2011;124:1145-55. [PMID: 21402877 DOI: 10.1242/jcs.076141] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
100 Fujinami Y, Mutai H, Kamiya K, Mizutari K, Fujii M, Matsunaga T. Enhanced expression of C/EBP homologous protein (CHOP) precedes degeneration of fibrocytes in the lateral wall after acute cochlear mitochondrial dysfunction induced by 3-nitropropionic acid. Neurochem Int 2010;56:487-94. [PMID: 20026213 DOI: 10.1016/j.neuint.2009.12.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
101 Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27:1-19. [PMID: 16446561 DOI: 10.1097/01.aud.0000191942.36672.f3] [Cited by in Crossref: 514] [Cited by in F6Publishing: 357] [Article Influence: 34.3] [Reference Citation Analysis]
102 Huang M, Kantardzhieva A, Scheffer D, Liberman MC, Chen ZY. Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J Neurosci 2013;33:15086-94. [PMID: 24048839 DOI: 10.1523/JNEUROSCI.1489-13.2013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
103 Lopez IA, Rosenblatt MI, Kim C, Galbraith GC, Jones SM, Kao L, Newman D, Liu W, Yeh S, Pushkin A, Abuladze N, Kurtz I. Slc4a11 gene disruption in mice: cellular targets of sensorineuronal abnormalities. J Biol Chem 2009;284:26882-96. [PMID: 19586905 DOI: 10.1074/jbc.M109.008102] [Cited by in Crossref: 49] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
104 Wang Y, Liberman M. Restraint stress and protection from acoustic injury in mice. Hearing Research 2002;165:96-102. [DOI: 10.1016/s0378-5955(02)00289-7] [Cited by in Crossref: 93] [Cited by in F6Publishing: 24] [Article Influence: 4.9] [Reference Citation Analysis]
105 de Iriarte Rodríguez R, Magariños M, Pfeiffer V, Rapp UR, Varela-Nieto I. C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cell Mol Life Sci 2015;72:3983-98. [PMID: 25975225 DOI: 10.1007/s00018-015-1919-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
106 Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope. 2008;118:1801-1808. [PMID: 18806477 DOI: 10.1097/mlg.0b013e31817e2c27] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
107 Melgar-Rojas P, Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Juiz JM. Validation of Reference Genes for RT-qPCR Analysis in Noise-Induced Hearing Loss: A Study in Wistar Rat. PLoS One 2015;10:e0138027. [PMID: 26366995 DOI: 10.1371/journal.pone.0138027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
108 Low JC, Ober TJ, McKinley GH, Stankovic KM. Quantitative polarized light microscopy of human cochlear sections. Biomed Opt Express 2015;6:599-606. [PMID: 25780749 DOI: 10.1364/BOE.6.000599] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
109 Park SN, Back SA, Choung YH, Kim HL, Akil O, Lustig LR, Park KH, Yeo SW. α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis. Neurosci Res 2011;71:303-10. [PMID: 21840348 DOI: 10.1016/j.neures.2011.07.1835] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
110 Ajalloueyan M, Kouhi A, Asgari A, Salem M, Hasanalifard M. Stem cell transplantation in noise induced hearing loss. International Journal of Pediatric Otorhinolaryngology 2013;77:469-72. [DOI: 10.1016/j.ijporl.2012.12.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
111 Maison SF, Pyott SJ, Meredith AL, Liberman MC. Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea. J Neurophysiol 2013;109:1525-34. [PMID: 23282326 DOI: 10.1152/jn.00924.2012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
112 Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol. 2003;4:339-352. [PMID: 14690052 DOI: 10.1007/s10162-002-3036-4] [Cited by in Crossref: 184] [Cited by in F6Publishing: 155] [Article Influence: 10.8] [Reference Citation Analysis]
113 Peeleman N, Verdoodt D, Ponsaerts P, Van Rompaey V. On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament. Front Neurol 2020;11:580639. [PMID: 33193034 DOI: 10.3389/fneur.2020.580639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
114 Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020;15:1457-71. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
115 Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016;338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Cited by in Crossref: 85] [Cited by in F6Publishing: 62] [Article Influence: 17.0] [Reference Citation Analysis]
116 Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489:180-194. [PMID: 15983998 DOI: 10.1002/cne.20619] [Cited by in Crossref: 190] [Cited by in F6Publishing: 166] [Article Influence: 11.9] [Reference Citation Analysis]
117 Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018;19:653-68. [PMID: 30187298 DOI: 10.1007/s10162-018-00690-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
118 Jin DX, Lin Z, Lei D, Bao J. The role of glucocorticoids for spiral ganglion neuron survival. Brain Res 2009;1277:3-11. [PMID: 19233145 DOI: 10.1016/j.brainres.2009.02.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
119 Biswas J, Pijewski RS, Makol R, Miramontes TG, Thompson BL, Kresic LC, Burghard AL, Oliver DL, Martinelli DC. C1ql1 is expressed in adult outer hair cells of the cochlea in a tonotopic gradient. PLoS One 2021;16:e0251412. [PMID: 33979385 DOI: 10.1371/journal.pone.0251412] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Spankovich C, Griffiths SK, Lobariñas E, Morgenstein KE, de la Calle S, Ledon V, Guercio D, Le Prell CG. Temporary threshold shift after impulse-noise during video game play: laboratory data. Int J Audiol 2014;53 Suppl 2:S53-65. [PMID: 24564694 DOI: 10.3109/14992027.2013.865844] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
121 Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 2013;33:13686-94. [PMID: 23966690 DOI: 10.1523/JNEUROSCI.1783-13.2013] [Cited by in Crossref: 393] [Cited by in F6Publishing: 205] [Article Influence: 49.1] [Reference Citation Analysis]
122 Parker MA. Biotechnology in the treatment of sensorineural hearing loss: foundations and future of hair cell regeneration. J Speech Lang Hear Res 2011;54:1709-31. [PMID: 21386039 DOI: 10.1044/1092-4388(2011/10-0149)] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
123 Bharadwaj HM, Mai AR, Simpson JM, Choi I, Heinz MG, Shinn-Cunningham BG. Non-Invasive Assays of Cochlear Synaptopathy - Candidates and Considerations. Neuroscience 2019;407:53-66. [PMID: 30853540 DOI: 10.1016/j.neuroscience.2019.02.031] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 15.5] [Reference Citation Analysis]
124 Adelman C, Perez R, Nazarian Y, Freeman S, Weinberger J, Sohmer H. Furosemide Administered before Noise Exposure can Protect the Ear. Ann Otol Rhinol Laryngol 2010;119:342-9. [DOI: 10.1177/000348941011900512] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
125 Hickman TT, Hashimoto K, Liberman LD, Liberman MC. Synaptic migration and reorganization after noise exposure suggests regeneration in a mature mammalian cochlea. Sci Rep 2020;10:19945. [PMID: 33203940 DOI: 10.1038/s41598-020-76553-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
126 Ding Y, Meng W, Kong W, He Z, Chai R. The Role of FoxG1 in the Inner Ear. Front Cell Dev Biol 2020;8:614954. [PMID: 33344461 DOI: 10.3389/fcell.2020.614954] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
127 Cho Y, Gong TW, Kanicki A, Altschuler RA, Lomax MI. Noise overstimulation induces immediate early genes in the rat cochlea. Brain Res Mol Brain Res 2004;130:134-48. [PMID: 15519684 DOI: 10.1016/j.molbrainres.2004.07.017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
128 Vicente-Torres MA, Schacht J. A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 2006;83:1564-72. [PMID: 16521126 DOI: 10.1002/jnr.20832] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
129 Kalinec F, Webster P, Maricle A, Guerrero D, Chakravarti DN, Chakravarti B, Gellibolian R, Kalinec G. Glucocorticoid-stimulated, transcription-independent release of annexin A1 by cochlear Hensen cells. Br J Pharmacol 2009;158:1820-34. [PMID: 19912231 DOI: 10.1111/j.1476-5381.2009.00473.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
130 Terunuma T, Kawauchi S, Kajihara M, Takahashi S, Hara A. Effect of acoustic stress on glucocorticoid receptor mRNA in the cochlea of the guinea pig. Molecular Brain Research 2003;120:65-72. [DOI: 10.1016/j.molbrainres.2003.10.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
131 Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res. 2018;362:14-24. [PMID: 29310977 DOI: 10.1016/j.heares.2017.12.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
132 Mowry SE, Woodson E, Gantz BJ. New frontiers in cochlear implantation: acoustic plus electric hearing, hearing preservation, and more. Otolaryngol Clin North Am 2012;45:187-203. [PMID: 22115690 DOI: 10.1016/j.otc.2011.09.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
133 Peppi M, Kujawa SG, Sewell WF. A corticosteroid-responsive transcription factor, promyelocytic leukemia zinc finger protein, mediates protection of the cochlea from acoustic trauma. J Neurosci 2011;31:735-41. [PMID: 21228182 DOI: 10.1523/JNEUROSCI.3955-10.2011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
134 Masuda M. Cause of idiopathic sudden sensorineural hearing loss: The stress response theory. WJO 2013;3:42. [DOI: 10.5319/wjo.v3.i3.42] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
135 Wilson T, Omelchenko I, Foster S, Zhang Y, Shi X, Nuttall AL. JAK2/STAT3 inhibition attenuates noise-induced hearing loss. PLoS One 2014;9:e108276. [PMID: 25275304 DOI: 10.1371/journal.pone.0108276] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
136 Burton JA, Valero MD, Hackett TA, Ramachandran R. The use of nonhuman primates in studies of noise injury and treatment. J Acoust Soc Am 2019;146:3770. [PMID: 31795680 DOI: 10.1121/1.5132709] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
137 Fernandez KA, Guo D, Micucci S, De Gruttola V, Liberman MC, Kujawa SG. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2020;427:43-57. [PMID: 31887361 DOI: 10.1016/j.neuroscience.2019.11.051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
138 Church MW, Zhang JS, Langford MM, Perrine SA. 'Ecstasy' enhances noise-induced hearing loss. Hear Res 2013;302:96-106. [PMID: 23711768 DOI: 10.1016/j.heares.2013.05.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
139 Gourévitch B, Edeline J, Occelli F, Eggermont JJ. Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nat Rev Neurosci 2014;15:483-91. [DOI: 10.1038/nrn3744] [Cited by in Crossref: 47] [Cited by in F6Publishing: 31] [Article Influence: 6.7] [Reference Citation Analysis]
140 Tagoe T, Barker M, Jones A, Allcock N, Hamann M. Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci 2014;34:2684-8. [PMID: 24523557 DOI: 10.1523/JNEUROSCI.3977-13.2014] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
141 Crawley BK, Keithley EM. Effects of mitochondrial mutations on hearing and cochlear pathology with age. Hear Res 2011;280:201-8. [PMID: 21664445 DOI: 10.1016/j.heares.2011.05.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
142 Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM. Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 2015;10:e0125160. [PMID: 25955832 DOI: 10.1371/journal.pone.0125160] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 7.7] [Reference Citation Analysis]
143 Holme RH, Steel KP. Progressive hearing loss and increased susceptibility to noise-induced hearing loss in mice carrying a Cdh23 but not a Myo7a mutation. J Assoc Res Otolaryngol. 2004;5:66-79. [PMID: 14648237 DOI: 10.1007/s10162-003-4021-2] [Cited by in Crossref: 68] [Cited by in F6Publishing: 56] [Article Influence: 3.8] [Reference Citation Analysis]
144 Revoltella RP, Papini S, Rosellini A, Michelini M, Franceschini V, Ciorba A, Bertolaso L, Magosso S, Hatzopoulos S, Lorito G, Giordano P, Simoni E, Ognio E, Cilli M, Saccardi R, Urbani S, Jeffery R, Poulsom R, Martini A. Cochlear Repair by Transplantation of Human Cord Blood CD133+ Cells to Nod-Scid Mice Made Deaf with Kanamycin and Noise. Cell Transplant 2008;17:665-78. [DOI: 10.3727/096368908786092685] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
145 Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 2011;12:605-16. [PMID: 21688060 DOI: 10.1007/s10162-011-0277-0] [Cited by in Crossref: 318] [Cited by in F6Publishing: 242] [Article Influence: 31.8] [Reference Citation Analysis]
146 Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 2009;29:14077-85. [PMID: 19906956 DOI: 10.1523/JNEUROSCI.2845-09.2009] [Cited by in Crossref: 1293] [Cited by in F6Publishing: 603] [Article Influence: 107.8] [Reference Citation Analysis]
147 Ohlemiller KK. Age-related hearing loss: the status of Schuknecht’s typology: . Current Opinion in Otolaryngology & Head and Neck Surgery 2004;12:439-43. [DOI: 10.1097/01.moo.0000134450.99615.22] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 3.9] [Reference Citation Analysis]
148 Le Prell CG, Dolan DF, Bennett DC, Boxer PA. Nutrient plasma levels achieved during treatment that reduces noise-induced hearing loss. Transl Res 2011;158:54-70. [PMID: 21708356 DOI: 10.1016/j.trsl.2011.02.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
149 Zuo H, Lei D, Sivaramakrishnan S, Howie B, Mulvany J, Bao J. An operant-based detection method for inferring tinnitus in mice. Journal of Neuroscience Methods 2017;291:227-37. [DOI: 10.1016/j.jneumeth.2017.08.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
150 Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK. Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hearing Research 2007;226:79-91. [DOI: 10.1016/j.heares.2006.09.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
151 Christie KW, Sivan-Loukianova E, Smith WC, Aldrich BT, Schon MA, Roy M, Lear BC, Eberl DF. Physiological, anatomical, and behavioral changes after acoustic trauma in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013;110:15449-54. [PMID: 24003166 DOI: 10.1073/pnas.1307294110] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
152 Pyott SJ, Duncan RK. BK Channels in the Vertebrate Inner Ear. Int Rev Neurobiol 2016;128:369-99. [PMID: 27238269 DOI: 10.1016/bs.irn.2016.03.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
153 Saunders JC. The role of central nervous system plasticity in tinnitus. J Commun Disord 2007;40:313-34. [PMID: 17418230 DOI: 10.1016/j.jcomdis.2007.03.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 30] [Article Influence: 3.7] [Reference Citation Analysis]
154 Suckfuell M, Lisowska G, Domka W, Kabacinska A, Morawski K, Bodlaj R, Klimak P, Kostrica R, Meyer T. Efficacy and Safety of AM-111 in the Treatment of Acute Sensorineural Hearing Loss: A Double-Blind, Randomized, Placebo-Controlled Phase II Study. Otology & Neurotology 2014;35:1317-26. [DOI: 10.1097/mao.0000000000000466] [Cited by in Crossref: 58] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
155 Taura A, Kojima K, Ito J, Ohmori H. Recovery of hair cell function after damage induced by gentamicin in organ culture of rat vestibular maculae. Brain Research 2006;1098:33-48. [DOI: 10.1016/j.brainres.2006.04.090] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
156 Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 2018;9:12. [PMID: 29530094 DOI: 10.1186/s13293-018-0171-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 11.3] [Reference Citation Analysis]
157 Strose A, Colombari GC, Rossato M, Hyppolito MÂ, de Oliveira JA. Gentamicin conditioning confers auditory protection against noise trauma. Eur Arch Otorhinolaryngol 2014;271:2641-8. [PMID: 24114061 DOI: 10.1007/s00405-013-2707-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
158 Izquierdo M, Gutiérrez-conde P, Merchán M, Malmierca M. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss. Neuroscience 2008;154:355-69. [DOI: 10.1016/j.neuroscience.2008.01.057] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
159 Semyachkina-Glushkovskaya O, Esmat A, Bragin D, Bragina O, Shirokov AA, Navolokin N, Yang Y, Abdurashitov A, Khorovodov A, Terskov A, Klimova M, Mamedova A, Fedosov I, Tuchin V, Kurths J. Phenomenon of music-induced opening of the blood-brain barrier in healthy mice. Proc Biol Sci 2020;287:20202337. [PMID: 33323086 DOI: 10.1098/rspb.2020.2337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
160 Maison SF, Liu XP, Eatock RA, Sibley DR, Grandy DK, Liberman MC. Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 2012;32:344-55. [PMID: 22219295 DOI: 10.1523/JNEUROSCI.4720-11.2012] [Cited by in Crossref: 43] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
161 Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2017;349:182-96. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
162 Tong M, Brugeaud A, Edge AS. Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol 2013;14:321-9. [PMID: 23423560 DOI: 10.1007/s10162-013-0374-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
163 Meltser I, Tahera Y, Canlon B. Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 2010;165:1439-46. [PMID: 19925854 DOI: 10.1016/j.neuroscience.2009.11.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
164 Xiong H, Long H, Pan S, Lai R, Wang X, Zhu Y, Hill K, Fang Q, Zheng Y, Sha S. Inhibition of Histone Methyltransferase G9a Attenuates Noise-Induced Cochlear Synaptopathy and Hearing Loss. JARO 2019;20:217-32. [DOI: 10.1007/s10162-019-00714-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
165 Gittleman SN, Le Prell CG, Hammill TL. Octave band noise exposure: Laboratory models and otoprotection efforts. J Acoust Soc Am 2019;146:3800. [PMID: 31795706 DOI: 10.1121/1.5133393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
166 Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep 2016;6:24907. [PMID: 27108594 DOI: 10.1038/srep24907] [Cited by in Crossref: 115] [Cited by in F6Publishing: 88] [Article Influence: 23.0] [Reference Citation Analysis]
167 Mannström P, Kirkegaard M, Ulfendahl M. Repeated Moderate Noise Exposure in the Rat--an Early Adulthood Noise Exposure Model. J Assoc Res Otolaryngol 2015;16:763-72. [PMID: 26162417 DOI: 10.1007/s10162-015-0537-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
168 Oishi N, Schacht J. Emerging treatments for noise-induced hearing loss. Expert Opin Emerg Drugs 2011;16:235-45. [PMID: 21247358 DOI: 10.1517/14728214.2011.552427] [Cited by in Crossref: 112] [Cited by in F6Publishing: 73] [Article Influence: 11.2] [Reference Citation Analysis]
169 Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016;17:493-523. [PMID: 27752925 DOI: 10.1007/s10162-016-0589-1] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 10.4] [Reference Citation Analysis]
170 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017;349:138-47. [PMID: 28087419 DOI: 10.1016/j.heares.2017.01.003] [Cited by in Crossref: 268] [Cited by in F6Publishing: 174] [Article Influence: 67.0] [Reference Citation Analysis]
171 Yang D, Xie J, Liu K, Peng Z, Guo J, Yu S, Wang G, Gong S. The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs. Neuroscience Letters 2017;660:140-6. [DOI: 10.1016/j.neulet.2017.09.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
172 Maison SF, Rosahl TW, Homanics GE, Liberman MC. Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci 2006;26:10315-26. [PMID: 17021187 DOI: 10.1523/JNEUROSCI.2395-06.2006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
173 Fetoni AR, De Bartolo P, Eramo SL, Rolesi R, Paciello F, Bergamini C, Fato R, Paludetti G, Petrosini L, Troiani D. Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense. J Neurosci 2013;33:4011-23. [PMID: 23447610 DOI: 10.1523/JNEUROSCI.2282-12.2013] [Cited by in Crossref: 107] [Cited by in F6Publishing: 49] [Article Influence: 13.4] [Reference Citation Analysis]
174 Caravelli A, Pianese L, Saulino C, Di Leva F, Sequino L, Cocozza S, Marciano E, Franzé A. Down-regulation of otospiralin mRNA in response to acoustic stress in guinea pig. Hear Res 2004;198:36-40. [PMID: 15567600 DOI: 10.1016/j.heares.2004.07.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
175 Chen H, Shi L, Liu L, Yin S, Aiken S, Wang J. Noise-induced Cochlear Synaptopathy and Signal Processing Disorders. Neuroscience 2019;407:41-52. [PMID: 30267832 DOI: 10.1016/j.neuroscience.2018.09.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
176 Fujioka M, Okamoto Y, Shinden S, Okano HJ, Okano H, Ogawa K, Matsunaga T. Pharmacological inhibition of cochlear mitochondrial respiratory chain induces secondary inflammation in the lateral wall: a potential therapeutic target for sensorineural hearing loss. PLoS One 2014;9:e90089. [PMID: 24614528 DOI: 10.1371/journal.pone.0090089] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
177 Fuentes-Santamaría V, Alvarado JC, Melgar-Rojas P, Gabaldón-Ull MC, Miller JM, Juiz JM. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss. Front Neuroanat 2017;11:9. [PMID: 28280462 DOI: 10.3389/fnana.2017.00009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
178 Bielefeld EC, Hu BH, Harris KC, Henderson D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res 2005;207:35-42. [PMID: 15935579 DOI: 10.1016/j.heares.2005.03.025] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
179 Schaette R, Kempter R. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res 2008;240:57-72. [PMID: 18396381 DOI: 10.1016/j.heares.2008.02.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
180 Buqammaz M, Gasana J, Alahmad B, Shebl M, Albloushi D. Occupational Noise-Induced Hearing Loss among Migrant Workers in Kuwait. Int J Environ Res Public Health 2021;18:5295. [PMID: 34065730 DOI: 10.3390/ijerph18105295] [Reference Citation Analysis]
181 Le Prell CG, Dell S, Hensley B, Hall JW 3rd, Campbell KC, Antonelli PJ, Green GE, Miller JM, Guire K. Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. Ear Hear 2012;33:e44-58. [PMID: 22885407 DOI: 10.1097/AUD.0b013e31825f9d89] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 5.9] [Reference Citation Analysis]
182 Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019;20:E2979. [PMID: 31216722 DOI: 10.3390/ijms20122979] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
183 Wang F, Zuo L, Hong B, Han D, Range EM, Zhao L, Sui Y, Guo W, Liu L. Tonotopic reorganization and spontaneous firing in inferior colliculus during both short and long recovery periods after noise overexposure. J Biomed Sci 2013;20:91. [PMID: 24320109 DOI: 10.1186/1423-0127-20-91] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
184 Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ. Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 2011;272:13-20. [PMID: 21108998 DOI: 10.1016/j.heares.2010.11.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
185 Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 2006;26:3541-50. [PMID: 16571762 DOI: 10.1523/JNEUROSCI.2488-05.2006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
186 Schmitz HM, Johnson SB, Santi PA. Kanamycin-furosemide ototoxicity in the mouse cochlea: a 3-dimensional analysis. Otolaryngol Head Neck Surg 2014;150:666-72. [PMID: 24415490 DOI: 10.1177/0194599813519071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
187 Kothapalli A, Staecker H, Mellott AJ. Supervised machine learning for automated classification of human Wharton's Jelly cells and mechanosensory hair cells. PLoS One 2021;16:e0245234. [PMID: 33417611 DOI: 10.1371/journal.pone.0245234] [Reference Citation Analysis]
188 Meltser I, Tahera Y, Canlon B. Glucocorticoid Receptor and Mitogen-Activated Protein Kinase Activity after Restraint Stress and Acoustic Trauma. Journal of Neurotrauma 2009;26:1835-45. [DOI: 10.1089/neu.2008.0874] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
189 Helling K, Wodarzcyk K, Brieger J, Schmidtmann I, Li H, Mann WJ, Heinrich U. Doxycycline reduces nitric oxide production in guinea pig inner ears. Auris Nasus Larynx 2011;38:671-7. [DOI: 10.1016/j.anl.2011.02.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
190 Feng B, Jin C, Cheng Z, Zhao X, Sun Z, Zheng X, Li X, Dong T, Tao Y, Wu H. Mitochondrial Dysfunction and Therapeutic Targets in Auditory Neuropathy. Neural Plast 2020;2020:8843485. [PMID: 32908487 DOI: 10.1155/2020/8843485] [Reference Citation Analysis]
191 Smith SB, Krizman J, Liu C, White-Schwoch T, Nicol T, Kraus N. Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms. Hear Res 2019;371:66-74. [PMID: 30504092 DOI: 10.1016/j.heares.2018.11.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
192 Valderrama JT, Beach EF, Yeend I, Sharma M, Van Dun B, Dillon H. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hearing Research 2018;365:36-48. [DOI: 10.1016/j.heares.2018.06.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 31] [Article Influence: 18.7] [Reference Citation Analysis]
193 Choi SH, Choi CH. Noise-Induced Neural Degeneration and Therapeutic Effect of Antioxidant Drugs. J Audiol Otol 2015;19:111-9. [PMID: 26771008 DOI: 10.7874/jao.2015.19.3.111] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
194 Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. European Journal of Neuroscience 2006;23:3124-38. [DOI: 10.1111/j.1460-9568.2006.04774.x] [Cited by in Crossref: 176] [Cited by in F6Publishing: 120] [Article Influence: 11.7] [Reference Citation Analysis]
195 Kobel M, Le Prell CG, Liu J, Hawks JW, Bao J. Noise-induced cochlear synaptopathy: Past findings and future studies. Hearing Research 2017;349:148-54. [DOI: 10.1016/j.heares.2016.12.008] [Cited by in Crossref: 56] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
196 Müller M, Tisch M, Maier H, Löwenheim H. Reduction of permanent hearing loss by local glucocorticoid application : Guinea pigs with acute acoustic trauma. HNO 2017;65:59-67. [PMID: 27878601 DOI: 10.1007/s00106-016-0266-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
197 Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D. A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor. Neuroscience Research 2014;81-82:30-7. [DOI: 10.1016/j.neures.2014.01.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
198 Liberman LD, Suzuki J, Liberman MC. Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol 2015;16:205-19. [PMID: 25676132 DOI: 10.1007/s10162-015-0510-3] [Cited by in Crossref: 141] [Cited by in F6Publishing: 110] [Article Influence: 23.5] [Reference Citation Analysis]
199 Liberman MC. Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration. In: Popper AN, Hawkins A, editors. The Effects of Noise on Aquatic Life II. New York: Springer; 2016. pp. 1-7. [DOI: 10.1007/978-1-4939-2981-8_1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 6.4] [Reference Citation Analysis]
200 Habiby Kermany M, Parker LL, Guo Y, Miller D, Swanson DJ, Yoo T, Goldowitz D, Zuo J. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen. Hearing Research 2006;220:76-86. [DOI: 10.1016/j.heares.2006.07.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
201 Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017;46:41. [PMID: 28535812 DOI: 10.1186/s40463-017-0219-x] [Cited by in Crossref: 98] [Cited by in F6Publishing: 50] [Article Influence: 24.5] [Reference Citation Analysis]
202 Cho SI, Gao SS, Xia A, Wang R, Salles FT, Raphael PD, Abaya H, Wachtel J, Baek J, Jacobs D, Rasband MN, Oghalai JS. Mechanisms of hearing loss after blast injury to the ear. PLoS One 2013;8:e67618. [PMID: 23840874 DOI: 10.1371/journal.pone.0067618] [Cited by in Crossref: 82] [Cited by in F6Publishing: 60] [Article Influence: 10.3] [Reference Citation Analysis]
203 Kim KX, Payne S, Yang-Hood A, Li SZ, Davis B, Carlquist J, V-Ghaffari B, Gantz JA, Kallogjeri D, Fitzpatrick JAJ, Ohlemiller KK, Hirose K, Rutherford MA. Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses. J Neurosci 2019;39:4434-47. [PMID: 30926748 DOI: 10.1523/JNEUROSCI.2228-18.2019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
204 Ohlemiller KK, Kiener AL, Gagnon PM. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 2016;17:173-94. [PMID: 26980469 DOI: 10.1007/s10162-016-0558-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
205 Suckfuell >, Canis M, Strieth S, Scherer H, Haisch A. Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Oto-Laryngologica 2009;127:938-42. [DOI: 10.1080/00016480601110212] [Cited by in Crossref: 75] [Cited by in F6Publishing: 60] [Article Influence: 6.3] [Reference Citation Analysis]
206 Uribe PM, Villapando BK, Lawton KJ, Fang Z, Gritsenko D, Bhandiwad A, Sisneros JA, Xu J, Coffin AB. Larval Zebrafish Lateral Line as a Model for Acoustic Trauma. eNeuro 2018;5:ENEURO. [PMID: 30225343 DOI: 10.1523/ENEURO.0206-18.2018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
207 Chen Z, Peppi M, Kujawa SG, Sewell WF. Regulated expression of surface AMPA receptors reduces excitotoxicity in auditory neurons. J Neurophysiol 2009;102:1152-9. [PMID: 19515954 DOI: 10.1152/jn.00288.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
208 Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D, Geisler HS, Köpschall I, Rohbock K, Gutsche K, Dlugaiczyk J, Schick B, Marcotti W, Rüttiger L, Schimmang T, Knipper M. Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 2012;32:8545-53. [PMID: 22723694 DOI: 10.1523/JNEUROSCI.1247-12.2012] [Cited by in Crossref: 52] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
209 Larsen E, Liberman MC. Contralateral cochlear effects of ipsilateral damage: no evidence for interaural coupling. Hear Res 2010;260:70-80. [PMID: 19944141 DOI: 10.1016/j.heares.2009.11.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
210 Liberman MC. Noise-induced and age-related hearing loss:  new perspectives and potential therapies. F1000Res 2017;6:927. [PMID: 28690836 DOI: 10.12688/f1000research.11310.1] [Cited by in Crossref: 103] [Cited by in F6Publishing: 76] [Article Influence: 25.8] [Reference Citation Analysis]
211 Noreña AJ, Fournier P, Londero A, Ponsot D, Charpentier N. An Integrative Model Accounting for the Symptom Cluster Triggered After an Acoustic Shock. Trends Hear 2018;22:2331216518801725. [PMID: 30249168 DOI: 10.1177/2331216518801725] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
212 Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 2014;111:552-64. [PMID: 24198321 DOI: 10.1152/jn.00184.2013] [Cited by in Crossref: 183] [Cited by in F6Publishing: 150] [Article Influence: 22.9] [Reference Citation Analysis]
213 Singer W, Kasini K, Manthey M, Eckert P, Armbruster P, Vogt MA, Jaumann M, Dotta M, Yamahara K, Harasztosi C, Zimmermann U, Knipper M, Rüttiger L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. FASEB J 2018;32:3005-19. [PMID: 29401591 DOI: 10.1096/fj.201701041RRR] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
214 Wang Y, Ren C. Effects of repeated "benign" noise exposures in young CBA mice: shedding light on age-related hearing loss. J Assoc Res Otolaryngol 2012;13:505-15. [PMID: 22532192 DOI: 10.1007/s10162-012-0329-0] [Cited by in Crossref: 55] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
215 Swierniak W, Gos E, Skarzynski PH, Czajka N, Skarzynski H. Personal Music Players Use and Other Noise Hazards among Children 11 to 12 Years Old. Int J Environ Res Public Health 2020;17:E6934. [PMID: 32971992 DOI: 10.3390/ijerph17186934] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Bogaerts S, Clements JD, Sullivan JM, Oleskevich S. Automated threshold detection for auditory brainstem responses: comparison with visual estimation in a stem cell transplantation study. BMC Neurosci 2009;10:104. [PMID: 19706195 DOI: 10.1186/1471-2202-10-104] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
217 Pyott SJ, Meredith AL, Fodor AA, Vázquez AE, Yamoah EN, Aldrich RW. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. J Biol Chem 2007;282:3312-24. [PMID: 17135251 DOI: 10.1074/jbc.M608726200] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
218 Urata S, Iida T, Yamamoto M, Mizushima Y, Fujimoto C, Matsumoto Y, Yamasoba T, Okabe S. Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning. Elife 2019;8:e40946. [PMID: 30657453 DOI: 10.7554/eLife.40946] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
219 Gourévitch B, Doisy T, Avillac M, Edeline JM. Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig. Brain Res 2009;1304:66-79. [PMID: 19766602 DOI: 10.1016/j.brainres.2009.09.041] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
220 Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018;357:33-45. [PMID: 29175767 DOI: 10.1016/j.heares.2017.11.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
221 Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One 2012;7:e46355. [PMID: 23029493 DOI: 10.1371/journal.pone.0046355] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
222 Kao SY, Kempfle JS, Jensen JB, Perez-Fernandez D, Lysaght AC, Edge AS, Stankovic KM. Loss of osteoprotegerin expression in the inner ear causes degeneration of the cochlear nerve and sensorineural hearing loss. Neurobiol Dis 2013;56:25-33. [PMID: 23607938 DOI: 10.1016/j.nbd.2013.04.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
223 Candreia C, Martin GK, Stagner BB, Lonsbury-Martin BL. Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice. Hear Res 2004;194:109-17. [PMID: 15276682 DOI: 10.1016/j.heares.2004.04.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
224 Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW, Bance M, Robertson GS, Wang J. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther. 2012;19:255-263. [PMID: 21697953 DOI: 10.1038/gt.2011.91gt201191] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
225 Ohlemiller KK, Rybak Rice ME, Rosen AD, Montgomery SC, Gagnon PM. Protection by low-dose kanamycin against noise-induced hearing loss in mice: dependence on dosing regimen and genetic background. Hear Res 2011;280:141-7. [PMID: 21645602 DOI: 10.1016/j.heares.2011.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
226 Fetoni AR, Lattanzi W, Eramo SL, Barba M, Paciello F, Moriconi C, Rolesi R, Michetti F, Troiani D, Paludetti G. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma. Front Cell Neurosci 2014;8:334. [PMID: 25368551 DOI: 10.3389/fncel.2014.00334] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
227 Kowalski TJ, Pawelczyk M, Rajkowska E, Dudarewicz A, Sliwinska-kowalska M. Genetic Variants of CDH23 Associated With Noise-Induced Hearing Loss. Otology & Neurotology 2014;35:358-65. [DOI: 10.1097/mao.0b013e3182a00332] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 4.1] [Reference Citation Analysis]
228 Ohlemiller KK, Gagnon PM. Cellular correlates of progressive hearing loss in 129S6/SvEv mice. J Comp Neurol 2004;469:377-90. [DOI: 10.1002/cne.11011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 2.2] [Reference Citation Analysis]
229 Longenecker RJ, Galazyuk AV. Variable Effects of Acoustic Trauma on Behavioral and Neural Correlates of Tinnitus In Individual Animals. Front Behav Neurosci 2016;10:207. [PMID: 27826232 DOI: 10.3389/fnbeh.2016.00207] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
230 Shi L, Chang Y, Li X, Aiken SJ, Liu L, Wang J. Coding Deficits in Noise-Induced Hidden Hearing Loss May Stem from Incomplete Repair of Ribbon Synapses in the Cochlea. Front Neurosci 2016;10:231. [PMID: 27252621 DOI: 10.3389/fnins.2016.00231] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
231 Noble KV, Reyzer ML, Barth JL, McDonald H, Tuck M, Schey KL, Krug EL, Lang H. Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 2018;11:243. [PMID: 30065626 DOI: 10.3389/fnmol.2018.00243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
232 Chang MY, Rhee J, Kim SH, Kim YH. The Protective Effect of Egb 761 Against 3-Nitropropionic Acid-Induced Hearing Loss: The Role of Sirtuin 1. Clin Exp Otorhinolaryngol 2018;11:9-16. [PMID: 29032664 DOI: 10.21053/ceo.2017.00626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
233 Gao J, Maison SF, Wu X, Hirose K, Jones SM, Bayazitov I, Tian Y, Mittleman G, Matthews DB, Zakharenko SS, Liberman MC, Zuo J. Orphan glutamate receptor delta1 subunit required for high-frequency hearing. Mol Cell Biol 2007;27:4500-12. [PMID: 17438141 DOI: 10.1128/MCB.02051-06] [Cited by in Crossref: 40] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
234 Tan WJ. Noise-induced cochlear inflammation. WJO 2013;3:89. [DOI: 10.5319/wjo.v3.i3.89] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 6] [Article Influence: 2.9] [Reference Citation Analysis]
235 Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiological Reviews. [DOI: 10.1152/physrev.00035.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
236 Ohlemiller KK, Rosen AD, Rellinger EA, Montgomery SC, Gagnon PM. Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 2011;12:45-58. [PMID: 20922451 DOI: 10.1007/s10162-010-0238-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
237 Harding GW, Bohne BA. Temporary DPOAE level shifts, ABR threshold shifts and histopathological damage following below-critical-level noise exposures. Hearing Research 2004;196:94-108. [DOI: 10.1016/j.heares.2004.03.011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
238 Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. J Acoust Soc Am 2019;146:4020. [PMID: 31795714 DOI: 10.1121/1.5132545] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
239 Reybrouck M, Podlipniak P, Welch D. Music and Noise: Same or Different? What Our Body Tells Us. Front Psychol 2019;10:1153. [PMID: 31293465 DOI: 10.3389/fpsyg.2019.01153] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
240 Masuda M, Nagashima R, Kanzaki S, Fujioka M, Ogita K, Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res. 2006;1068:237-247. [PMID: 16376312 DOI: 10.1016/j.brainres.2005.11.020] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
241 Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci 2015;7:32. [PMID: 25852546 DOI: 10.3389/fnagi.2015.00032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
242 Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramananthasivam V, Tadros SF, Wong AC, Froud KE, Cederholm JM, Sivakumaran Y, Snguanwongchai P, Khakh BS, Cockayne DA, Thorne PR, Ryan AF. ATP-gated ion channels mediate adaptation to elevated sound levels. Proc Natl Acad Sci U S A 2013;110:7494-9. [PMID: 23592720 DOI: 10.1073/pnas.1222295110] [Cited by in Crossref: 68] [Cited by in F6Publishing: 54] [Article Influence: 8.5] [Reference Citation Analysis]
243 Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015;330:26-38. [PMID: 25987503 DOI: 10.1016/j.heares.2015.04.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
244 Luo Y, Qu T, Song Q, Qi Y, Yu S, Gong S, Liu K, Jiang X. Repeated Moderate Sound Exposure Causes Accumulated Trauma to Cochlear Ribbon Synapses in Mice. Neuroscience 2020;429:173-84. [PMID: 31935490 DOI: 10.1016/j.neuroscience.2019.12.049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
245 Hill K, Yuan H, Wang X, Sha SH. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK. J Neurosci 2016;36:7497-510. [PMID: 27413159 DOI: 10.1523/JNEUROSCI.0782-16.2016] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
246 Morgan D, Arteaga A, Bosworth N, Proctor G, Vetter D, Lobarinas E, Spankovich C. Repeated temporary threshold shift and changes in cochlear and neural function. Hearing Research 2019;381:107780. [DOI: 10.1016/j.heares.2019.107780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
247 Mizutari K. Blast-induced hearing loss. J Zhejiang Univ Sci B 2019;20:111-5. [PMID: 29770646 DOI: 10.1631/jzus.B1700051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
248 Chen CH, Huang CY, Chang CY, Cheng YF. Efficacy of Low-Level Laser Therapy for Tinnitus: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Brain Sci 2020;10:E931. [PMID: 33276501 DOI: 10.3390/brainsci10120931] [Reference Citation Analysis]
249 Hirose K, Sato E. Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 2011;272:108-16. [PMID: 21044672 DOI: 10.1016/j.heares.2010.10.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
250 Kaur C, Saini S, Pal I, Kumar P, Chandra Sati H, Jacob TG, Bhardwaj DN, Roy TS. Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 2020;388:107883. [PMID: 31981822 DOI: 10.1016/j.heares.2020.107883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
251 Hirose K, Li SZ, Ohlemiller KK, Ransohoff RM. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. J Assoc Res Otolaryngol 2014;15:555-70. [PMID: 24845404 DOI: 10.1007/s10162-014-0458-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
252 Zilberstein Y, Liberman MC, Corfas G. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 2012;32:405-10. [PMID: 22238076 DOI: 10.1523/JNEUROSCI.4678-11.2012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 58] [Article Influence: 9.1] [Reference Citation Analysis]
253 Gröschel M, Götze R, Ernst A, Basta D. Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. J Neurotrauma 2010;27:1499-507. [PMID: 20504154 DOI: 10.1089/neu.2009.1246] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
254 Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One 2016;11:e0162726. [PMID: 27618300 DOI: 10.1371/journal.pone.0162726] [Cited by in Crossref: 258] [Cited by in F6Publishing: 163] [Article Influence: 51.6] [Reference Citation Analysis]
255 Lahne M, Gale JE. Damage-induced cell-cell communication in different cochlear cell types via two distinct ATP-dependent Ca waves. Purinergic Signal 2010;6:189-200. [PMID: 20806011 DOI: 10.1007/s11302-010-9193-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
256 Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, Salvi R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 2011;75:410-24. [PMID: 21871588 DOI: 10.1016/j.jprot.2011.08.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
257 Murai N, Kirkegaard M, Järlebark L, Risling M, Suneson A, Ulfendahl M. Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma 2008;25:72-7. [PMID: 18355160 DOI: 10.1089/neu.2007.0346] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
258 Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 2013;33:5542-52. [PMID: 23536069 DOI: 10.1523/JNEUROSCI.5027-12.2013] [Cited by in Crossref: 123] [Cited by in F6Publishing: 73] [Article Influence: 15.4] [Reference Citation Analysis]
259 Gao F, Zhang J, Sun X, Chen L. The effect of postnatal exposure to noise on sound level processing by auditory cortex neurons of rats in adulthood. Physiol Behav 2009;97:369-73. [PMID: 19296909 DOI: 10.1016/j.physbeh.2009.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
260 Warchol ME. Characterization of supporting cell phenotype in the avian inner ear: implications for sensory regeneration. Hear Res 2007;227:11-8. [PMID: 17081713 DOI: 10.1016/j.heares.2006.08.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
261 Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. Journal of Neurophysiology 2019;122:1421-60. [DOI: 10.1152/jn.00595.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
262 Yu J, Wang Y, Liu P, Li Q, Sun Y, Kong W. Mitochondrial DNA common deletion increases susceptibility to noise-induced hearing loss in a mimetic aging rat model. Biochem Biophys Res Commun 2014;453:515-20. [PMID: 25285633 DOI: 10.1016/j.bbrc.2014.09.118] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
263 Warchol ME. Interactions between Macrophages and the Sensory Cells of the Inner Ear. Cold Spring Harb Perspect Med 2019;9:a033555. [PMID: 30181352 DOI: 10.1101/cshperspect.a033555] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
264 Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015;330:191-9. [PMID: 25769437 DOI: 10.1016/j.heares.2015.02.009] [Cited by in Crossref: 356] [Cited by in F6Publishing: 241] [Article Influence: 59.3] [Reference Citation Analysis]
265 Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 2007;232:29-43. [PMID: 17659854 DOI: 10.1016/j.heares.2007.06.007] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
266 Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115-124. [PMID: 17081714 DOI: 10.1016/j.heares.2006.09.004] [Cited by in Crossref: 101] [Cited by in F6Publishing: 85] [Article Influence: 6.7] [Reference Citation Analysis]
267 Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. International Journal of Audiology 2019;58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
268 Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 2015;35:7878-91. [PMID: 25995473 DOI: 10.1523/JNEUROSCI.2179-14.2015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
269 Bohne BA, Kimlinger M, Harding GW. Time course of organ of Corti degeneration after noise exposure. Hearing Research 2017;344:158-69. [DOI: 10.1016/j.heares.2016.11.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
270 Sullivan JM, Cohen MA, Pandit SR, Sahota RS, Borecki AA, Oleskevich S. Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiol Dis 2011;41:552-9. [PMID: 21059389 DOI: 10.1016/j.nbd.2010.11.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
271 T. Cockrell W, Balanay JAG, Dawkins W. Engineering Control of Noise From 4-Roll Calender Operations in Tire Manufacturing. Journal of Occupational and Environmental Hygiene 2015;12:D193-200. [DOI: 10.1080/15459624.2015.1043053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
272 Sato E, Shick HE, Ransohoff RM, Hirose K. Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol. 2008;506:930-942. [PMID: 18085589 DOI: 10.1002/cne.21583] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
273 Viberg A, Canlon B. The guide to plotting a cochleogram. Hearing Research 2004;197:1-10. [DOI: 10.1016/j.heares.2004.04.016] [Cited by in Crossref: 141] [Cited by in F6Publishing: 114] [Article Influence: 8.3] [Reference Citation Analysis]
274 Coleman JK, Littlesunday C, Jackson R, Meyer T. AM-111 protects against permanent hearing loss from impulse noise trauma. Hearing Research 2007;226:70-8. [DOI: 10.1016/j.heares.2006.05.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
275 Xia A, Song Y, Wang R, Gao SS, Clifton W, Raphael P, Chao SI, Pereira FA, Groves AK, Oghalai JS. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One 2013;8:e82602. [PMID: 24376553 DOI: 10.1371/journal.pone.0082602] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
276 Zhou XX, Chen S, Xie L, Ji YZ, Wu X, Wang WW, Yang Q, Yu JT, Sun Y, Lin X, Kong WJ. Reduced Connexin26 in the Mature Cochlea Increases Susceptibility to Noise-Induced Hearing Lossin Mice. Int J Mol Sci 2016;17:301. [PMID: 26927086 DOI: 10.3390/ijms17030301] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
277 Fridberger A, Widengren J, Boutet de Monvel J. Measuring hearing organ vibration patterns with confocal microscopy and optical flow. Biophys J 2004;86:535-43. [PMID: 14695298 DOI: 10.1016/S0006-3495(04)74132-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
278 Mackey CA, McCrate J, MacDonald KS, Feller J, Liberman L, Liberman MC, Hackett TA, Ramachandran R. Correlations between cochlear pathophysiology and behavioral measures of temporal and spatial processing in noise exposed macaques. Hear Res 2021;401:108156. [PMID: 33373804 DOI: 10.1016/j.heares.2020.108156] [Reference Citation Analysis]
279 Bureš Z, Popelář J, Syka J. The effect of noise exposure during the developmental period on the function of the auditory system. Hearing Research 2017;352:1-11. [DOI: 10.1016/j.heares.2016.03.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]