BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575-583. [PMID: 16429448 DOI: 10.1002/jnr.20764] [Cited by in Crossref: 193] [Cited by in F6Publishing: 170] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res. 2008;245:5-17. [PMID: 18790034 DOI: 10.1016/j.heares.2008.08.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 4.5] [Reference Citation Analysis]
2 Du X, Choi CH, Chen K, Cheng W, Floyd RA, Kopke RD. Reduced formation of oxidative stress biomarkers and migration of mononuclear phagocytes in the cochleae of chinchilla after antioxidant treatment in acute acoustic trauma. Int J Otolaryngol. 2011;2011:612690. [PMID: 21961007 DOI: 10.1155/2011/612690] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
3 Oishi T, Matsumaru D, Ota N, Kitamura H, Zhang T, Honkura Y, Katori Y, Motohashi H. Activation of the NRF2 pathway in Keap1-knockdown mice attenuates progression of age-related hearing loss. NPJ Aging Mech Dis 2020;6:14. [PMID: 33318486 DOI: 10.1038/s41514-020-00053-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Arpornchayanon W, Canis M, Suckfuell M, Ihler F, Olzowy B, Strieth S. Modeling the measurements of cochlear microcirculation and hearing function after loud noise. Otolaryngol Head Neck Surg 2011;145:463-9. [PMID: 21636842 DOI: 10.1177/0194599811407829] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
5 Uchida Y, Sugiura S, Ueda H, Nakashima T, Ando F, Shimokata H. The association between hearing impairment and polymorphisms of genes encoding inflammatory mediators in Japanese aged population. Immun Ageing 2014;11:18. [PMID: 25469152 DOI: 10.1186/s12979-014-0018-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
6 Xu K, Chen S, Xie L, Qiu Y, Bai X, Liu XZ, Zhang HM, Wang XH, Jin Y, Sun Y, Kong WJ. Local Macrophage-Related Immune Response Is Involved in Cochlear Epithelial Damage in Distinct Gjb2-Related Hereditary Deafness Models. Front Cell Dev Biol 2020;8:597769. [PMID: 33505961 DOI: 10.3389/fcell.2020.597769] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015;303:1-15. [PMID: 26102003 DOI: 10.1016/j.neuroscience.2015.05.081] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 7.7] [Reference Citation Analysis]
8 Sendowski I, Abaamrane L, Raffin F, Cros A, Clarençon D. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs. Hear Res 2006;221:119-27. [PMID: 17008037 DOI: 10.1016/j.heares.2006.08.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 2.7] [Reference Citation Analysis]
9 Waqas M, Gao S, Iram-Us-Salam, Ali MK, Ma Y, Li W. Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage. Neural Plast 2018;2018:3170801. [PMID: 30123244 DOI: 10.1155/2018/3170801] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
10 Braga MP, Maciel SM, Marchiori LLDM, Poli-frederico RC. Association between interleukin-6 polymorphism in the −174 G/C region and hearing loss in the elderly with a history of occupational noise exposure. Brazilian Journal of Otorhinolaryngology 2014;80:373-8. [DOI: 10.1016/j.bjorl.2014.07.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
11 Hwang JH, Chen JC, Yang SY, Wang MF, Chan YC. Expression of tumor necrosis factor-α and interleukin-1β genes in the cochlea and inferior colliculus in salicylate-induced tinnitus. J Neuroinflammation 2011;8:30. [PMID: 21477330 DOI: 10.1186/1742-2094-8-30] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
12 Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y, Qiao Y, Liu H. ROS-Responsive Nanoparticle as a Berberine Carrier for OHC-Targeted Therapy of Noise-Induced Hearing Loss. ACS Appl Mater Interfaces 2021;13:7102-14. [PMID: 33528239 DOI: 10.1021/acsami.0c21151] [Reference Citation Analysis]
13 Park J, Kim S, Park K, Choung Y, Jou I, Park S. Pravastatin attenuates noise-induced cochlear injury in mice. Neuroscience 2012;208:123-32. [DOI: 10.1016/j.neuroscience.2012.02.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
14 Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 2017;11:192. [PMID: 28736517 DOI: 10.3389/fncel.2017.00192] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
15 Parker MA, Jiang K, Kempfle JS, Mizutari K, Simmons CL, Bieber R, Adams J, Edge AS. TAK1 expression in the cochlea: a specific marker for adult supporting cells. J Assoc Res Otolaryngol 2011;12:471-83. [PMID: 21472480 DOI: 10.1007/s10162-011-0265-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
16 Mateer EJ, Huang C, Shehu NY, Paessler S. Lassa fever-induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl Trop Dis 2018;12:e0006187. [PMID: 29470486 DOI: 10.1371/journal.pntd.0006187] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 14.0] [Reference Citation Analysis]
17 Landegger LD, Vasilijic S, Fujita T, Soares VY, Seist R, Xu L, Stankovic KM. Cytokine Levels in Inner Ear Fluid of Young and Aged Mice as Molecular Biomarkers of Noise-Induced Hearing Loss. Front Neurol 2019;10:977. [PMID: 31632328 DOI: 10.3389/fneur.2019.00977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
18 Wood MB, Zuo J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front Cell Neurosci 2017;11:106. [PMID: 28446866 DOI: 10.3389/fncel.2017.00106] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
19 Shi X. Cochlear Vascular Pathology and Hearing Loss. In: Ramkumar V, Rybak LP, editors. Inflammatory Mechanisms in Mediating Hearing Loss. Cham: Springer International Publishing; 2018. pp. 61-90. [DOI: 10.1007/978-3-319-92507-3_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020;10:15167. [PMID: 32938973 DOI: 10.1038/s41598-020-72181-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ulu S, Ulu MS, Bucak A, Ahsen A, Yucedag F, Aycicek A. Neutrophil-to-Lymphocyte Ratio as a New, Quick, and Reliable Indicator for Predicting Diagnosis and Prognosis of Idiopathic Sudden Sensorineural Hearing Loss. Otology & Neurotology 2013;34:1400-4. [DOI: 10.1097/mao.0b013e31829b57df] [Cited by in Crossref: 36] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
22 Lowthian JA, Britt CJ, Rance G, Lin FR, Woods RL, Wolfe R, Nelson MR, Dillon HA, Ward S, Reid CM, Lockery JE, Nguyen TT, McNeil JJ, Storey E; ASPREE Investigators. Slowing the progression of age-related hearing loss: Rationale and study design of the ASPIRIN in HEARING, retinal vessels imaging and neurocognition in older generations (ASPREE-HEARING) trial. Contemp Clin Trials 2016;46:60-6. [PMID: 26611434 DOI: 10.1016/j.cct.2015.11.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
23 Jia H, Wang J, François F, Uziel A, Puel JL, Venail F. Molecular and cellular mechanisms of loss of residual hearing after cochlear implantation. Ann Otol Rhinol Laryngol 2013;122:33-9. [PMID: 23472314 DOI: 10.1177/000348941312200107] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
24 Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020;15:1457-71. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
25 Kao SY, Soares VY, Kristiansen AG, Stankovic KM. Activation of TRAIL-DR5 pathway promotes sensorineural degeneration in the inner ear. Aging Cell 2016;15:301-8. [PMID: 26791792 DOI: 10.1111/acel.12437] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
26 Frye MD, Yang W, Zhang C, Xiong B, Hu BH. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 2017;344:125-34. [PMID: 27837652 DOI: 10.1016/j.heares.2016.11.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
27 Ríos JD, Hughes CK, Lally J, Wienandt N, Esquivel C, Serhan CN, Weitzel EK. Neuroprotectin D1 Attenuates Blast Overpressure Induced Reactive Microglial Cells in the Cochlea. Laryngoscope 2021;131:E2018-25. [PMID: 33427310 DOI: 10.1002/lary.29337] [Reference Citation Analysis]
28 Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019;135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 21.5] [Reference Citation Analysis]
29 Kim SH, Park HY, Choi HS, Chung HP, Choi JY. Functional and molecular expression of epithelial sodium channels in cultured human endolymphatic sac epithelial cells. Otol Neurotol 2009;30:529-34. [PMID: 19300301 DOI: 10.1097/MAO.0b013e31819a8e0e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
30 Zheng HW, Chen J, Sha SH. Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Cell Death Dis 2014;5:e1262. [PMID: 24874734 DOI: 10.1038/cddis.2014.177] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
31 Jung J, Yoo JE, Choe YH, Park SC, Lee HJ, Lee HJ, Noh B, Kim SH, Kang G, Lee K, Yoon SS, Jang DS, Yoon J, Hyun Y, Choi JY. Cleaved Cochlin Sequesters Pseudomonas aeruginosa and Activates Innate Immunity in the Inner Ear. Cell Host & Microbe 2019;25:513-525.e6. [DOI: 10.1016/j.chom.2019.02.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
32 Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, Masuda M, Mihara M, Ohsugi Y, Ogawa K. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66:345-352. [PMID: 20026135 DOI: 10.1016/j.neures.2009.12.008] [Cited by in Crossref: 94] [Cited by in F6Publishing: 78] [Article Influence: 7.8] [Reference Citation Analysis]
33 Dinh CT, Bas E, Chan SS, Dinh JN, Vu L, Van De Water TR. Dexamethasone treatment of tumor necrosis factor-alpha challenged organ of Corti explants activates nuclear factor kappa B signaling that induces changes in gene expression that favor hair cell survival. Neuroscience 2011;188:157-67. [PMID: 21571041 DOI: 10.1016/j.neuroscience.2011.04.061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
34 Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA. Pre‐conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. J Biophoton 2016;9:1125-35. [DOI: 10.1002/jbio.201500209] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
35 Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med 2019;11:eaao0935. [PMID: 30842313 DOI: 10.1126/scitranslmed.aao0935] [Cited by in Crossref: 58] [Cited by in F6Publishing: 40] [Article Influence: 58.0] [Reference Citation Analysis]
36 Haider HF, Ribeiro SF, Martins C, Ribeiro D, Trigueiros N, Szczepek AJ, Caria H, Hoare DJ, Paço J, Borrego LM. Tinnitus, hearing loss and inflammatory processes in an older Portuguese population. Int J Audiol 2020;59:323-32. [PMID: 31829778 DOI: 10.1080/14992027.2019.1698775] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
37 Sun S, Yu H, Yu H, Honglin M, Ni W, Zhang Y, Guo L, He Y, Xue Z, Ni Y, Li J, Feng Y, Chen Y, Shao R, Chai R, Li H. Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity. Mol Neurobiol 2015;51:252-67. [PMID: 24781382 DOI: 10.1007/s12035-014-8712-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
38 Paciello F, Di Pino A, Rolesi R, Troiani D, Paludetti G, Grassi C, Fetoni AR. Anti-oxidant and anti-inflammatory effects of caffeic acid: in vivo evidences in a model of noise-induced hearing loss. Food Chem Toxicol 2020;143:111555. [PMID: 32640333 DOI: 10.1016/j.fct.2020.111555] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
39 He W, Yu J, Sun Y, Kong W. Macrophages in Noise-Exposed Cochlea: Changes, Regulation and the Potential Role. Aging Dis 2020;11:191-9. [PMID: 32010492 DOI: 10.14336/AD.2019.0723] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
40 Soares M, Santos ABD, Weich TM, Mânica GG, Homem de Bittencourt PI, Ludwig MS, Heck TG. Heat shock response in noise-induced hearing loss: effects of alanyl-glutamine dipeptide supplementation on heat shock proteins status. Brazilian Journal of Otorhinolaryngology 2020;86:703-10. [DOI: 10.1016/j.bjorl.2019.04.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Fransson AE, Videhult Pierre P, Risling M, Laurell GFE. Inhalation of Molecular Hydrogen, a Rescue Treatment for Noise-Induced Hearing Loss. Front Cell Neurosci 2021;15:658662. [PMID: 34140880 DOI: 10.3389/fncel.2021.658662] [Reference Citation Analysis]
42 Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2020;185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
43 Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear Res 2019;377:53-60. [PMID: 30908966 DOI: 10.1016/j.heares.2019.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021;14:678510. [PMID: 34079440 DOI: 10.3389/fnmol.2021.678510] [Reference Citation Analysis]
45 Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci 2015;7:32. [PMID: 25852546 DOI: 10.3389/fnagi.2015.00032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
46 Li M, Zhang Y, Qiu S, Zhuang W, Jiang W, Wang C, Zhang S, Zhou Z, Sun T, Ke Z, Guo W, Qiao Y, Shi X. Oridonin ameliorates noise-induced hearing loss by blocking NLRP3 - NEK7 mediated inflammasome activation. Int Immunopharmacol 2021;95:107576. [PMID: 33770730 DOI: 10.1016/j.intimp.2021.107576] [Reference Citation Analysis]
47 Huang M, Kantardzhieva A, Scheffer D, Liberman MC, Chen ZY. Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J Neurosci 2013;33:15086-94. [PMID: 24048839 DOI: 10.1523/JNEUROSCI.1489-13.2013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
48 Li S, Zheng H, Xing Z, Liu Y, Han L, Wang Z, Yu L. The circadian timing of noise exposure influences noise-induced inflammatory responses in the mouse cochlea. Braz J Otorhinolaryngol 2021:S1808-8694(21)00106-3. [PMID: 34217678 DOI: 10.1016/j.bjorl.2021.05.010] [Reference Citation Analysis]
49 Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A, Guo W, Hu BH. Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 2018;365:110-26. [PMID: 29804721 DOI: 10.1016/j.heares.2018.05.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
50 Hu B. Noise-Induced Structural Damage to the Cochlea. In: Le Prell CG, Henderson D, Fay RR, Popper AN, editors. Noise-Induced Hearing Loss. New York: Springer; 2012. pp. 57-86. [DOI: 10.1007/978-1-4419-9523-0_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
51 Dinh C, Hoang K, Haake S, Chen S, Angeli S, Nong E, Eshraghi AA, Balkany TJ, Van De Water TR. Biopolymer-released dexamethasone prevents tumor necrosis factor alpha-induced loss of auditory hair cells in vitro: implications toward the development of a drug-eluting cochlear implant electrode array. Otol Neurotol 2008;29:1012-9. [PMID: 18818545 DOI: 10.1097/MAO.0b013e3181859a1f] [Cited by in Crossref: 34] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
52 Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Blanco JL, Juiz JM. Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 2014;6:29. [PMID: 24634657 DOI: 10.3389/fnagi.2014.00029] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
53 Kim HJ, Cao W, Oh GS, Lee S, Shen A, Khadka D, Lee SB, Sharma S, Kim SY, Choe SK, Kwak TH, Kim JM, Park R, So HS. Augmentation of cellular NAD+ by NQO1 enzymatic action improves age-related hearing impairment. Aging Cell 2019;18:e13016. [PMID: 31353811 DOI: 10.1111/acel.13016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
54 Hosoya M, Fujioka M, Matsuda S, Ohba H, Shibata S, Nakagawa F, Watabe T, Wakabayashi K, Saga Y, Ogawa K, Okano HJ, Okano H. Expression and function of Sox21 during mouse cochlea development. Neurochem Res 2011;36:1261-9. [PMID: 21287267 DOI: 10.1007/s11064-011-0416-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
55 Wood MB, Nowak N, Mull K, Goldring A, Lehar M, Fuchs PA. Acoustic Trauma Increases Ribbon Number and Size in Outer Hair Cells of the Mouse Cochlea. J Assoc Res Otolaryngol 2021;22:19-31. [PMID: 33151428 DOI: 10.1007/s10162-020-00777-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Maeda Y, Kariya S, Uraguchi K, Takahara J, Fujimoto S, Sugaya A, Nishizaki K. Immediate changes in transcription factors and synaptic transmission in the cochlea following acoustic trauma: A gene transcriptome study. Neurosci Res 2021;165:6-13. [PMID: 32417196 DOI: 10.1016/j.neures.2020.05.001] [Reference Citation Analysis]
57 Ladrech S, Wang J, Simonneau L, Puel JL, Lenoir M. Macrophage contribution to the response of the rat organ of Corti to amikacin. J Neurosci Res. 2007;85:1970-1979. [PMID: 17497672 DOI: 10.1002/jnr.21335] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 3.2] [Reference Citation Analysis]
58 Sheth S, Mukherjea D, Rybak LP, Ramkumar V. The Contribution of Anti-oxidant and Anti-inflammatory Functions of Adenosine A1 Receptor in Mediating Otoprotection. In: Ramkumar V, Rybak LP, editors. Inflammatory Mechanisms in Mediating Hearing Loss. Cham: Springer International Publishing; 2018. pp. 149-64. [DOI: 10.1007/978-3-319-92507-3_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Alvarado JC, Fuentes-Santamaría V, Jareño-Flores T, Blanco JL, Juiz JM. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: a study in Wistar rats. Neurosci Res 2012;73:302-11. [PMID: 22595234 DOI: 10.1016/j.neures.2012.05.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
60 Nishiyama T, Fujioka M, Saegusa C, Oishi N, Harada T, Hosoya M, Saya H, Ogawa K. Deficiency of large tumor suppressor kinase 1 causes congenital hearing loss associated with cochlear abnormalities in mice. Biochem Biophys Res Commun 2021;534:921-6. [PMID: 33162027 DOI: 10.1016/j.bbrc.2020.10.073] [Reference Citation Analysis]
61 Eshraghi AA, Adil E, He J, Graves R, Balkany TJ, Van De Water TR. Local Dexamethasone Therapy Conserves Hearing in an Animal Model of Electrode Insertion Trauma-Induced Hearing Loss. Otology & Neurotology 2007;28:842-9. [DOI: 10.1097/mao.0b013e31805778fc] [Cited by in Crossref: 92] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
62 Pak JH, Kim Y, Yi J, Chung JW. Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel) 2020;9:E1076. [PMID: 33147893 DOI: 10.3390/antiox9111076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
63 Dinh C, Bas E, Dinh J, Vu L, Gupta C, Van De Water TR. Short interfering RNA against Bax attenuates TNFα-induced ototoxicity in rat organ of Corti explants. Otolaryngol Head Neck Surg 2013;148:834-40. [PMID: 23401256 DOI: 10.1177/0194599813477631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
64 Wang W, Zhang LS, Zinsmaier AK, Patterson G, Leptich EJ, Shoemaker SL, Yatskievych TA, Gibboni R, Pace E, Luo H, Zhang J, Yang S, Bao S. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 2019;17:e3000307. [PMID: 31211773 DOI: 10.1371/journal.pbio.3000307] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 16.0] [Reference Citation Analysis]
65 Park HY, Lee MH, Kang SU, Hwang HS, Park K, Choung YH, Kim CH. Nitric oxide mediates TNF-α-induced apoptosis in the auditory cell line. Laryngoscope 2012;122:2256-64. [PMID: 22815072 DOI: 10.1002/lary.23444] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
66 Tan WJ. Noise-induced cochlear inflammation. WJO 2013;3:89. [DOI: 10.5319/wjo.v3.i3.89] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 6] [Article Influence: 2.9] [Reference Citation Analysis]
67 Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. J Acoust Soc Am 2019;146:4020. [PMID: 31795714 DOI: 10.1121/1.5132545] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
68 Maeda Y, Kariya S, Omichi R, Noda Y, Sugaya A, Fujimoto S, Nishizaki K. Targeted PCR Array Analysis of Genes in Innate Immunity and Glucocorticoid Signaling Pathways in Mice Cochleae Following Acoustic Trauma. Otology & Neurotology 2018;39:e593-600. [DOI: 10.1097/mao.0000000000001874] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
69 Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res. 2018;362:14-24. [PMID: 29310977 DOI: 10.1016/j.heares.2017.12.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
70 Bas E, Dinh CT, Garnham C, Polak M, Van de Water TR. Conservation of hearing and protection of hair cells in cochlear implant patients' with residual hearing. Anat Rec 2012;295:1909-27. [DOI: 10.1002/ar.22574] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
71 Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? J Ethnopharmacol 2019;231:409-28. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
72 Jung JH, Kim M, Lee SJ, Lee E, Lee SA, Lee JD, Choi JH, Kim BG. Effect of sleep deprivation on hearing levels in rats. Int J Pediatr Otorhinolaryngol 2018;112:169-75. [PMID: 30055728 DOI: 10.1016/j.ijporl.2018.07.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
73 Liu Z, Bai X, Wan P, Mo F, Chen G, Zhang J, Gao J. Targeted Deletion of Loxl3 by Col2a1-Cre Leads to Progressive Hearing Loss. Front Cell Dev Biol 2021;9:683495. [PMID: 34150778 DOI: 10.3389/fcell.2021.683495] [Reference Citation Analysis]
74 Trune DR. Ion homeostasis in the ear: mechanisms, maladies, and management. Curr Opin Otolaryngol Head Neck Surg 2010;18:413-9. [PMID: 20693900 DOI: 10.1097/MOO.0b013e32833d9597] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
75 Ghezzi P, Floridi L, Boraschi D, Cuadrado A, Manda G, Levic S, D'Acquisto F, Hamilton A, Athersuch TJ, Selley L. Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. Antioxid Redox Signal 2018;28:852-72. [PMID: 28494612 DOI: 10.1089/ars.2017.7147] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
76 Haake SM, Dinh CT, Chen S, Eshraghi AA, Van De Water TR. Dexamethasone protects auditory hair cells against TNFα-initiated apoptosis via activation of PI3K/Akt and NFκB signaling. Hearing Research 2009;255:22-32. [DOI: 10.1016/j.heares.2009.05.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 6.3] [Reference Citation Analysis]
77 Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope. 2008;118:1801-1808. [PMID: 18806477 DOI: 10.1097/mlg.0b013e31817e2c27] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
78 Wu Q, Wang GP, Xie J, Guo JY, Gong SS. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture. PLoS One 2015;10:e0127703. [PMID: 26000970 DOI: 10.1371/journal.pone.0127703] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
79 Fuentes-Santamaría V, Alvarado JC, Juiz JM. Long-term interaction between microglial cells and cochlear nucleus neurons after bilateral cochlear ablation. J Comp Neurol 2012;520:2974-90. [PMID: 22351306 DOI: 10.1002/cne.23088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
80 Kim HJ, Oh GS, Choe SK, Kwak TH, Park R, So HS. NAD(+) Metabolism in Age-Related Hearing Loss. Aging Dis 2014;5:150-9. [PMID: 24729940 DOI: 10.14336/AD.2014.0500150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
81 Vlajkovic SM, Housley GD, Thorne PR. Adenosine and the auditory system. Curr Neuropharmacol. 2009;7:246-256. [PMID: 20190966 DOI: 10.2174/157015909789152155] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
82 Ahmadi N, Brewer CC, Zalewski C, King KA, Butman JA, Plass N, Henderson C, Goldbach-Mansky R, Kim HJ. Cryopyrin-associated periodic syndromes: otolaryngologic and audiologic manifestations. Otolaryngol Head Neck Surg 2011;145:295-302. [PMID: 21493283 DOI: 10.1177/0194599811402296] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
83 Kanzaki S, Sakagami M, Hosoi H, Murakami S, Ogawa K. High fibrinogen in peripheral blood correlates with poorer hearing recovery in idiopathic sudden sensorineural hearing loss. PLoS One 2014;9:e104680. [PMID: 25166620 DOI: 10.1371/journal.pone.0104680] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
84 Kil SH, Kalinec F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in guinea pig cochlear cells. Hear Res 2013;299:63-78. [PMID: 23403298 DOI: 10.1016/j.heares.2013.01.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
85 Lin X, Shan X, Lin S, Shu B, Wang Y, Xiao W. Is Sensorineural Hearing Loss Related to Chronic Rhinosinusitis Caused by Outer Hair Cell Injury? Med Sci Monit 2019;25:627-36. [PMID: 30666045 DOI: 10.12659/MSM.912382] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Kil J, Pierce C, Tran H, Gu R, Lynch ED. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res. 2007;226:44-51. [PMID: 17030476 DOI: 10.1016/j.heares.2006.08.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 4.9] [Reference Citation Analysis]
87 Keithley EM. Cochlear Inflammation Associated with Noise-Exposure. In: Ramkumar V, Rybak LP, editors. Inflammatory Mechanisms in Mediating Hearing Loss. Cham: Springer International Publishing; 2018. pp. 91-114. [DOI: 10.1007/978-3-319-92507-3_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Frye MD, Zhang C, Hu BH. Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J Neuroimmunol 2018;323:152-66. [PMID: 30196827 DOI: 10.1016/j.jneuroim.2018.06.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
89 Vethanayagam RR, Yang W, Dong Y, Hu BH. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis 2016;7:e2245. [PMID: 27253409 DOI: 10.1038/cddis.2016.156] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
90 Meng X, Gu Z, Xie X, Su Y, Zhang X, Ma H, Guo Y, Liu X, Cheng Y, Chang Y, Bao J. Acid sphingomyelinase mediates the noise-induced liver disorder in mice. Clin Exp Pharmacol Physiol 2019;46:556-66. [PMID: 30854677 DOI: 10.1111/1440-1681.13083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Dhukhwa A, Bhatta P, Sheth S, Korrapati K, Tieu C, Mamillapalli C, Ramkumar V, Mukherjea D. Targeting Inflammatory Processes Mediated by TRPVI and TNF-α for Treating Noise-Induced Hearing Loss. Front Cell Neurosci 2019;13:444. [PMID: 31632242 DOI: 10.3389/fncel.2019.00444] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
92 Nakagawa T. Roles of prostaglandin E2 in the cochlea. Hear Res 2011;276:27-33. [PMID: 21295127 DOI: 10.1016/j.heares.2011.01.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
93 Patel M, Hu Z, Bard J, Jamison J, Cai Q, Hu BH. Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae. Neuroscience 2013;248:1-16. [PMID: 23727008 DOI: 10.1016/j.neuroscience.2013.05.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
94 Tan WJ, Thorne PR, Vlajkovic SM. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 2016;146:219-30. [PMID: 27109494 DOI: 10.1007/s00418-016-1436-5] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 12.4] [Reference Citation Analysis]
95 Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115-124. [PMID: 17081714 DOI: 10.1016/j.heares.2006.09.004] [Cited by in Crossref: 101] [Cited by in F6Publishing: 91] [Article Influence: 6.7] [Reference Citation Analysis]
96 Pathak S, Goldofsky E, Vivas EX, Bonagura VR, Vambutas A. IL-1β is overexpressed and aberrantly regulated in corticosteroid nonresponders with autoimmune inner ear disease. J Immunol 2011;186:1870-9. [PMID: 21199898 DOI: 10.4049/jimmunol.1002275] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 5.5] [Reference Citation Analysis]
97 Solé M, Lenoir M, Durfort M, López-bejar M, Lombarte A, van der Schaar M, André M. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep Sea Research Part II: Topical Studies in Oceanography 2013;95:160-81. [DOI: 10.1016/j.dsr2.2012.10.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 3.1] [Reference Citation Analysis]
98 Vambutas A, DeVoti J, Goldofsky E, Gordon M, Lesser M, Bonagura V. Alternate splicing of interleukin-1 receptor type II (IL1R2) in vitro correlates with clinical glucocorticoid responsiveness in patients with AIED. PLoS One 2009;4:e5293. [PMID: 19401759 DOI: 10.1371/journal.pone.0005293] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
99 Gupta S, Curhan SG, Cruickshanks KJ, Klein BEK, Klein R, Curhan GC. Chronic kidney disease and the risk of incident hearing loss. Laryngoscope 2020;130:E213-9. [PMID: 31135964 DOI: 10.1002/lary.28088] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
100 Pathak S, Hatam LJ, Bonagura V, Vambutas A. Innate immune recognition of molds and homology to the inner ear protein, cochlin, in patients with autoimmune inner ear disease. J Clin Immunol 2013;33:1204-15. [PMID: 23912888 DOI: 10.1007/s10875-013-9926-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
101 Fuentes-Santamaría V, Alvarado JC, Gabaldón-Ull MC, Manuel Juiz J. Upregulation of insulin-like growth factor and interleukin 1β occurs in neurons but not in glial cells in the cochlear nucleus following cochlear ablation. J Comp Neurol 2013;521:3478-99. [PMID: 23681983 DOI: 10.1002/cne.23362] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
102 Ji L, Lee HJ, Wan G, Wang GP, Zhang L, Sajjakulnukit P, Schacht J, Lyssiotis CA, Corfas G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci Rep 2019;9:9273. [PMID: 31239523 DOI: 10.1038/s41598-019-45385-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Masuda M. Cause of idiopathic sudden sensorineural hearing loss: The stress response theory. WJO 2013;3:42. [DOI: 10.5319/wjo.v3.i3.42] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
104 Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 2014;5:287. [PMID: 25566079 DOI: 10.3389/fphar.2014.00287] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 8.7] [Reference Citation Analysis]
105 Watson N, Ding B, Zhu X, Frisina RD. Chronic inflammation - inflammaging - in the ageing cochlea: A novel target for future presbycusis therapy. Ageing Res Rev 2017;40:142-8. [PMID: 29017893 DOI: 10.1016/j.arr.2017.10.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
106 Sindura KP, Banerjee M. An Immunological Perspective to Non-syndromic Sensorineural Hearing Loss. Front Immunol 2019;10:2848. [PMID: 31921123 DOI: 10.3389/fimmu.2019.02848] [Reference Citation Analysis]
107 Sziklai I, Batta TJ, Karosi T. Otosclerosis: an organ-specific inflammatory disease with sensorineural hearing loss. Eur Arch Otorhinolaryngol 2009;266:1711-8. [PMID: 19340443 DOI: 10.1007/s00405-009-0967-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
108 Ladrech S, Mathieu M, Puel J, Lenoir M. Supporting cells regulate the remodelling of aminoglycoside-injured organ of Corti, through the release of high mobility group box 1. Eur J Neurosci 2013. [DOI: 10.1111/ejn.12290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 0.3] [Reference Citation Analysis]
109 Hiramatsu M, Teranishi M, Uchida Y, Nishio N, Suzuki H, Kato K, Otake H, Yoshida T, Tagaya M, Suzuki H. Polymorphisms in genes involved in inflammatory pathways in patients with sudden sensorineural hearing loss. J Neurogenet. 2012;26:387-396. [PMID: 22385075 DOI: 10.3109/01677063.2011.652266] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
110 Nam S. Interleukin-1?? Up-Regulates Inducible Nitric Oxide by Way of Phosphoinositide 3-Kinase-Dependent in a Cochlear Cell Model: . The Laryngoscope 2006;116:2166-70. [DOI: 10.1097/01.mlg.0000243202.92548.fa] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
111 Oishi N, Chen J, Zheng HW, Hill K, Schacht J, Sha SH. Tumor necrosis factor-alpha-mutant mice exhibit high frequency hearing loss. J Assoc Res Otolaryngol 2013;14:801-11. [PMID: 23996384 DOI: 10.1007/s10162-013-0410-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
112 Sun Y, Yu J, Lin X, Tang W. Inhibition of cyclooxygenase-2 by NS398 attenuates noise-induced hearing loss in mice. Sci Rep 2016;6:22573. [PMID: 26934825 DOI: 10.1038/srep22573] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
113 Zhang G, Zheng H, Pyykko I, Zou J. The TLR-4/NF-κB signaling pathway activation in cochlear inflammation of rats with noise-induced hearing loss. Hearing Research 2019;379:59-68. [DOI: 10.1016/j.heares.2019.04.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
114 Fujioka M, Okamoto Y, Shinden S, Okano HJ, Okano H, Ogawa K, Matsunaga T. Pharmacological inhibition of cochlear mitochondrial respiratory chain induces secondary inflammation in the lateral wall: a potential therapeutic target for sensorineural hearing loss. PLoS One 2014;9:e90089. [PMID: 24614528 DOI: 10.1371/journal.pone.0090089] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
115 Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R. Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 2009;161:915-25. [PMID: 19348871 DOI: 10.1016/j.neuroscience.2009.03.072] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
116 Fuentes-Santamaría V, Alvarado JC, Melgar-Rojas P, Gabaldón-Ull MC, Miller JM, Juiz JM. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss. Front Neuroanat 2017;11:9. [PMID: 28280462 DOI: 10.3389/fnana.2017.00009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 10.5] [Reference Citation Analysis]
117 Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong AC. Cellular mechanisms of noise-induced hearing loss. Hear Res 2017;349:129-37. [PMID: 27916698 DOI: 10.1016/j.heares.2016.11.013] [Cited by in Crossref: 98] [Cited by in F6Publishing: 72] [Article Influence: 19.6] [Reference Citation Analysis]
118 Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019;20:E2979. [PMID: 31216722 DOI: 10.3390/ijms20122979] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
119 Tseng CC, Hu LY, Liu ME, Yang AC, Shen CC, Tsai SJ. Risk of depressive disorders following sudden sensorineural hearing loss: A nationwide population-based retrospective cohort study. J Affect Disord 2016;197:94-9. [PMID: 26985740 DOI: 10.1016/j.jad.2016.03.020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
120 Dinh C, Haake S, Chen S, Hoang K, Nong E, Eshraghi A, Balkany T, Van De Water T. Dexamethasone protects organ of corti explants against tumor necrosis factor-alpha–induced loss of auditory hair cells and alters the expression levels of apoptosis-related genes. Neuroscience 2008;157:405-13. [DOI: 10.1016/j.neuroscience.2008.09.012] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
121 Jo MH, Kim CJ, Koh SH, Nam GS, Jeong HM, Lee JH, Lee SH. Expression and Distribution of Tumor Necrosis Factor-Alpha in Mice Cochlea Exposed to Noise. Korean J Otorhinolaryngol-Head Neck Surg 2010;53:527. [DOI: 10.3342/kjorl-hns.2010.53.9.527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
122 Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J Neurosci 2016;36:3962-77. [PMID: 27053204 DOI: 10.1523/JNEUROSCI.3111-15.2016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
123 Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S. TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol 2013;52:545-52. [PMID: 23786392 DOI: 10.3109/14992027.2013.790564] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 4.4] [Reference Citation Analysis]
124 Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A. Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 2015;9:96. [PMID: 25873860 DOI: 10.3389/fncel.2015.00096] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
125 Gupta S, Curhan SG, Curhan GC. Biomarkers of Systemic Inflammation and Risk of Incident Hearing Loss. Ear Hear 2019;40:981-9. [PMID: 30399011 DOI: 10.1097/AUD.0000000000000678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Khan M, Szczepek AJ, Haupt H, Olze H, Mazurek B. Expression of the proinflammatory cytokines in cochlear explant cultures: influence of normoxia and hypoxia. Neurosci Lett. 2010;479:249-252. [PMID: 20561939 DOI: 10.1016/j.neulet.2010.05.072] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
127 Katsumi S, Sahin MI, Lewis RM, Iyer JS, Landegger LD, Stankovic KM. Intracochlear Perfusion of Tumor Necrosis Factor-Alpha Induces Sensorineural Hearing Loss and Synaptic Degeneration in Guinea Pigs. Front Neurol 2019;10:1353. [PMID: 32116980 DOI: 10.3389/fneur.2019.01353] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
128 Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. Journal of Neurophysiology 2019;122:1421-60. [DOI: 10.1152/jn.00595.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
129 Eshraghi AA, Ocak E, Zhu A, Mittal J, Davies C, Shahal D, Bulut E, Sinha R, Shah V, Perdomo MM, Mittal R. Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. J Clin Med 2020;9:E1711. [PMID: 32498432 DOI: 10.3390/jcm9061711] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
130 Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Huang EI, Yang MY. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. Int J Mol Sci 2020;21:E7535. [PMID: 33066038 DOI: 10.3390/ijms21207535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
131 Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res 2016;333:283-94. [PMID: 26520584 DOI: 10.1016/j.heares.2015.10.010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
132 Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H, Takii R, Nakai A, Yamashita H. Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx. 2012;39:270-274. [PMID: 21794995 DOI: 10.1016/j.anl.2011.06.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
133 Seymour ML, Pereira FA. Survival of auditory hair cells. Cell Tissue Res 2015;361:59-63. [PMID: 25743696 DOI: 10.1007/s00441-015-2152-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
134 Rodrigues JC, Bachi ALL, Silva GAV, Rossi M, do Amaral JB, Lezirovitz K, de Brito R. New Insights on the Effect of TNF Alpha Blockade by Gene Silencing in Noise-Induced Hearing Loss. Int J Mol Sci 2020;21:E2692. [PMID: 32294929 DOI: 10.3390/ijms21082692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
135 Menardo J, Tang Y, Ladrech S, Lenoir M, Casas F, Michel C, Bourien J, Ruel J, Rebillard G, Maurice T, Puel JL, Wang J. Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxid Redox Signal 2012;16:263-74. [PMID: 21923553 DOI: 10.1089/ars.2011.4037] [Cited by in Crossref: 108] [Cited by in F6Publishing: 89] [Article Influence: 10.8] [Reference Citation Analysis]
136 Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021;10:1686. [PMID: 34359856 DOI: 10.3390/cells10071686] [Reference Citation Analysis]
137 Grondin Y, Bortoni ME, Sepulveda R, Ghelfi E, Bartos A, Cotanche D, Clifford RE, Rogers RA. Genetic Polymorphisms Associated with Hearing Threshold Shift in Subjects during First Encounter with Occupational Impulse Noise. PLoS One 2015;10:e0130827. [PMID: 26121033 DOI: 10.1371/journal.pone.0130827] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
138 He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. Treatment With Calcineurin Inhibitor FK506 Attenuates Noise-Induced Hearing Loss. Front Cell Dev Biol 2021;9:648461. [PMID: 33777956 DOI: 10.3389/fcell.2021.648461] [Reference Citation Analysis]
139 Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021;13:eabd4816. [PMID: 34261799 DOI: 10.1126/scitranslmed.abd4816] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021;2021:4784385. [PMID: 34306060 DOI: 10.1155/2021/4784385] [Reference Citation Analysis]
141 Hu SS, Mei L, Chen JY, Huang ZW, Wu H. Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats. Inflammation 2014;37:365-73. [PMID: 24092407 DOI: 10.1007/s10753-013-9748-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
142 Berger T, Kaiser T, Scholz M, Bachmann A, Ceglarek U, Hesse G, Hagemeyer B, Stumvoll M, Thiery J, Dietz A. Fibrinogen is not a prognostic factor for response to HELP-apheresis in sudden sensorineural hearing loss (SSHL). Eur Arch Otorhinolaryngol 2015;272:3693-703. [DOI: 10.1007/s00405-014-3449-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
143 Cao Z, Li Z, Xiang H, Huang S, Gao J, Zhan X, Zheng X, Li B, Wu J, Chen B. Prognostic role of haematological indices in sudden sensorineural hearing loss: Review and meta-analysis. Clinica Chimica Acta 2018;483:104-11. [DOI: 10.1016/j.cca.2018.04.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
144 Kariya S, Okano M, Maeda Y, Hirai H, Higaki T, Noyama Y, Haruna T, Nishihira J, Nishizaki K. Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation. Otol Neurotol 2015;36:1103-8. [PMID: 25853607 DOI: 10.1097/MAO.0000000000000755] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
145 Guthrie OW, Gearhart CA, Fulton S, Fechter LD. Carboxy alkyl esters of Uncaria tomentosa augment recovery of sensorineural functions following noise injury. Brain Research 2011;1407:97-106. [DOI: 10.1016/j.brainres.2011.06.044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
146 Melgar-Rojas P, Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Juiz JM. Validation of Reference Genes for RT-qPCR Analysis in Noise-Induced Hearing Loss: A Study in Wistar Rat. PLoS One 2015;10:e0138027. [PMID: 26366995 DOI: 10.1371/journal.pone.0138027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
147 Cadoni G, Gaetani E, Picciotti PM, Arzani D, Quarta M, Giannantonio S, Paludetti G, Boccia S. A case-control study on proinflammatory genetic Polymorphisms on sudden sensorineural hearing loss: Polymorphisms on SSNHL. The Laryngoscope 2015;125:E28-32. [DOI: 10.1002/lary.24743] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
148 Zhang C, Sun W, Li J, Xiong B, Frye MD, Ding D, Salvi R, Kim MJ, Someya S, Hu BH. Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. Neuroscience 2017;361:179-91. [PMID: 28818524 DOI: 10.1016/j.neuroscience.2017.08.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
149 Seigel GM, Manohar S, Bai YY, Ding D, Salvi R. An immortalized microglial cell line (Mocha) derived from rat cochlea. Mol Cell Neurosci 2017;85:202-10. [PMID: 29109020 DOI: 10.1016/j.mcn.2017.11.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
150 Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014;11:173. [PMID: 25311735 DOI: 10.1186/s12974-014-0173-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
151 Edderkaoui B, Sargsyan L, Hetrick A, Li H. Deficiency of Duffy Antigen Receptor for Chemokines Ameliorated Cochlear Damage From Noise Exposure. Front Mol Neurosci 2018;11:173. [PMID: 29899689 DOI: 10.3389/fnmol.2018.00173] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
152 Tan BT, Lee MM, Ruan R. Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol. 2008;509:167-179. [PMID: 18461607 DOI: 10.1002/cne.21729] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
153 Wilson T, Omelchenko I, Foster S, Zhang Y, Shi X, Nuttall AL. JAK2/STAT3 inhibition attenuates noise-induced hearing loss. PLoS One 2014;9:e108276. [PMID: 25275304 DOI: 10.1371/journal.pone.0108276] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
154 Masuda M, Kanzaki S, Minami S, Kikuchi J, Kanzaki J, Sato H, Ogawa K. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol Neurotol. 2012;33:1142-1150. [PMID: 22872174 DOI: 10.1097/mao.0b013e3182635417] [Cited by in Crossref: 73] [Cited by in F6Publishing: 29] [Article Influence: 9.1] [Reference Citation Analysis]
155 Koitschev A, Gramlich K, Hansmann S, Benseler S, Plontke SK, Koitschev C, Koetter I, Kuemmerle-deschner JB. Progressive familial hearing loss in Muckle-Wells syndrome. Acta Oto-Laryngologica 2012;132:756-62. [DOI: 10.3109/00016489.2012.656321] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
156 Dogan R, Sjostrand AP, Yenıgun A, Karatas E, Kocyigit A, Ozturan O. Influence of Ginkgo Biloba extract (EGb 761) on expression of IL-1 Beta, IL-6, TNF-alfa, HSP-70, HSF-1 and COX-2 after noise exposure in the rat cochlea. Auris Nasus Larynx 2018;45:680-5. [DOI: 10.1016/j.anl.2017.09.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
157 Gross J, Olze H, Mazurek B. Differential Expression of Transcription Factors and Inflammation-, ROS-, and Cell Death-Related Genes in Organotypic Cultures in the Modiolus, the Organ of Corti and the Stria Vascularis of Newborn Rats. Cell Mol Neurobiol 2014;34:523-38. [DOI: 10.1007/s10571-014-0036-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
158 Ren Y, Stankovic KM. The Role of Tumor Necrosis Factor Alpha (TNFα)in Hearing Loss and Vestibular Schwannomas. Curr Otorhinolaryngol Rep 2018;6:15-23. [PMID: 31485383 DOI: 10.1007/s40136-018-0186-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
159 Kirkegaard M, Murai N, Risling M, Suneson A, Järlebark L, Ulfendahl M. Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience 2006;142:425-35. [PMID: 16887274 DOI: 10.1016/j.neuroscience.2006.06.037] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
160 Zhou Y, Zheng H, Shen X, Zhang Q, Yang M. Intratympanic administration of methylprednisolone reduces impact of experimental intensive impulse noise trauma on hearing. Acta Otolaryngol. 2009;129:602-607. [PMID: 18815936 DOI: 10.1080/00016480802342424] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
161 Herranen A, Ikäheimo K, Virkkala J, Pirvola U. The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions-Possible Role in Mediating Noise Vulnerability. J Assoc Res Otolaryngol 2018;19:637-52. [PMID: 30191426 DOI: 10.1007/s10162-018-00691-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
162 Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2018;526:824-35. [PMID: 29218724 DOI: 10.1002/cne.24369] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
163 Verschuur CA, Dowell A, Syddall HE, Ntani G, Simmonds SJ, Baylis D, Gale CR, Walsh B, Cooper C, Lord JM, Aihie Sayer A. Markers of inflammatory status are associated with hearing threshold in older people: findings from the Hertfordshire ageing study. Age and Ageing 2012;41:92-7. [DOI: 10.1093/ageing/afr140] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
164 Duinkerken CW, Rohaan MW, de Weger VA, Lohuis PJFM, Latenstein MN, Theunissen EAR, Balm AJM, Dreschler WA, Haanen JBAG, Zuur CL. Sensorineural Hearing Loss After Adoptive Cell Immunotherapy for Melanoma Using MART-1 Specific T Cells: A Case Report and Its Pathophysiology. Otol Neurotol 2019;40:e674-8. [PMID: 31295198 DOI: 10.1097/MAO.0000000000002332] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
165 Bae SH, Yoo JE, Choe YH, Kwak SH, Choi JY, Jung J, Hyun YM. Neutrophils infiltrate into the spiral ligament but not the stria vascularis in the cochlea during lipopolysaccharide-induced inflammation. Theranostics 2021;11:2522-33. [PMID: 33456557 DOI: 10.7150/thno.49121] [Reference Citation Analysis]
166 Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion. CPD 2020;25:4820-6. [DOI: 10.2174/1381612825666191106143743] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
167 Vetter DE, Yee KT. Corticotropin Releasing Factor Signaling in the Mammalian Cochlea: An Integrative Niche for Cochlear Homeostatic Balance Against Noise. In: Ramkumar V, Rybak LP, editors. Inflammatory Mechanisms in Mediating Hearing Loss. Cham: Springer International Publishing; 2018. pp. 31-60. [DOI: 10.1007/978-3-319-92507-3_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
168 Dai M, Yang Y, Omelchenko I, Nuttall AL, Kachelmeier A, Xiu R, Shi X. Bone marrow cell recruitment mediated by inducible nitric oxide synthase/stromal cell-derived factor-1alpha signaling repairs the acoustically damaged cochlear blood-labyrinth barrier. Am J Pathol. 2010;177:3089-3099. [PMID: 21057001 DOI: 10.2353/ajpath.2010.100340] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
169 Öçal R, Akın Öçal FC, Güllüev M, Alataş N. Is the C-reactive protein/albumin ratio a prognostic and predictive factor in sudden hearing loss? Braz J Otorhinolaryngol 2020;86:180-4. [PMID: 30522831 DOI: 10.1016/j.bjorl.2018.10.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Doi MY, Dias AC, Poly-Frederico RC, Maria MG, de Oliveira MN, de Moraes Marchiori LL. Association between polymorphism of interleukin-6 in the region -174G/C and tinnitus in the elderly with a history of occupational noise exposure. Noise Health 2015;17:406-10. [PMID: 26572700 DOI: 10.4103/1463-1741.169703] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]