BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sornwatana T, Bangphoomi K, Roytrakul S, Wetprasit N, Choowongkomon K, Ratanapo S. Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity. Biotechnol Appl Biochem 2015;62:746-53. [PMID: 25410725 DOI: 10.1002/bab.1321] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Kaur A, Kehinde BA, Sharma P, Sharma D, Kaur S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem 2021;346:128719. [PMID: 33339686 DOI: 10.1016/j.foodchem.2020.128719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Jahanbani R, Ghaffari M, Vahdati K, Salami M, Khalesi M, Sheibani N, Moosavi-movahedi AA. Kinetics Study of Protein Hydrolysis and Inhibition of Angiotensin Converting Enzyme by Peptides Hydrolysate Extracted from Walnut. Int J Pept Res Ther 2018;24:77-85. [DOI: 10.1007/s10989-017-9594-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Rahmadian Y, Supriyadi, Santoso U, Mahmudah NA, Akbar Nur Ichsan O. Non-volatile taste components and amino acid profile of jengkol ( Pithecellobium jiringa ) seed flour after steam blanching. International Journal of Food Properties 2019;22:1536-47. [DOI: 10.1080/10942912.2019.1657445] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Piovesana S, Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Zenezini Chiozzi R, Laganà A. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal Bioanal Chem 2018;410:3425-44. [PMID: 29353433 DOI: 10.1007/s00216-018-0852-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 12.8] [Reference Citation Analysis]
5 Suwannapan O, Wachirattanapongmetee K, Thawornchinsombut S, Katekaew S. Angiotensin‐I‐converting enzyme (ACE)‐inhibitory peptides from Thai jasmine rice bran protein hydrolysates. Int J Food Sci Technol 2020;55:2441-50. [DOI: 10.1111/ijfs.14495] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Abdelhedi O, Nasri M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends in Food Science & Technology 2019;88:543-57. [DOI: 10.1016/j.tifs.2019.04.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
7 Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021;476:2345-64. [PMID: 33587232 DOI: 10.1007/s11010-021-04084-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
8 Gomes C, Oliveira F, Isabel Vieira S, Sofia Duque A. Prospects for the Production of Recombinant Therapeutic Proteins and Peptides in Plants: Special Focus on Angiotensin I-Converting Enzyme Inhibitory (ACEI) Peptides. In: Jamal F, editor. Genetic Engineering - A Glimpse of Techniques and Applications. IntechOpen; 2020. [DOI: 10.5772/intechopen.84419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Sun H, Chang Q, Liu L, Chai K, Lin G, Huo Q, Zhao Z, Zhao Z. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions. J Agric Food Chem 2017;65:10020-8. [DOI: 10.1021/acs.jafc.7b04043] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
10 Chatupheeraphat C, Roytrakul S, Phaonakrop N, Deesrisak K, Krobthong S, Anurathapan U, Tanyong D. A Novel Peptide Derived from Ginger Induces Apoptosis through the Modulation of p53, BAX, and BCL2 Expression in Leukemic Cell Lines. Planta Med 2021;87:560-9. [PMID: 33757145 DOI: 10.1055/a-1408-5629] [Reference Citation Analysis]
11 Liu L, Wei Y, Chang Q, Sun H, Chai K, Huang Z, Zhao Z, Zhao Z. Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement-Derived Biocarbon: Waste Conversion by Waste. J Agric Food Chem 2017;65:11202-11. [DOI: 10.1021/acs.jafc.7b04442] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
12 Rasaratnam K, Nantasenamat C, Phaonakrop N, Roytrakul S, Tanyong D. A novel peptide isolated from garlic shows anticancer effect against leukemic cell lines via interaction with Bcl-2 family proteins. Chem Biol Drug Des 2021;97:1017-28. [PMID: 33595876 DOI: 10.1111/cbdd.13831] [Reference Citation Analysis]
13 Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ. The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review. Nat Prod Bioprospect 2019;9:357-92. [PMID: 31696441 DOI: 10.1007/s13659-019-00222-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
14 Lu Y, Wang Y, Huang D, Bian Z, Lu P, Fan D, Wang X. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. J Zhejiang Univ Sci B 2021;22:575-89. [PMID: 34269010 DOI: 10.1631/jzus.B2000520] [Reference Citation Analysis]
15 Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients 2017;9:E316. [PMID: 28333109 DOI: 10.3390/nu9040316] [Cited by in Crossref: 97] [Cited by in F6Publishing: 70] [Article Influence: 19.4] [Reference Citation Analysis]