BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017;6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Cited by in Crossref: 94] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
Number Citing Articles
1 Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019;14:2487-514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
2 Alphandéry E. Iron oxide nanoparticles for therapeutic applications. Drug Discovery Today 2020;25:141-9. [DOI: 10.1016/j.drudis.2019.09.020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
3 Ranoo S, Lahiri B, Vinod S, Philip J. Effect of initial susceptibility and relaxation dynamics on radio frequency alternating magnetic field induced heating in superparamagnetic nanoparticle dispersions. Journal of Magnetism and Magnetic Materials 2019;486:165267. [DOI: 10.1016/j.jmmm.2019.165267] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Tang R, Zheleznyak A, Mixdorf M, Ghai A, Prior J, Black KCL, Shokeen M, Reed N, Biswas P, Achilefu S. Osteotropic Radiolabeled Nanophotosensitizer for Imaging and Treating Multiple Myeloma. ACS Nano 2020;14:4255-64. [PMID: 32223222 DOI: 10.1021/acsnano.9b09618] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
5 Ferreira BL, Martel F, Silva C, Santos T, Daniel-da-silva A. Nanostructured functionalized magnetic platforms for the sustained delivery of cisplatin: Synthesis, characterization and in vitro cytotoxicity evaluation. Journal of Inorganic Biochemistry 2020;213:111258. [DOI: 10.1016/j.jinorgbio.2020.111258] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang Q, Yang X, Guan J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl Nano Mater 2019;2:4681-97. [DOI: 10.1021/acsanm.9b00976] [Cited by in Crossref: 44] [Cited by in F6Publishing: 6] [Article Influence: 14.7] [Reference Citation Analysis]
7 Huo S, Liao Z, Zhao P, Zhou Y, Göstl R, Herrmann A. Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation. Adv Sci (Weinh) 2022;:e2104696. [PMID: 35195372 DOI: 10.1002/advs.202104696] [Reference Citation Analysis]
8 García-soriano D, Milán-rois P, Lafuente-gómez N, Navío C, Gutiérrez L, Cussó L, Desco M, Calle D, Somoza Á, Salas G. Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions. Journal of Colloid and Interface Science 2022;613:447-60. [DOI: 10.1016/j.jcis.2022.01.070] [Reference Citation Analysis]
9 Ghanbarinia Firozjah R, Sadeghi A, Khoee S. Ultrasonic De-cross-linking of the pH- and Magneto-Responsive PHEMA/PMMA Microgel to Janus Nanoparticles: A New Synthesis Based on "Grafting from"/"Grafting to" Polymerization. ACS Omega 2020;5:27119-32. [PMID: 33134672 DOI: 10.1021/acsomega.0c02710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Balas M, Dumitrache F, Badea MA, Fleaca C, Badoi A, Tanasa E, Dinischiotu A. Coating Dependent In Vitro Biocompatibility of New Fe-Si Nanoparticles. Nanomaterials (Basel) 2018;8:E495. [PMID: 29976868 DOI: 10.3390/nano8070495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Almeida AF, Vinhas A, Gonçalves AI, Miranda MS, Rodrigues MT, Gomes ME. Magnetic triggers in biomedical applications - prospects for contact free cell sensing and guidance. J Mater Chem B 2021;9:1259-71. [PMID: 33410453 DOI: 10.1039/d0tb02474k] [Reference Citation Analysis]
12 Idiago-lópez J, Moreno-antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale Adv 2021;3:1261-92. [DOI: 10.1039/d0na00873g] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Mukherjee S, Liang L, Veiseh O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020;12:E147. [PMID: 32053995 DOI: 10.3390/pharmaceutics12020147] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 12.5] [Reference Citation Analysis]
14 Sajid M, Nazal MK, Ihsanullah I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal Chim Acta 2021;1141:246-62. [PMID: 33248658 DOI: 10.1016/j.aca.2020.07.064] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
15 Fuller EG, Sun H, Dhavalikar RD, Unni M, Scheutz GM, Sumerlin BS, Rinaldi C. Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Appl Polym Mater 2019;1:211-20. [DOI: 10.1021/acsapm.8b00100] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 9.3] [Reference Citation Analysis]
16 Kandasamy G, Soni S, Sushmita K, Veerapu NS, Bose S, Maity D. One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. Journal of Molecular Liquids 2019;274:653-63. [DOI: 10.1016/j.molliq.2018.10.161] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
17 Svetlichnyi VA, Balashov VB, Lapin IN, Sokolov AÉ, Cherepanov VN. Magnetic Properties of Soft Magnetic Alloys 5BDSR and 82K3HSR. Russ Phys J 2019;62:411-5. [DOI: 10.1007/s11182-019-01728-6] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Kush P, Kumar P, Singh R, Kaushik A. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian Journal of Pharmaceutical Sciences 2021;16:704-37. [DOI: 10.1016/j.ajps.2021.05.005] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Piñeiro Y, González Gómez M, de Castro Alves L, Arnosa Prieto A, García Acevedo P, Seco Gudiña R, Puig J, Teijeiro C, Yáñez Vilar S, Rivas J. Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine. Magnetochemistry 2020;6:4. [DOI: 10.3390/magnetochemistry6010004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
20 Löwa N, Gutkelch D, Welge EA, Welz R, Meier F, Baki A, Bleul R, Klein T, Wiekhorst F. Novel Benchtop Magnetic Particle Spectrometer for Process Monitoring of Magnetic Nanoparticle Synthesis. Nanomaterials (Basel) 2020;10:E2277. [PMID: 33213004 DOI: 10.3390/nano10112277] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Duan B, Zou S, Sun Y, Xu X. Nanoplatform Constructed from a β-Glucan and Polydeoxyadenylic Acid for Cancer Chemotherapy and Imaging. Biomacromolecules 2019;20:1567-77. [PMID: 30799607 DOI: 10.1021/acs.biomac.8b01780] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
22 Rahmati M, Mozafari M. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front Bioeng Biotechnol 2019;7:4. [PMID: 30729107 DOI: 10.3389/fbioe.2019.00004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
23 Dutta B, Nema A, Shetake NG, Gupta J, Barick KC, Lawande MA, Pandey BN, Priyadarsini IK, Hassan PA. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Mater Sci Eng C Mater Biol Appl 2020;112:110915. [PMID: 32409067 DOI: 10.1016/j.msec.2020.110915] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
24 Scheepers MRW, van IJzendoorn LJ, Prins MWJ. Single-Dimer Formation Rate Reveals Heterogeneous Particle Surface Reactivity. Langmuir 2019;35:14272-81. [PMID: 31607127 DOI: 10.1021/acs.langmuir.9b02199] [Reference Citation Analysis]
25 Chen L, Zhong H, Qi X, Shao H, Xu K. Modified core–shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Adv 2019;9:13220-33. [DOI: 10.1039/c9ra01063g] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv Mater 2019;31:e1804567. [PMID: 30600553 DOI: 10.1002/adma.201804567] [Cited by in Crossref: 105] [Cited by in F6Publishing: 75] [Article Influence: 35.0] [Reference Citation Analysis]
27 Fdez-gubieda ML, Alonso J, García-prieto A, García-arribas A, Fernández Barquín L, Muela A. Magnetotactic bacteria for cancer therapy. Journal of Applied Physics 2020;128:070902. [DOI: 10.1063/5.0018036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 7.5] [Reference Citation Analysis]
28 Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 2018;8:11295. [PMID: 30050080 DOI: 10.1038/s41598-018-29618-w] [Cited by in Crossref: 41] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
29 Ganapathe LS, Mohamed MA, Mohamad Yunus R, Berhanuddin DD. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020;6:68. [DOI: 10.3390/magnetochemistry6040068] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
30 Granath T, Mandel K, Löbmann P. Overcoming the Inhibition Effects of Citrate: Precipitation of Ferromagnetic Magnetite Nanoparticles with Tunable Morphology, Magnetic Properties, and Surface Charge via Ferrous Citrate Oxidation. Part Part Syst Charact 2021;38:2100098. [DOI: 10.1002/ppsc.202100098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Imran M, Affandi AM, Alam MM, Khan A, Khan AI. Advanced biomedical applications of iron oxide nanostructures based ferrofluids. Nanotechnology 2021;32. [PMID: 34252891 DOI: 10.1088/1361-6528/ac137a] [Reference Citation Analysis]
32 Ahmad F, Taj MB, Ramzan M, Raheel A, Shabbir S, Imran M, Iqbal HMN. Flacourtia indica based biogenic nanoparticles: development, characterization, and bioactivity against wound associated pathogens. Mater Res Express 2020;7:015026. [DOI: 10.1088/2053-1591/ab6123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li H, Liu P, Gunawan R, Simeneh ZM, Liang C, Yao X, Yang M. Magnetothermal Miniature Reactors Based on Fe3 O4 Nanocube-Coated Liquid Marbles. Adv Healthc Mater 2021;10:e2001658. [PMID: 33470539 DOI: 10.1002/adhm.202001658] [Reference Citation Analysis]
34 Hepel M. Magnetic Nanoparticles for Nanomedicine. Magnetochemistry 2020;6:3. [DOI: 10.3390/magnetochemistry6010003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
35 Frenea-robin M, Marchalot J. Basic Principles and Recent Advances in Magnetic Cell Separation. Magnetochemistry 2022;8:11. [DOI: 10.3390/magnetochemistry8010011] [Reference Citation Analysis]
36 Shi D, Pu S, Yin H, Song Y, Liu H, Yu X, Zhao Y, Ye C, Liu S, Wang X, Huang J, Zhang Y, Xie J. Fluorescent Realgar Nanoclusters for Nuclear Targeting-Triggered Tumor Theranostics. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00577] [Reference Citation Analysis]
37 Ullah Khan A, Chen L, Ge G. Recent development for biomedical applications of magnetic nanoparticles. Inorg Chem Commun 2021;134:108995. [PMID: 34658663 DOI: 10.1016/j.inoche.2021.108995] [Reference Citation Analysis]
38 Kandasamy G, Khan S, Giri J, Bose S, Veerapu NS, Maity D. One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. Journal of Molecular Liquids 2019;275:699-712. [DOI: 10.1016/j.molliq.2018.11.108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
39 Fan M, Wang F, Wang C. Reflux Precipitation Polymerization: A New Platform for the Preparation of Uniform Polymeric Nanogels for Biomedical Applications. Macromol Biosci 2018;18:1800077. [DOI: 10.1002/mabi.201800077] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
40 Alromi DA, Madani SY, Seifalian A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers (Basel) 2021;13:4146. [PMID: 34883649 DOI: 10.3390/polym13234146] [Reference Citation Analysis]
41 Rahmati M, Mozafari M. Nano-immunoengineering: Opportunities and challenges. Current Opinion in Biomedical Engineering 2019;10:51-9. [DOI: 10.1016/j.cobme.2019.02.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
42 Sardaremelli S, Hasanzadeh M, Seidi F. Enzymatic recognition of hydrogen peroxide (H2 O2 ) in human plasma samples using HRP immobilized on the surface of poly(arginine-toluidine blue)- Fe3 O4 nanoparticles modified polydopamine; A novel biosensor. J Mol Recognit 2021;:e2928. [PMID: 34378255 DOI: 10.1002/jmr.2928] [Reference Citation Analysis]
43 Wang C, Zhao N, Huang Y, He R, Xu S, Yuan W. Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy. Chemical Engineering Journal 2020;401:126100. [DOI: 10.1016/j.cej.2020.126100] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
44 Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. Adv Therap 2018;1:1800011. [DOI: 10.1002/adtp.201800011] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 10.8] [Reference Citation Analysis]
45 Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. Nano Today 2018;23:59-72. [PMID: 31186672 DOI: 10.1016/j.nantod.2018.11.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
46 Ramos‐sebastian A, Gwak S, Kim SH. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications. Advanced Science. [DOI: 10.1002/advs.202103863] [Reference Citation Analysis]
47 Toyos-rodríguez C, Calleja-garcía J, Torres-sánchez L, López A, Abu-dief AM, Costa A, Elbaile L, Crespo RD, Garitaonandia JS, Lastra E, García JA, García-alonso FJ. A Simple and Reliable Synthesis of Superparamagnetic Magnetite Nanoparticles by Thermal Decomposition of Fe(acac) 3. Journal of Nanomaterials 2019;2019:1-10. [DOI: 10.1155/2019/2464010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
48 Ahmad F, Salem-bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu H, Taha EI, Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022;12:1333. [DOI: 10.3390/nano12081333] [Reference Citation Analysis]
49 Oltolina F, Colangelo D, Miletto I, Clemente N, Miola M, Verné E, Prat M, Follenzi A. Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials (Basel) 2019;9:E1575. [PMID: 31698869 DOI: 10.3390/nano9111575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
50 You H, Shang W, Min X, Weinreb J, Li Q, Leapman M, Wang L, Tian J. Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer. Sci Adv 2020;6:eaax6040. [PMID: 32076639 DOI: 10.1126/sciadv.aax6040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
51 Gessner I, Park JH, Lin HY, Lee H, Weissleder R. Magnetic Gold Nanoparticles with Idealized Coating for Enhanced Point-Of-Care Sensing. Adv Healthc Mater 2021;:e2102035. [PMID: 34747576 DOI: 10.1002/adhm.202102035] [Reference Citation Analysis]
52 Efremova MV, Nalench YA, Myrovali E, Garanina AS, Grebennikov IS, Gifer PK, Abakumov MA, Spasova M, Angelakeris M, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein J Nanotechnol 2018;9:2684-99. [PMID: 30416920 DOI: 10.3762/bjnano.9.251] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Yang F, Mou F, Jiang Y, Luo M, Xu L, Ma H, Guan J. Flexible Guidance of Microengines by Dynamic Topographical Pathways in Ferrofluids. ACS Nano 2018;12:6668-76. [PMID: 29906098 DOI: 10.1021/acsnano.8b01682] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
54 Zhang W, Ji T, Li Y, Zheng Y, Mehta M, Zhao C, Liu A, Kohane DS. Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nat Commun 2020;11:2323. [PMID: 32385252 DOI: 10.1038/s41467-020-16177-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
55 Rodrigues RO, Sousa PC, Gaspar J, Bañobre‐lópez M, Lima R, Minas G. Organ‐on‐a‐Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 2020;16:2003517. [DOI: 10.1002/smll.202003517] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
56 Kharat PB, More SD, Somvanshi SB, Jadhav KM. Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. J Mater Sci: Mater Electron 2019;30:6564-74. [DOI: 10.1007/s10854-019-00963-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 4] [Article Influence: 11.7] [Reference Citation Analysis]
57 Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019;14:3105-22. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
58 Ruiz-Rincón S, González-Orive A, Grazú V, Fratila RM, Fuente JM, Cea P. Altering model cell membranes by means of localized magnetic heating. Colloids Surf B Biointerfaces 2020;196:111315. [PMID: 32818926 DOI: 10.1016/j.colsurfb.2020.111315] [Reference Citation Analysis]
59 García-soriano D, Amaro R, Lafuente-gómez N, Milán-rois P, Somoza Á, Navío C, Herranz F, Gutiérrez L, Salas G. The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications. Journal of Colloid and Interface Science 2020;578:510-21. [DOI: 10.1016/j.jcis.2020.06.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
60 Cortés-Llanos B, Ocampo SM, de la Cueva L, Calvo GF, Belmonte-Beitia J, Pérez L, Salas G, Ayuso-Sacido Á. Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials (Basel) 2021;11:2888. [PMID: 34835651 DOI: 10.3390/nano11112888] [Reference Citation Analysis]
61 Mickoleit F, Jörke C, Geimer S, Maier DS, Müller JP, Demut J, Gräfe C, Schüler D, Clement JH. Biocompatibility, uptake and subcellular localization of bacterial magnetosomes in mammalian cells. Nanoscale Adv 2021;3:3799-815. [PMID: 34263139 DOI: 10.1039/d0na01086c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Dałek P, Borowik T, Reczyńska K, Pamuła E, Chrzanowski W, Langner M. Evaluation of the In Vitro Stability of Stimuli-Sensitive Fatty Acid-Based Microparticles for the Treatment of Lung Cancer. Langmuir 2020;36:11138-46. [PMID: 32856922 DOI: 10.1021/acs.langmuir.0c02141] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Mannucci S, Tambalo S, Conti G, Ghin L, Milanese A, Carboncino A, Nicolato E, Marinozzi MR, Benati D, Bassi R, Marzola P, Sbarbati A. Magnetosomes Extracted from Magnetospirillum gryphiswaldense as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media Mol Imaging 2018;2018:2198703. [PMID: 30116160 DOI: 10.1155/2018/2198703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
64 Kumari M, Gupta R, Jain Y. Preparation of a simple biocompatible magnetite@citric acid: An efficient reusable solid acid catalyst for the rapid synthesis of antipyrine Schiff’s bases and study of their radical scavenging potential. Synthetic Communications 2019;49:529-38. [DOI: 10.1080/00397911.2018.1556795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
65 Grillone A, Battaglini M, Moscato S, Mattii L, de Julián Fernández C, Scarpellini A, Giorgi M, Sinibaldi E, Ciofani G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine (Lond) 2019;14:727-52. [PMID: 30574827 DOI: 10.2217/nnm-2018-0436] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
66 Kolovskaya OS, Zamay TN, Zamay GS, Babkin VA, Medvedeva EN, Neverova NA, Kirichenko AK, Zamay SS, Lapin IN, Morozov EV, Sokolov AE, Narodov AA, Fedorov DG, Tomilin FN, Zabluda VN, Alekhina Y, Lukyanenko KA, Glazyrin YE, Svetlichnyi VA, Berezovski MV, Kichkailo AS. Aptamer-Conjugated Superparamagnetic Ferroarabinogalactan Nanoparticles for Targeted Magnetodynamic Therapy of Cancer. Cancers (Basel) 2020;12:E216. [PMID: 31952299 DOI: 10.3390/cancers12010216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
67 Vakili-Ghartavol R, Momtazi-Borojeni AA, Vakili-Ghartavol Z, Aiyelabegan HT, Jaafari MR, Rezayat SM, Arbabi Bidgoli S. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif Cells Nanomed Biotechnol 2020;48:443-51. [PMID: 32024389 DOI: 10.1080/21691401.2019.1709855] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
68 Augustine R, Lee HR, Kim H, Zhang Y, Kim I. Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent. Reactive and Functional Polymers 2019;144:104352. [DOI: 10.1016/j.reactfunctpolym.2019.104352] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
69 Hurtado-Gallego J, Pulido-Reyes G, González-Pleiter M, Salas G, Leganés F, Rosal R, Fernández-Piñas F. Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. Chemosphere 2020;238:124562. [PMID: 31442774 DOI: 10.1016/j.chemosphere.2019.124562] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
70 Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine. [DOI: 10.2217/nnm-2021-0413] [Reference Citation Analysis]
71 García-merino B, Bringas E, Ortiz I. Synthesis and applications of surface-modified magnetic nanoparticles: progress and future prospects. Reviews in Chemical Engineering 2020;0:000010151520200072. [DOI: 10.1515/revce-2020-0072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021;8:134. [PMID: 34677207 DOI: 10.3390/bioengineering8100134] [Reference Citation Analysis]
73 Carvalho A, Fernandes AR, Baptista PV. Nanoparticles as Delivery Systems in Cancer Therapy. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019. pp. 257-95. [DOI: 10.1016/b978-0-12-814029-1.00010-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthcare Mater 2018;7:1800347. [DOI: 10.1002/adhm.201800347] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 15.8] [Reference Citation Analysis]
75 Martín MJ, Gentili C, Lassalle V. In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models. ChemMedChem 2020;15:1003-17. [PMID: 32365271 DOI: 10.1002/cmdc.202000119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Karoon Kiani F, Mahmoud Salehi Khesht A, Izadi S, Rashidi B, Kermanpour S, Mokhtarian R, Karpisheh V, Hassannia H, Mohammadi H, Jalili A, Jadidi-Niaragh F. Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol 2021;101:108288. [PMID: 34710844 DOI: 10.1016/j.intimp.2021.108288] [Reference Citation Analysis]
77 Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021;606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Reference Citation Analysis]
78 Usami T, Salman SA, Kuroda K, Gouda MK, Mahdy A, Okido M, Kumar B. Synthesis of Cobalt-Nickel Nanoparticles via a Liquid-Phase Reduction Process. Journal of Nanotechnology 2021;2021:1-7. [DOI: 10.1155/2021/9401024] [Reference Citation Analysis]
79 Omar S, Abu-reziq R. Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. Applied Sciences 2020;10:5769. [DOI: 10.3390/app10175769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
80 Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021;290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
81 Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select 2021;2:216-50. [DOI: 10.1002/nano.202000169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
82 Pei M, Jia X, Li G, Liu P. Versatile Polymeric Microspheres with Tumor Microenvironment Bioreducible Degradation, pH-Activated Surface Charge Reversal, pH-Triggered “off–on” Fluorescence and Drug Release as Theranostic Nanoplatforms. Mol Pharmaceutics 2019;16:227-37. [DOI: 10.1021/acs.molpharmaceut.8b00957] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
83 Rodríguez-Rodríguez H, Salas G, Arias-Gonzalez JR. Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation. J Phys Chem Lett 2020;11:2182-7. [PMID: 32119551 DOI: 10.1021/acs.jpclett.0c00143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
84 Pop D, Buzatu R, Moacă EA, Watz CG, Cîntă-Pînzaru S, Barbu Tudoran L, Nekvapil F, Avram Ș, Dehelean CA, Crețu MO, Nicolov M, Szuhanek C, Jivănescu A. Development and Characterization of Fe3O4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. Materials (Basel) 2021;14:3556. [PMID: 34202095 DOI: 10.3390/ma14133556] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Reference Citation Analysis]
86 Oehlsen O, Cervantes-ramírez SI, Cervantes-avilés P, Medina-velo IA. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega. [DOI: 10.1021/acsomega.1c05631] [Reference Citation Analysis]
87 Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Göstl R, Herrmann A. Mechanochemical bond scission for the activation of drugs. Nat Chem 2021;13:131-9. [DOI: 10.1038/s41557-020-00624-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 28.0] [Reference Citation Analysis]
88 Cheng HW, Tsao HY, Chiang CS, Chen SY. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021;10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
89 Tang H, Wang M, Meng C, Tao W, Wang C, Yu H. Research on design, fabrication, and properties of Fe2O3@SiO2/CDs/PEG@nSiO2 nanocomposites. Materials Letters 2019;235:39-41. [DOI: 10.1016/j.matlet.2018.09.149] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Martín MJ, Azcona P, Lassalle V, Gentili C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur J Pharm Sci 2021;158:105681. [PMID: 33347979 DOI: 10.1016/j.ejps.2020.105681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic Drug Delivery: Where the Field Is Going. Front Chem 2018;6:619. [PMID: 30619827 DOI: 10.3389/fchem.2018.00619] [Cited by in Crossref: 111] [Cited by in F6Publishing: 51] [Article Influence: 27.8] [Reference Citation Analysis]
92 Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021;9:629054. [PMID: 34327190 DOI: 10.3389/fchem.2021.629054] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Khizar S, Ahmad NM, Ahmed N, Manzoor S, Hamayun MA, Naseer N, Tenório MKL, Lebaz N, Elaissari A. Aminodextran Coated CoFe2O4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia. Nanomaterials (Basel) 2020;10:E2182. [PMID: 33147727 DOI: 10.3390/nano10112182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
94 Han Q, Wang X, Liu X, Xiao W, Cai S, Wang C, Yang R. Controllable fabrication of magnetic core–shell nanocomposites with high peroxide mimetic properties for bacterial detection and antibacterial applications. J Mater Chem B 2019;7:1124-32. [DOI: 10.1039/c8tb02834f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
95 Marcano L, Orue I, Gandia D, Gandarias L, Weigand M, Abrudan RM, García-Prieto A, García-Arribas A, Muela A, Fdez-Gubieda ML, Valencia S. Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy. ACS Nano 2022. [PMID: 35472296 DOI: 10.1021/acsnano.1c09559] [Reference Citation Analysis]
96 Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021;64:292-307. [PMID: 33095997 DOI: 10.1165/rcmb.2020-0306TR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]