BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Geuli O, Metoki N, Eliaz N, Mandler D. Electrochemically Driven Hydroxyapatite Nanoparticles Coating of Medical Implants. Adv Funct Mater 2016;26:8003-10. [DOI: 10.1002/adfm.201603575] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Nguyen TD, Geuli O, Yeo LP, Magdassi S, Mandler D, Tok AIY. Additive-Free Electrophoretic Deposition of Graphene Quantum Dots Thin Films. Chemistry 2019. [PMID: 31556175 DOI: 10.1002/chem.201903596] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Liu L, Mandler D. Using nanomaterials as building blocks for electrochemical deposition: A mini review. Electrochemistry Communications 2020;120:106830. [DOI: 10.1016/j.elecom.2020.106830] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Materials Science and Engineering: C 2020;106:110154. [DOI: 10.1016/j.msec.2019.110154] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 24.5] [Reference Citation Analysis]
4 Chen WY, Li X, Feng Y, Lin S, Peng L, Huang D. M-keratin nano-materials create a mineralized micro-circumstance to promote proliferation and differentiation of DPSCs. J Mater Sci Mater Med 2020;31:124. [PMID: 33247776 DOI: 10.1007/s10856-020-06465-8] [Reference Citation Analysis]
5 Yao T, Chen J, Wang Z, Zhai J, Li Y, Xing J, Hu S, Tan G, Qi S, Chang Y, Yu P, Ning C. The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Colloids Surf B Biointerfaces 2019;175:463-8. [PMID: 30572154 DOI: 10.1016/j.colsurfb.2018.12.022] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
6 Zhang Y, An Q, Zhang S, Ma Z, Hu X, Feng M, Zhang Y, Zhao Y. A healing promoting wound dressing with tailor-made antibacterial potency employing piezocatalytic processes in multi-functional nanocomposites. Nanoscale 2022. [PMID: 35134104 DOI: 10.1039/d1nr07386a] [Reference Citation Analysis]
7 Jia F, Lin S, He X, Zhang J, Shen S, Wang Z, Tang B, Li C, Wu Y, Dong L, Cheng K, Weng W. Comprehensive Evaluation of Surface Potential Characteristics on Mesenchymal Stem Cells’ Osteogenic Differentiation. ACS Appl Mater Interfaces 2019;11:22218-27. [DOI: 10.1021/acsami.9b07161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Li T, Ling L, Lin M, Jiang Q, Lin Q, Lou C, Lin J. Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. Materials Science and Engineering: C 2019;105:110062. [DOI: 10.1016/j.msec.2019.110062] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 8.3] [Reference Citation Analysis]
9 Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S, Liang Y, Cui Z, He H, Yang X. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci 2018;6:2694-703. [DOI: 10.1039/c8bm00716k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
10 Liu Z, Liu X, Ramakrishna S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 2021;16:e2000116. [PMID: 33813785 DOI: 10.1002/biot.202000116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kim DW, An J, Cho IS. Effects of Mg and Sr co-addition on the densification and biocompatible properties of calcium pyrophosphate. Ceramics International 2018;44:9689-95. [DOI: 10.1016/j.ceramint.2018.02.198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
12 Li T, Ling L, Lin M, Peng H, Ren H, Lou C, Lin J. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci 2020;55:6352-74. [DOI: 10.1007/s10853-020-04467-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
13 Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019;219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Cited by in Crossref: 69] [Cited by in F6Publishing: 41] [Article Influence: 23.0] [Reference Citation Analysis]
14 Tang B, Zhang B, Zhuang J, Wang Q, Dong L, Cheng K, Weng W. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomaterialia 2018;74:291-301. [DOI: 10.1016/j.actbio.2018.04.051] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
15 Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel) 2017;10:E334. [PMID: 28772697 DOI: 10.3390/ma10040334] [Cited by in Crossref: 336] [Cited by in F6Publishing: 179] [Article Influence: 67.2] [Reference Citation Analysis]
16 Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020;5:584-603. [DOI: 10.1038/s41578-020-0204-2] [Cited by in Crossref: 127] [Cited by in F6Publishing: 45] [Article Influence: 63.5] [Reference Citation Analysis]
17 Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021;118:2906-22. [PMID: 34050923 DOI: 10.1002/bit.27843] [Reference Citation Analysis]
18 Cross ER. The electrochemical fabrication of hydrogels: a short review. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-2194-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
19 Lei M, Qu X, Liu H, Liu Y, Wang S, Wu S, Bentley WE, Payne GF, Liu C. Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Adv Funct Mater 2019;29:1900065. [DOI: 10.1002/adfm.201900065] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Yang Y, Chawla A, Zhang J, Esa A, Jang HL, Khademhosseini A. Applications of Nanotechnology for Regenerative Medicine; Healing Tissues at the Nanoscale. Principles of Regenerative Medicine. Elsevier; 2019. pp. 485-504. [DOI: 10.1016/b978-0-12-809880-6.00029-1] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Metoki N, Baik SI, Isheim D, Mandler D, Seidman DN, Eliaz N. Atomically resolved calcium phosphate coating on a gold substrate. Nanoscale 2018;10:8451-8. [PMID: 29616690 DOI: 10.1039/c8nr00372f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
22 Deng Y, Shi X, Chen Y, Yang W, Ma Y, Shi X, Song P, Dargusch MS, Chen Z. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair. Ind Eng Chem Res 2020;59:12123-35. [DOI: 10.1021/acs.iecr.0c02107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
23 Zhao Z, Gao W, Bai H. A mineral layer as an effective binder to achieve strong bonding between a hydrogel and a solid titanium substrate. J Mater Chem B 2018;6:3859-64. [DOI: 10.1039/c8tb01042k] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Wang S, Li R, Li D, Zhang ZY, Liu G, Liang H, Qin Y, Yu J, Li Y. Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. J Mater Chem B 2018;6:3254-61. [PMID: 32254383 DOI: 10.1039/c8tb00328a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
25 Liu Y, Zhang X, Cao C, Zhang Y, Wei J, Li Y, Liang W, Hu Z, Zhang J, Wei Y, Deng X. Built-In Electric Fields Dramatically Induce Enhancement of Osseointegration. Adv Funct Mater 2017;27:1703771. [DOI: 10.1002/adfm.201703771] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
26 Perumal G, Chakrabarti A, Grewal HS, Pati S, Singh S, Arora HS. Enhanced antibacterial properties and the cellular response of stainless steel through friction stir processing. Biofouling 2019;35:187-203. [PMID: 30913919 DOI: 10.1080/08927014.2019.1584794] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
27 Wu T, Li B, Wang W, Chen L, Li Z, Wang M, Zha Z, Lin Z, Xia H, Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci 2020;8:4603-15. [PMID: 32627770 DOI: 10.1039/d0bm00523a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Geuli O, Metoki N, Zada T, Reches M, Eliaz N, Mandler D. Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J Mater Chem B 2017;5:7819-30. [PMID: 32264383 DOI: 10.1039/c7tb02105d] [Cited by in Crossref: 48] [Cited by in F6Publishing: 8] [Article Influence: 9.6] [Reference Citation Analysis]
29 Chen Q, Jing J, Qi H, Ahmed I, Yang H, Liu X, Lu TL, Boccaccini AR. Electric Field-Assisted Orientation of Short Phosphate Glass Fibers on Stainless Steel for Biomedical Applications. ACS Appl Mater Interfaces 2018;10:11529-38. [DOI: 10.1021/acsami.8b01378] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]