BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 2012;122:1246-61. [PMID: 22426214 DOI: 10.1172/JCI61135] [Cited by in Crossref: 130] [Cited by in F6Publishing: 105] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis 2013;59:26-37. [PMID: 23859799 DOI: 10.1016/j.nbd.2013.07.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
2 Jassim AH, Cavanaugh M, Shah JS, Willits R, Inman DM. Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma. Ann Biomed Eng 2021;49:858-70. [PMID: 32974756 DOI: 10.1007/s10439-020-02608-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 2019;34:843-56. [PMID: 30945258 DOI: 10.14670/HH-18-111] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
4 Yang X, Hondur G, Tezel G. Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:2344-54. [PMID: 27127934 DOI: 10.1167/iovs.16-19153] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
5 Krishnan A, Fei F, Jones A, Busto P, Marshak-Rothstein A, Ksander BR, Gregory-Ksander M. Overexpression of Soluble Fas Ligand following Adeno-Associated Virus Gene Therapy Prevents Retinal Ganglion Cell Death in Chronic and Acute Murine Models of Glaucoma. J Immunol 2016;197:4626-38. [PMID: 27849168 DOI: 10.4049/jimmunol.1601488] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
6 Ramírez AI, de Hoz R, Fernández-Albarral JA, Salobrar-Garcia E, Rojas B, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M, Triviño A, Ramírez JM, Salazar JJ. Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Sci Rep 2020;10:4890. [PMID: 32184450 DOI: 10.1038/s41598-020-61848-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
7 Williams PA, Howell GR, Barbay JM, Braine CE, Sousa GL, John SW, Morgan JE. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 2013;8:e72282. [PMID: 23977271 DOI: 10.1371/journal.pone.0072282] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 6.3] [Reference Citation Analysis]
8 Harder JM, Guymer C, Wood JPM, Daskalaki E, Chidlow G, Zhang C, Balasubramanian R, Cardozo BH, Foxworth NE, Deering KE, Ouellette TB, Montgomery C, Wheelock CE, Casson RJ, Williams PA, John SWM. Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin. Proc Natl Acad Sci U S A 2020;117:33619-27. [PMID: 33318177 DOI: 10.1073/pnas.2014213117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
9 Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol 2012;32:354-8. [PMID: 23196946 DOI: 10.1097/WNO.0b013e3182745600] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
10 Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, Gorman MJ, Lemke G, Klein RS, Diamond MS. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med 2015;21:1464-72. [PMID: 26523970 DOI: 10.1038/nm.3974] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
11 Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014;4:a017269. [PMID: 24993677 DOI: 10.1101/cshperspect.a017269] [Cited by in Crossref: 99] [Cited by in F6Publishing: 101] [Article Influence: 12.4] [Reference Citation Analysis]
12 Weitlauf C, Ward NJ, Lambert WS, Sidorova TN, Ho KW, Sappington RM, Calkins DJ. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation. J Neurosci 2014;34:15369-81. [PMID: 25392504 DOI: 10.1523/JNEUROSCI.3424-14.2014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
13 Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res 2015;141:164-70. [PMID: 25998495 DOI: 10.1016/j.exer.2015.05.008] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 12.3] [Reference Citation Analysis]
14 Chou TH, Park KK, Luo X, Porciatti V. Retrograde signaling in the optic nerve is necessary for electrical responsiveness of retinal ganglion cells. Invest Ophthalmol Vis Sci 2013;54:1236-43. [PMID: 23307964 DOI: 10.1167/iovs.12-11188] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
15 Maddineni P, Kasetti RB, Patel PD, Millar JC, Kiehlbauch C, Clark AF, Zode GS. CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma. Mol Neurodegener 2020;15:48. [PMID: 32854767 DOI: 10.1186/s13024-020-00400-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
16 Oikawa K, Ver Hoeve JN, Teixeira LBC, Snyder KC, Kiland JA, Ellinwood NM, McLellan GJ. Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma. Mol Neurobiol 2020;57:2620-38. [PMID: 32266645 DOI: 10.1007/s12035-020-01910-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
17 Breen KT, Anderson SR, Steele MR, Calkins DJ, Bosco A, Vetter ML. Loss of Fractalkine Signaling Exacerbates Axon Transport Dysfunction in a Chronic Model of Glaucoma. Front Neurosci 2016;10:526. [PMID: 27932942 DOI: 10.3389/fnins.2016.00526] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
18 Ward NJ, Ho KW, Lambert WS, Weitlauf C, Calkins DJ. Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J Neurosci 2014;34:3161-70. [PMID: 24573275 DOI: 10.1523/JNEUROSCI.4089-13.2014] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 7.3] [Reference Citation Analysis]
19 Quigley HA, Cone FE. Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res 2013;353:231-44. [PMID: 23535950 DOI: 10.1007/s00441-013-1603-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
20 Tamm ER, Ethier CR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants. Biological aspects of axonal damage in glaucoma: A brief review. Exp Eye Res 2017;157:5-12. [PMID: 28223179 DOI: 10.1016/j.exer.2017.02.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
21 Wei Y, Li J, Li B, Ma C, Xu X, Wang X, Liu A, Du T, Wang Z, Hong Z, Lin J. GCDB: a glaucomatous chemogenomics database for in silico drug discovery. Database (Oxford) 2018;2018. [PMID: 30371760 DOI: 10.1093/database/bay117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Wang R, Seifert P, Jakobs TC. Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype. Invest Ophthalmol Vis Sci 2017;58:924-32. [PMID: 28170536 DOI: 10.1167/iovs.16-20571] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
23 Syc-Mazurek SB, Fernandes KA, Libby RT. JUN is important for ocular hypertension-induced retinal ganglion cell degeneration. Cell Death Dis 2017;8:e2945. [PMID: 28726785 DOI: 10.1038/cddis.2017.338] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
24 Cueva Vargas JL, Osswald IK, Unsain N, Aurousseau MR, Barker PA, Bowie D, Di Polo A. Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J Neurosci 2015;35:12088-102. [PMID: 26338321 DOI: 10.1523/JNEUROSCI.1273-15.2015] [Cited by in Crossref: 64] [Cited by in F6Publishing: 36] [Article Influence: 9.1] [Reference Citation Analysis]
25 Stein JD, Talwar N, Kang JH, Okereke OI, Wiggs JL, Pasquale LR. Bupropion use and risk of open-angle glaucoma among enrollees in a large U.S. managed care network. PLoS One 2015;10:e0123682. [PMID: 25875446 DOI: 10.1371/journal.pone.0123682] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
26 Buchanan RA, Foley KE, Pepper KW, Reagan AM, Keezer KJ, Hewes AA, Diemler CA, Preuss C, Soto I, John SWM, Howell GR. Meox2 Haploinsufficiency Accelerates Axonal Degeneration in DBA/2J Glaucoma. Invest Ophthalmol Vis Sci 2019;60:3283-96. [PMID: 31369031 DOI: 10.1167/iovs.18-26126] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Collery RF, Veth KN, Dubis AM, Carroll J, Link BA. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization. PLoS One 2014;9:e110699. [PMID: 25334040 DOI: 10.1371/journal.pone.0110699] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
28 Chrysostomou V, Galic S, van Wijngaarden P, Trounce IA, Steinberg GR, Crowston JG. Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway. Aging Cell 2016;15:1082-91. [PMID: 27613664 DOI: 10.1111/acel.12512] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
29 Reinholdt LG, Howell GR, Czechanski AM, Macalinao DG, Macnicoll KH, Lin CS, Donahue LR, John SW. Generating embryonic stem cells from the inbred mouse strain DBA/2J, a model of glaucoma and other complex diseases. PLoS One 2012;7:e50081. [PMID: 23209647 DOI: 10.1371/journal.pone.0050081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
30 Rolle T, Ponzetto A, Malinverni L. The Role of Neuroinflammation in Glaucoma: An Update on Molecular Mechanisms and New Therapeutic Options. Front Neurol 2020;11:612422. [PMID: 33613418 DOI: 10.3389/fneur.2020.612422] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Vargas JL, Di Polo A. Neuroinflammation in glaucoma: soluble tumor necrosis factor alpha and the connection with excitotoxic damage. Neural Regen Res 2016;11:424-6. [PMID: 27127480 DOI: 10.4103/1673-5374.179053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
32 Tribble JR, Harder JM, Williams PA, John SWM. Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2 J mice. Mol Brain 2020;13:81. [PMID: 32450896 DOI: 10.1186/s13041-020-00603-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
33 Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021;22:7994. [PMID: 34360760 DOI: 10.3390/ijms22157994] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Pahlitzsch M, Fritsche-Guenther R, Pompös I, Pohlmann D, Maier AB, Winterhalter S, Erb C, Rübsam A. Correlation of NUCB2/Nesfatin-1 with Cytokine Levels in Primary Open-Angle Glaucoma. Clin Ophthalmol 2021;15:2505-17. [PMID: 34163135 DOI: 10.2147/OPTH.S307379] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Yang X, Zeng Q, Göktas E, Gopal K, Al-Aswad L, Blumberg DM, Cioffi GA, Liebmann JM, Tezel G. T-Lymphocyte Subset Distribution and Activity in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2019;60:877-88. [PMID: 30821813 DOI: 10.1167/iovs.18-26129] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
36 Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020;11:811. [PMID: 32980857 DOI: 10.1038/s41419-020-02990-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME. Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J Neuroinflammation 2018;15:344. [PMID: 30553275 DOI: 10.1186/s12974-018-1365-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
38 Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, Calkins DJ, Vetter ML. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 2012;7:e43602. [PMID: 22952717 DOI: 10.1371/journal.pone.0043602] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 8.8] [Reference Citation Analysis]
39 Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE, Williams PA. When Is a Control Not a Control? Reactive Microglia Occur Throughout the Control Contralateral Pathway of Retinal Ganglion Cell Projections in Experimental Glaucoma. Transl Vis Sci Technol 2021;10:22. [PMID: 33510961 DOI: 10.1167/tvst.10.1.22] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
40 Aranda ML, Guerrieri D, Piñero G, González Fleitas MF, Altschuler F, Dieguez HH, Keller Sarmiento MI, Chianelli MS, Sande PH, Dorfman D, Rosenstein RE. Critical Role of Monocyte Recruitment in Optic Nerve Damage Induced by Experimental Optic Neuritis. Mol Neurobiol 2019;56:7458-72. [PMID: 31044366 DOI: 10.1007/s12035-019-1608-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Triviño A, Ramírez JM. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J Neuroinflammation 2014;11:133. [PMID: 25064005 DOI: 10.1186/1742-2094-11-133] [Cited by in Crossref: 96] [Cited by in F6Publishing: 101] [Article Influence: 12.0] [Reference Citation Analysis]
42 Bond WS, Hines-Beard J, GoldenMerry YL, Davis M, Farooque A, Sappington RM, Calkins DJ, Rex TS. Virus-mediated EpoR76E Therapy Slows Optic Nerve Axonopathy in Experimental Glaucoma. Mol Ther 2016;24:230-9. [PMID: 26502777 DOI: 10.1038/mt.2015.198] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
43 Chong RS, Martin KR. Glial cell interactions and glaucoma. Curr Opin Ophthalmol 2015;26:73-7. [PMID: 25490529 DOI: 10.1097/ICU.0000000000000125] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 7.1] [Reference Citation Analysis]
44 Tolman NG, Balasubramanian R, Macalinao DG, Kearney AL, MacNicoll KH, Montgomery CL, de Vries WN, Jackson IJ, Cross SH, Kizhatil K, Nair KS, John SWM. Genetic background modifies vulnerability to glaucoma-related phenotypes in Lmx1b mutant mice. Dis Model Mech 2021;14:dmm046953. [PMID: 33462143 DOI: 10.1242/dmm.046953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
45 Harder JM, Williams PA, Soto I, Foxworth NE, Fernandes KA, Freeburg NF, Libby RT, John SWM. Jnk2 deficiency increases the rate of glaucomatous neurodegeneration in ocular hypertensive DBA/2J mice. Cell Death Dis 2018;9:705. [PMID: 29899326 DOI: 10.1038/s41419-018-0705-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
46 Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res 2019;97:70-6. [PMID: 29775216 DOI: 10.1002/jnr.24256] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
47 Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation 2016;13:44. [PMID: 26897546 DOI: 10.1186/s12974-016-0509-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
48 Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK, Vetter ML. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 2015;8:443-55. [PMID: 25755083 DOI: 10.1242/dmm.018788] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 9.3] [Reference Citation Analysis]
49 Chou TH, Bohorquez J, Toft-Nielsen J, Ozdamar O, Porciatti V. Robust mouse pattern electroretinograms derived simultaneously from each eye using a common snout electrode. Invest Ophthalmol Vis Sci 2014;55:2469-75. [PMID: 24667861 DOI: 10.1167/iovs.14-13943] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
50 Fernandes KA, Harder JM, Williams PA, Rausch RL, Kiernan AE, Nair KS, Anderson MG, John SW, Howell GR, Libby RT. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015;141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
51 Gao S, Jakobs TC. Mice Homozygous for a Deletion in the Glaucoma Susceptibility Locus INK4 Show Increased Vulnerability of Retinal Ganglion Cells to Elevated Intraocular Pressure. Am J Pathol 2016;186:985-1005. [PMID: 26883755 DOI: 10.1016/j.ajpath.2015.11.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
52 Heuss ND, Pierson MJ, Montaniel KR, McPherson SW, Lehmann U, Hussong SA, Ferrington DA, Low WC, Gregerson DS. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice. J Neuroinflammation 2014;11:143. [PMID: 25116321 DOI: 10.1186/s12974-014-0143-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
53 Stowell C, Burgoyne CF, Tamm ER, Ethier CR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants. Biomechanical aspects of axonal damage in glaucoma: A brief review. Exp Eye Res 2017;157:13-9. [PMID: 28223180 DOI: 10.1016/j.exer.2017.02.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
54 Kizhatil K, Ryan M, Marchant JK, Henrich S, John SW. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol 2014;12:e1001912. [PMID: 25051267 DOI: 10.1371/journal.pbio.1001912] [Cited by in Crossref: 103] [Cited by in F6Publishing: 94] [Article Influence: 12.9] [Reference Citation Analysis]
55 Astafurov K, Elhawy E, Ren L, Dong CQ, Igboin C, Hyman L, Griffen A, Mittag T, Danias J. Oral microbiome link to neurodegeneration in glaucoma. PLoS One 2014;9:e104416. [PMID: 25180891 DOI: 10.1371/journal.pone.0104416] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
56 Harder JM, Fernandes KA, Libby RT. The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice. Sci Rep 2012;2:530. [PMID: 22833783 DOI: 10.1038/srep00530] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
57 Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020;9:E3172. [PMID: 33007927 DOI: 10.3390/jcm9103172] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
58 Harder JM, Williams PA, Braine CE, Yang HS, Thomas JM, Foxworth NE, John SWM, Howell GR. Complement peptide C3a receptor 1 promotes optic nerve degeneration in DBA/2J mice. J Neuroinflammation 2020;17:336. [PMID: 33176797 DOI: 10.1186/s12974-020-02011-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
59 Yang X, Hondur G, Li M, Cai J, Klein JB, Kuehn MH, Tezel G. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina. Invest Ophthalmol Vis Sci 2015;56:5816-30. [PMID: 26348630 DOI: 10.1167/iovs.15-17294] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
60 Leopold SA, Zeilbeck LF, Weber G, Seitz R, Bösl MR, Jägle H, Fuchshofer R, Tamm ER, Ohlmann A. Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma. Sci Rep 2017;7:14274. [PMID: 29079753 DOI: 10.1038/s41598-017-14423-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
61 Stepp MA, Menko AS. Immune responses to injury and their links to eye disease. Transl Res 2021;236:52-71. [PMID: 34051364 DOI: 10.1016/j.trsl.2021.05.005] [Reference Citation Analysis]
62 Kezic JM, McMenamin PG. The effects of CX3CR1 deficiency and irradiation on the homing of monocyte-derived cell populations in the mouse eye. PLoS One 2013;8:e68570. [PMID: 23844223 DOI: 10.1371/journal.pone.0068570] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
63 Samelska K, Zaleska-Żmijewska A, Bałan B, Grąbczewski A, Szaflik JP, Kubiak AJ, Skopiński P. Immunological and molecular basics of the primary open angle glaucoma pathomechanism. Cent Eur J Immunol 2021;46:111-7. [PMID: 33897292 DOI: 10.5114/ceji.2021.104328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Fan Gaskin JC, Shah MH, Chan EC. Oxidative Stress and the Role of NADPH Oxidase in Glaucoma. Antioxidants (Basel) 2021;10:238. [PMID: 33557289 DOI: 10.3390/antiox10020238] [Reference Citation Analysis]
65 Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res 2015;141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
66 Williams PA, Braine CE, Kizhatil K, Foxworth NE, Tolman NG, Harder JM, Scott RA, Sousa GL, Panitch A, Howell GR, John SWM. Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma. Mol Neurodegener 2019;14:6. [PMID: 30670050 DOI: 10.1186/s13024-018-0303-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
67 Kiuchi Y, Yanagi M, Itakura K, Takahashi I, Hida A, Ohishi W, Furukawa K. Association between radiation, glaucoma subtype, and retinal vessel diameter in atomic bomb survivors. Sci Rep 2019;9:8642. [PMID: 31201344 DOI: 10.1038/s41598-019-45049-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
68 Mélik Parsadaniantz S, Réaux-le Goazigo A, Sapienza A, Habas C, Baudouin C. Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells 2020;9:E535. [PMID: 32106630 DOI: 10.3390/cells9030535] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
69 Rave-Fränk M, Malik IA, Christiansen H, Naz N, Sultan S, Amanzada A, Blaschke M, Cameron S, Ahmad S, Hess CF, Ramadori G, Moriconi F. Rat model of fractionated (2 Gy/day) 60 Gy irradiation of the liver: long-term effects. Radiat Environ Biophys 2013;52:321-38. [PMID: 23595725 DOI: 10.1007/s00411-013-0468-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
70 Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML. Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma. Exp Eye Res 2016;150:34-43. [PMID: 26851485 DOI: 10.1016/j.exer.2016.01.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
71 Wirtz MK, Keller KE. The Role of the IL-20 Subfamily in Glaucoma. Mediators Inflamm 2016;2016:4083735. [PMID: 26903709 DOI: 10.1155/2016/4083735] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
72 Means JC, Lopez AA, Koulen P. Resveratrol Protects Optic Nerve Head Astrocytes from Oxidative Stress-Induced Cell Death by Preventing Caspase-3 Activation, Tau Dephosphorylation at Ser422 and Formation of Misfolded Protein Aggregates. Cell Mol Neurobiol 2020;40:911-26. [PMID: 31919747 DOI: 10.1007/s10571-019-00781-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
73 Jackson HM, Soto I, Graham LC, Carter GW, Howell GR. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer's disease. BMC Genomics 2013;14:831. [PMID: 24274089 DOI: 10.1186/1471-2164-14-831] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
74 Johnson EC, Cepurna WO, Choi D, Choe TE, Morrison JC. Radiation pretreatment does not protect the rat optic nerve from elevated intraocular pressure-induced injury. Invest Ophthalmol Vis Sci 2014;56:412-9. [PMID: 25525172 DOI: 10.1167/iovs.14-15094] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
75 Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG, Sousa GL, John SW. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol Dis 2014;71:44-52. [PMID: 25132557 DOI: 10.1016/j.nbd.2014.07.016] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 7.9] [Reference Citation Analysis]
76 Yang X, Zeng Q, Barış M, Tezel G. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. J Neuroinflammation 2020;17:252. [PMID: 32859212 DOI: 10.1186/s12974-020-01930-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
77 Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, Buchanan RA, Smith RS, Libby RT, Howell GR, John SWM. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A 2017;114:E3839-48. [PMID: 28446616 DOI: 10.1073/pnas.1608769114] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 10.4] [Reference Citation Analysis]
78 Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Front Aging Neurosci 2017;9:214. [PMID: 28729832 DOI: 10.3389/fnagi.2017.00214] [Cited by in Crossref: 178] [Cited by in F6Publishing: 173] [Article Influence: 35.6] [Reference Citation Analysis]
79 Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017;59:158-77. [PMID: 28465248 DOI: 10.1016/j.preteyeres.2017.04.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
80 Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Prog Retin Eye Res 2017;59:1-52. [PMID: 28300644 DOI: 10.1016/j.preteyeres.2017.03.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
81 Howell GR, Soto I, Ryan M, Graham LC, Smith RS, John SW. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 2013;10:76. [PMID: 23806181 DOI: 10.1186/1742-2094-10-76] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
82 Malik IA, Stange I, Martius G, Cameron S, Rave-Fränk M, Hess CF, Ellenrieder V, Wolff HA. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med 2015;19:2441-52. [PMID: 26177067 DOI: 10.1111/jcmm.12630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
83 Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021;16:2125-31. [PMID: 33818483 DOI: 10.4103/1673-5374.310670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 2013;54:2346-52. [PMID: 23412088 DOI: 10.1167/iovs.12-11026] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 5.8] [Reference Citation Analysis]
85 Chou TH, Porciatti V. The bioelectric field of the pattern electroretinogram in the mouse. Invest Ophthalmol Vis Sci 2012;53:8086-92. [PMID: 23150622 DOI: 10.1167/iovs.12-10720] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
86 Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM. GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J Neuroinflammation 2017;14:93. [PMID: 28446179 DOI: 10.1186/s12974-017-0868-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
87 Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A, Gregory-Ksander M. A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation 2019;16:184. [PMID: 31570110 DOI: 10.1186/s12974-019-1576-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
88 Gramlich OW, Ding QJ, Zhu W, Cook A, Anderson MG, Kuehn MH. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun 2015;3:56. [PMID: 26374513 DOI: 10.1186/s40478-015-0234-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
89 Jakobs TC. Differential gene expression in glaucoma. Cold Spring Harb Perspect Med 2014;4:a020636. [PMID: 24985133 DOI: 10.1101/cshperspect.a020636] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
90 Hines-Beard J, Bond WS, Backstrom JR, Rex TS. Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress. J Neuroinflammation 2016;13:39. [PMID: 26876380 DOI: 10.1186/s12974-016-0499-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
91 Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019;73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
92 Ji S, Xiao J, Liu J, Tang S. Human Umbilical Cord Mesenchymal Stem Cells Attenuate Ocular Hypertension-Induced Retinal Neuroinflammation via Toll-Like Receptor 4 Pathway. Stem Cells Int. 2019;2019:9274585. [PMID: 31737079 DOI: 10.1155/2019/9274585] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
93 Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Imaging axonal transport in the rat visual pathway. Biomed Opt Express 2013;4:364-86. [PMID: 23412846 DOI: 10.1364/BOE.4.000364] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
94 Tezel G. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr Opin Pharmacol 2013;13:23-31. [PMID: 23084793 DOI: 10.1016/j.coph.2012.09.013] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 5.7] [Reference Citation Analysis]
95 Williams PA, Marsh-Armstrong N, Howell GR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res. 2017;157:20-27. [PMID: 28242160 DOI: 10.1016/j.exer.2017.02.014] [Cited by in Crossref: 105] [Cited by in F6Publishing: 98] [Article Influence: 21.0] [Reference Citation Analysis]
96 Margeta MA, Lad EM, Proia AD. CD163+ macrophages infiltrate axon bundles of postmortem optic nerves with glaucoma. Graefes Arch Clin Exp Ophthalmol 2018;256:2449-56. [PMID: 30073622 DOI: 10.1007/s00417-018-4081-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
97 Ha Y, Liu H, Xu Z, Yokota H, Narayanan SP, Lemtalsi T, Smith SB, Caldwell RW, Caldwell RB, Zhang W. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma. Cell Death Dis 2015;6:e1900. [PMID: 26448323 DOI: 10.1038/cddis.2015.281] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
98 Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012;31:702-19. [PMID: 22871543 DOI: 10.1016/j.preteyeres.2012.07.001] [Cited by in Crossref: 161] [Cited by in F6Publishing: 161] [Article Influence: 16.1] [Reference Citation Analysis]
99 Nickells RW, Pelzel HR. Tools and resources for analyzing gene expression changes in glaucomatous neurodegeneration. Exp Eye Res 2015;141:99-110. [PMID: 25999234 DOI: 10.1016/j.exer.2015.05.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
100 Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SW, Howell GR. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 2016;11:26. [PMID: 27048300 DOI: 10.1186/s13024-016-0091-6] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 13.8] [Reference Citation Analysis]
101 Yang Y, Shiao C, Hemingway JF, Jorstad NL, Shalloway BR, Chang R, Keene CD. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation. PLoS One 2013;8:e64246. [PMID: 23750207 DOI: 10.1371/journal.pone.0064246] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
102 Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021;2021:4581909. [PMID: 33953963 DOI: 10.1155/2021/4581909] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
103 Tezel G. Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021;10:1372. [PMID: 34199494 DOI: 10.3390/cells10061372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Soto I, Howell GR, John CW, Kief JL, Libby RT, John SW. DBA/2J mice are susceptible to diabetic nephropathy and diabetic exacerbation of IOP elevation. PLoS One 2014;9:e107291. [PMID: 25207540 DOI: 10.1371/journal.pone.0107291] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
105 Nair KS, Cosma M, Raghupathy N, Sellarole MA, Tolman NG, de Vries W, Smith RS, John SW. YBR/EiJ mice: a new model of glaucoma caused by genes on chromosomes 4 and 17. Dis Model Mech 2016;9:863-71. [PMID: 27483353 DOI: 10.1242/dmm.024307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]