BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, Burgoyne CF. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest Ophthalmol Vis Sci 2014;55:1531-9. [PMID: 24474264 DOI: 10.1167/iovs.13-13382] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Srinivas S, Dastiridou A, Durbin MK, Nittala MG, Huang AA, Tan JC, Francis BA, Sadda SR, Chopra V. Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography. Journal of Glaucoma 2017;26:138-43. [DOI: 10.1097/ijg.0000000000000605] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
2 Sousa DC, Leal I, Marques-neves C, Pinto F, Abegão Pinto L. Relationship between Intraocular Pressure and Anterior Lamina Cribrosa Depth: A Cross-Sectional Observational Study in a Healthy Portuguese Population. European Journal of Ophthalmology 2017;27:295-300. [DOI: 10.5301/ejo.5000867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
3 Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model. Exp Eye Res 2016;145:173-86. [PMID: 26500195 DOI: 10.1016/j.exer.2015.10.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
4 Ha A, Kim TJ, Girard MJ, Mari JM, Kim YK, Park KH, Jeoung JW. Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma. Ophthalmology 2018;125:1898-906. [DOI: 10.1016/j.ophtha.2018.05.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
5 Yang HS, Kim JG, Cha JB, Yun YI, Park JH, Woo JE. Quantitative analysis of neural tissues around the optic disc after panretinal photocoagulation in patients with diabetic retinopathy. PLoS One 2017;12:e0186229. [PMID: 29040280 DOI: 10.1371/journal.pone.0186229] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Miri MS, Abràmoff MD, Kwon YH, Sonka M, Garvin MK. A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes. Med Image Anal 2017;39:206-17. [PMID: 28528295 DOI: 10.1016/j.media.2017.04.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Wu Z, Xu G, Weinreb RN, Yu M, Leung CK. Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement. Ophthalmology 2015;122:1317-29. [PMID: 25972259 DOI: 10.1016/j.ophtha.2015.02.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
8 Sun Y, Guo Y, Cao K, Zhang Y, Xie Y, Pang R, Shi Y, Wang H, Wang N. Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma. Eur J Ophthalmol 2021;31:3049-56. [PMID: 33334173 DOI: 10.1177/1120672120982521] [Reference Citation Analysis]
9 Moghimi S, Nekoozadeh S, Motamed-Gorji N, Chen R, Fard MA, Mohammadi M, Weinreb RN. Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma. Invest Ophthalmol Vis Sci 2018;59:5355-65. [PMID: 30398627 DOI: 10.1167/iovs.18-25035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
10 Kim YW, Jeoung JW, Kim YK, Park KH. Clinical Implications of In Vivo Lamina Cribrosa Imaging in Glaucoma. J Glaucoma 2017;26:753-61. [PMID: 28787290 DOI: 10.1097/IJG.0000000000000728] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
11 Kim YW, Jeoung JW, Kim DW, Girard MJ, Mari JM, Park KH, Kim DM. Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma. PLoS One 2016;11:e0150260. [PMID: 26963816 DOI: 10.1371/journal.pone.0150260] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
12 Xiao H, Xu XY, Zhong YM, Liu X. Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects. Int J Ophthalmol 2018;11:1842-7. [PMID: 30450317 DOI: 10.18240/ijo.2018.11.17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
13 Kadziauskienė A, Jašinskienė E, Ašoklis R, Lesinskas E, Rekašius T, Chua J, Cheng CY, Mari JM, Girard MJA, Schmetterer L. Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy. Ophthalmology 2018;125:1729-40. [PMID: 29961552 DOI: 10.1016/j.ophtha.2018.05.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
14 Hong SW, Koenigsman H, Ren R, Yang H, Gardiner SK, Reynaud J, Kinast RM, Mansberger SL, Fortune B, Demirel S, Burgoyne CF. Glaucoma Specialist Optic Disc Margin, Rim Margin, and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes. Am J Ophthalmol 2018;192:65-76. [PMID: 29750947 DOI: 10.1016/j.ajo.2018.04.022] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
15 Morgan JI. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay. Ophthalmic Physiol Opt 2016;36:218-39. [PMID: 27112222 DOI: 10.1111/opo.12289] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 7.6] [Reference Citation Analysis]
16 Kim M, Bojikian KD, Slabaugh MA, Ding L, Chen PP. Lamina depth and thickness correlate with glaucoma severity. Indian J Ophthalmol 2016;64:358-63. [PMID: 27380974 DOI: 10.4103/0301-4738.185594] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yang H, Luo H, Hardin C, Wang Y, Jeoung JW, Albert C, Vianna JR, Sharpe GP, Reynaud J, Demirel S, Mansberger SL, Fortune B, Nicolela M, Gardiner SK, Chauhan BC, Burgoyne CF. Optical Coherence Tomography Structural Abnormality Detection in Glaucoma Using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria. Am J Ophthalmol 2020;213:203-16. [PMID: 31899204 DOI: 10.1016/j.ajo.2019.12.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Kim YW, Kim DW, Jeoung JW, Kim DM, Park KH. Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa. Eye (Lond) 2015;29:1368-74. [PMID: 26293139 DOI: 10.1038/eye.2015.162] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
19 Saba A, Usmani A, Islam QU, Assad T. Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma. Pak J Med Sci 2019;35:1730-5. [PMID: 31777524 DOI: 10.12669/pjms.35.6.568] [Reference Citation Analysis]
20 Lavinsky F, Benfica CZ, Castoldi N, Cruz do Carmo Chaves AE, Mello PAA. Measurement of the hypotenuse of the vertical optic nerve head cup with spectral-domain optical coherence tomography for the structural diagnosis of glaucoma. Clin Ophthalmol 2018;12:215-25. [PMID: 29416313 DOI: 10.2147/OPTH.S152772] [Reference Citation Analysis]
21 Patel NB, Lim M, Gajjar A, Evans KB, Harwerth RS. Age-associated changes in the retinal nerve fiber layer and optic nerve head. Invest Ophthalmol Vis Sci. 2014;55:5134-5143. [PMID: 25052998 DOI: 10.1167/iovs.14-14303] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
22 Yang H, He L, Gardiner SK, Reynaud J, Williams G, Hardin C, Strouthidis NG, Downs JC, Fortune B, Burgoyne CF. Age-related differences in longitudinal structural change by spectral-domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:6409-20. [PMID: 25190652 DOI: 10.1167/iovs.14-14156] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
23 Demir G, Altan C, Cakmak S, Topcu H, Yasa D, Demircan A, Alkin Z. Evaluation of lamina cribrosa in angioid streaks using spectral-domain optical coherence tomography enhanced depth imaging. J Fr Ophtalmol 2019;42:586-91. [PMID: 31101364 DOI: 10.1016/j.jfo.2018.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Andrade JCF, Kanadani FN, Furlanetto RL, Lopes FS, Ritch R, Prata TS. Elucidation of the role of the lamina cribrosa in glaucoma using optical coherence tomography. Surv Ophthalmol 2021:S0039-6257(21)00031-X. [PMID: 33548238 DOI: 10.1016/j.survophthal.2021.01.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lee EJ, Lee KM, Lee SH, Kim TW. Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma. J Glaucoma 2016;25:648-56. [PMID: 26950571 DOI: 10.1097/IJG.0000000000000396] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
26 Xu L, Yu H, Sun H, Hu B, Geng Y. Dietary Melatonin Therapy Alleviates the Lamina Cribrosa Damages in Patients with Mild Cognitive Impairments: A Double-Blinded, Randomized Controlled Study. Med Sci Monit 2020;26:e923232. [PMID: 32376818 DOI: 10.12659/MSM.923232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res 2015;141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
28 Lee EJ, Kim TW, Lee KM, Lee SH, Kim H. Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study. PLoS One 2017;12:e0168678. [PMID: 28141872 DOI: 10.1371/journal.pone.0168678] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
29 Xu G, Weinreb RN, Leung CK. Optic Nerve Head Deformation in Glaucoma. Ophthalmology 2014;121:2362-70. [DOI: 10.1016/j.ophtha.2014.06.035] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
30 Sawada Y, Araie M, Shibata H, Murata K, Ishikawa M, Yoshitomi T, Iwase T. Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography. Am J Ophthalmol 2020;216:28-36. [PMID: 32278772 DOI: 10.1016/j.ajo.2020.03.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Burgoyne C. The morphological difference between glaucoma and other optic neuropathies. J Neuroophthalmol 2015;35 Suppl 1:S8-S21. [PMID: 26274837 DOI: 10.1097/WNO.0000000000000289] [Cited by in Crossref: 38] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
32 Alqudah A, Mansberger SL, Gardiner SK, Demirel S. Vision-related Quality of Life in Glaucoma Suspect or Early Glaucoma Patients. J Glaucoma 2016;25:629-33. [PMID: 27483331 DOI: 10.1097/IJG.0000000000000445] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
33 Hoffmann EM, Schmidtmann I, Siouli A, Schuster AK, Beutel ME, Pfeiffer N, Lamparter J. The distribution of retinal nerve fiber layer thickness and associations with age, refraction, and axial length: the Gutenberg health study. Graefes Arch Clin Exp Ophthalmol 2018;256:1685-93. [PMID: 29777305 DOI: 10.1007/s00417-018-3991-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
34 Rhodes LA, Huisingh C, Johnstone J, Fazio M, Smith B, Clark M, Downs JC, Owsley C, Girard MJ, Mari JM, Girkin C. Variation of laminar depth in normal eyes with age and race. Invest Ophthalmol Vis Sci 2014;55:8123-33. [PMID: 25414182 DOI: 10.1167/iovs.14-15251] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
35 El-Agamy A, Oteaf F, Berika M. Anterior lamina cribrosa surface depth in healthy Saudi females. Clin Ophthalmol 2017;11:1045-50. [PMID: 28615925 DOI: 10.2147/OPTH.S131612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
36 Ivers KM, Yang H, Gardiner SK, Qin L, Reyes L, Fortune B, Burgoyne CF. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT388-403. [PMID: 27409498 DOI: 10.1167/iovs.15-18666] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
37 Sawada Y, Araie M, Shibata H, Iwase T. Nasal displacement of retinal vessels on the optic disc in glaucoma associated with a nasally angled passage through lamina cribrosa. Sci Rep 2021;11:4176. [PMID: 33603146 DOI: 10.1038/s41598-021-83720-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Lee KM, Kim TW, Weinreb RN, Lee EJ, Girard MJ, Mari JM. Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects. PLoS One 2014;9:e114935. [PMID: 25531761 DOI: 10.1371/journal.pone.0114935] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
39 Cakmak S, Altan C, Topcu H, Arici M, Pasaoglu I, Basarir B, Solmaz B. Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography. Curr Eye Res 2019;44:968-74. [PMID: 30963796 DOI: 10.1080/02713683.2019.1604971] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Girkin CA, Fazio MA, Bowd C, Medeiros FA, Weinreb RN, Liebmann JM, Proudfoot J, Zangwill LM, Belghith A. Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES). Invest Ophthalmol Vis Sci 2019;60:4496-502. [PMID: 31661550 DOI: 10.1167/iovs.19-26645] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Prog Retin Eye Res 2017;59:1-52. [PMID: 28300644 DOI: 10.1016/j.preteyeres.2017.03.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
42 Lee EJ, Kim TW, Kim M, Kim H. Influence of lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology 2015;122:721-9. [PMID: 25433610 DOI: 10.1016/j.ophtha.2014.10.007] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 7.8] [Reference Citation Analysis]
43 Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the Lamina Cribrosa in Response to Acute Intraocular Pressure Elevation in Normal Individuals of African and European Descent. Invest Ophthalmol Vis Sci 2016;57:3331-9. [PMID: 27367500 DOI: 10.1167/iovs.15-17940] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
44 Girkin CA, Belghith A, Bowd C, Medeiros FA, Weinreb RN, Liebmann JM, Proudfoot JA, Zangwill LM, Fazio MA. Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study. Invest Ophthalmol Vis Sci 2021;62:12. [PMID: 33844828 DOI: 10.1167/iovs.62.4.12] [Reference Citation Analysis]
45 Vianna JR, Lanoe VR, Quach J, Sharpe GP, Hutchison DM, Belliveau AC, Shuba LM, Nicolela MT, Chauhan BC. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma. Ophthalmology 2017;124:1392-402. [DOI: 10.1016/j.ophtha.2017.03.048] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
46 Kim YW, Jeoung JW, Girard MJ, Mari JM, Park KH. Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study. PLoS One 2016;11:e0162182. [PMID: 27611970 DOI: 10.1371/journal.pone.0162182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
47 Tun TA, Wang X, Baskaran M, Nongpiur ME, Tham YC, Nguyen DQ, Strouthidis NG, Aung T, Cheng CY, Boote C, Girard MJA. Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study. Br J Ophthalmol 2021;105:367-73. [PMID: 32434775 DOI: 10.1136/bjophthalmol-2020-315840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Abe RY, Gracitelli CP, Diniz-Filho A, Tatham AJ, Medeiros FA. Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring. Curr Ophthalmol Rep 2015;3:74-84. [PMID: 26052477 DOI: 10.1007/s40135-015-0067-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
49 Luo H, Yang H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Invest Ophthalmol Vis Sci 2018;59:2357-70. [PMID: 29847642 DOI: 10.1167/iovs.17-23456] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
50 Wong BJ, Moghimi S, Zangwill LM, Christopher M, Belghith A, Ekici E, Bowd C, Fazio MA, Girkin CA, Weinreb RN. Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma. Am J Ophthalmol 2020;212:134-43. [PMID: 31770514 DOI: 10.1016/j.ajo.2019.11.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
51 Oh BL, Lee EJ, Kim H, Girard MJ, Mari JM, Kim TW. Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk. PLoS One 2016;11:e0158443. [PMID: 27355646 DOI: 10.1371/journal.pone.0158443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
52 Jung KI, Jeon S, Park CK. Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry. Journal of Glaucoma 2016;25:e536-45. [DOI: 10.1097/ijg.0000000000000387] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
53 Rebolleda G, Muñoz Negrete FJ. [Enhanced Depth Imaging- optical coherence tomography technique and the lamina cribrosa in glaucoma]. Arch Soc Esp Oftalmol 2014;89:133-5. [PMID: 24731414 DOI: 10.1016/j.oftal.2014.03.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
54 Yang H, Ren R, Lockwood H, Williams G, Libertiaux V, Downs C, Gardiner SK, Burgoyne CF. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change. Invest Ophthalmol Vis Sci 2015;56:7661-78. [PMID: 26641545 DOI: 10.1167/iovs.15-17624] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
55 Tun TA, Atalay E, Baskaran M, Nongpiur ME, Htoon HM, Goh D, Cheng CY, Perera SA, Aung T, Strouthidis NG, Girard MJA. Association of Functional Loss With the Biomechanical Response of the Optic Nerve Head to Acute Transient Intraocular Pressure Elevations. JAMA Ophthalmol 2018;136:184-92. [PMID: 29302683 DOI: 10.1001/jamaophthalmol.2017.6111] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]