BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci 2012;53:3939-50. [PMID: 22589428 DOI: 10.1167/iovs.12-9979] [Cited by in Crossref: 41] [Cited by in F6Publishing: 54] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res 2015;141:164-70. [PMID: 25998495 DOI: 10.1016/j.exer.2015.05.008] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 12.3] [Reference Citation Analysis]
2 Wang L, Cull G, Burgoyne CF, Thompson S, Fortune B. Longitudinal alterations in the dynamic autoregulation of optic nerve head blood flow revealed in experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:3509-16. [PMID: 24812551 DOI: 10.1167/iovs.14-14020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
3 Fortune B, Cull G, Reynaud J, Wang L, Burgoyne CF. Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2015;56:3936-44. [PMID: 26087359 DOI: 10.1167/iovs.15-16548] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
4 Honda H, Anraku A, Ishida K, Enomoto N, Tomita G. Relationship between Macular Vessel Density and Focal Electroretinograms in Early Normal Tension Glaucoma. Current Eye Research 2019;44:753-9. [DOI: 10.1080/02713683.2019.1593464] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sharoukhov D, Bucinca-Cupallari F, Lim H. Microtubule Imaging Reveals Cytoskeletal Deficit Predisposing the Retinal Ganglion Cell Axons to Atrophy in DBA/2J. Invest Ophthalmol Vis Sci 2018;59:5292-300. [PMID: 30383181 DOI: 10.1167/iovs.18-24150] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
6 O'Leary N, Artes PH, Hutchison DM, Nicolela MT, Chauhan BC. Rates of retinal nerve fibre layer thickness change in glaucoma patients and control subjects. Eye (Lond) 2012;26:1554-62. [PMID: 23079756 DOI: 10.1038/eye.2012.202] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
7 Garcia-martin E, Ara JR, Martin J, Almarcegui C, Dolz I, Vilades E, Gil-arribas L, Fernandez FJ, Polo V, Larrosa JM, Pablo LE, Satue M. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years. Ophthalmology 2017;124:688-96. [DOI: 10.1016/j.ophtha.2017.01.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
8 Leung CK. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol. 2014;25:104-111. [PMID: 24370973 DOI: 10.1097/icu.0000000000000024] [Cited by in Crossref: 78] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
9 Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, Burgoyne CF. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest Ophthalmol Vis Sci 2014;55:1531-9. [PMID: 24474264 DOI: 10.1167/iovs.13-13382] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
10 Schmitt HM, Schlamp CL, Nickells RW. Targeting HDAC3 Activity with RGFP966 Protects Against Retinal Ganglion Cell Nuclear Atrophy and Apoptosis After Optic Nerve Injury. J Ocul Pharmacol Ther 2018;34:260-73. [PMID: 29211617 DOI: 10.1089/jop.2017.0059] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
11 Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW. Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury. Mol Neurodegener 2014;9:39. [PMID: 25261965 DOI: 10.1186/1750-1326-9-39] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
12 Ly A, Phu J, Katalinic P, Kalloniatis M. An evidence-based approach to the routine use of optical coherence tomography. Clin Exp Optom 2019;102:242-59. [PMID: 30560558 DOI: 10.1111/cxo.12847] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
13 Križaj D, Ryskamp DA, Tian N, Tezel G, Mitchell CH, Slepak VZ, Shestopalov VI. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res 2014;39:105-19. [PMID: 24144321 DOI: 10.3109/02713683.2013.836541] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 9.9] [Reference Citation Analysis]
14 Leung CKS. Detecting optic nerve head deformation and retinal nerve fiber layer thinning in glaucoma progression. Taiwan J Ophthalmol 2015;5:50-5. [PMID: 29018667 DOI: 10.1016/j.tjo.2015.04.003] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
15 Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013;33:17444-57. [PMID: 24174678 DOI: 10.1523/JNEUROSCI.5461-12.2013] [Cited by in Crossref: 140] [Cited by in F6Publishing: 108] [Article Influence: 15.6] [Reference Citation Analysis]
16 Wilsey LJ, Reynaud J, Cull G, Burgoyne CF, Fortune B. Macular Structure and Function in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:1892-900. [PMID: 27082305 DOI: 10.1167/iovs.15-18119] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
17 He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:574-86. [PMID: 24255047 DOI: 10.1167/iovs.13-13245] [Cited by in Crossref: 48] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]
18 Qin Z, He S, Yang C, Yung JS, Chen C, Leung CK, Liu K, Qu JY. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. Light Sci Appl 2020;9:79. [PMID: 32411364 DOI: 10.1038/s41377-020-0317-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
19 Le A, Chen J, Lesgart M, Gawargious BA, Suh SY, Demer JL. Age-dependent Deformation of the Optic Nerve Head and Peripapillary Retina by Horizontal Duction. Am J Ophthalmol 2020;209:107-16. [PMID: 31472159 DOI: 10.1016/j.ajo.2019.08.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
20 Huang XR, Zhou Y, Knighton RW, Kong W, Feuer WJ. Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas. Invest Ophthalmol Vis Sci 2012;53:5869-76. [PMID: 22836775 DOI: 10.1167/iovs.12-10001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
21 Cull GA, Reynaud J, Wang L, Cioffi GA, Burgoyne CF, Fortune B. Relationship between orbital optic nerve axon counts and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012;53:7766-73. [PMID: 23125332 DOI: 10.1167/iovs.12-10752] [Cited by in Crossref: 18] [Cited by in F6Publishing: 31] [Article Influence: 1.8] [Reference Citation Analysis]
22 Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res 2015;141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
23 Wang L, Burgoyne CF, Cull G, Thompson S, Fortune B. Static blood flow autoregulation in the optic nerve head in normal and experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:873-80. [PMID: 24436190 DOI: 10.1167/iovs.13-13716] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
24 Xu G, Weinreb RN, Leung CK. Optic Nerve Head Deformation in Glaucoma. Ophthalmology 2014;121:2362-70. [DOI: 10.1016/j.ophtha.2014.06.035] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
25 Ivers KM, Yang H, Gardiner SK, Qin L, Reyes L, Fortune B, Burgoyne CF. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT388-403. [PMID: 27409498 DOI: 10.1167/iovs.15-18666] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
26 Lim JKH, Li QX, He Z, Vingrys AJ, Chinnery HR, Mullen J, Bui BV, Nguyen CTO. Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease. Front Neurosci 2020;14:862. [PMID: 32903645 DOI: 10.3389/fnins.2020.00862] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
27 Cull G, Burgoyne CF, Fortune B, Wang L. Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma. Invest Ophthalmol Vis Sci 2013;54:4271-7. [PMID: 23737471 DOI: 10.1167/iovs.13-12013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
28 Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R, Ritch R, Rosen RB, Muhammad H, Dubra A, Chui TY. Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps. Invest Ophthalmol Vis Sci 2015;56:6208-16. [PMID: 26426403 DOI: 10.1167/iovs.15-17259] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
29 Ferrandez B, Ferreras A, Calvo P, Abadia B, Marin JM, Pajarin AB. Assessment of the retinal nerve fiber layer in individuals with obstructive sleep apnea. BMC Ophthalmol 2016;16:40. [PMID: 27090783 DOI: 10.1186/s12886-016-0216-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
30 Gardiner SK, Swanson WH, Goren D, Mansberger SL, Demirel S. Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage. Ophthalmology 2014;121:1359-69. [PMID: 24629617 DOI: 10.1016/j.ophtha.2014.01.020] [Cited by in Crossref: 83] [Cited by in F6Publishing: 93] [Article Influence: 10.4] [Reference Citation Analysis]
31 Wilsey L, Gowrisankaran S, Cull G, Hardin C, Burgoyne CF, Fortune B. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol 2017;134:111-28. [PMID: 28243926 DOI: 10.1007/s10633-017-9578-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
32 De Moraes CG, John SWM, Williams PA, Blumberg DM, Cioffi GA, Liebmann JM. Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. JAMA Ophthalmol 2021. [PMID: 34792559 DOI: 10.1001/jamaophthalmol.2021.4576] [Reference Citation Analysis]
33 Fortune B, Reynaud J, Wang L, Burgoyne CF. Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma. PLoS One 2013;8:e77831. [PMID: 24204989 DOI: 10.1371/journal.pone.0077831] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
34 Fry LE, Fahy E, Chrysostomou V, Hui F, Tang J, van Wijngaarden P, Petrou S, Crowston JG. The coma in glaucoma: Retinal ganglion cell dysfunction and recovery. Progress in Retinal and Eye Research 2018;65:77-92. [DOI: 10.1016/j.preteyeres.2018.04.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
35 Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Experimental Eye Research 2015;141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
36 Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci 2014;55:674-87. [PMID: 24398096 DOI: 10.1167/iovs.13-12811] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
37 Fortune B, Hardin C, Reynaud J, Cull G, Yang H, Wang L, Burgoyne CF. Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT404-12. [PMID: 27409499 DOI: 10.1167/iovs.15-18667] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
38 Cheloni R, Dewsbery SD, Denniss J. A Simple Subjective Evaluation of Enface OCT Reflectance Images Distinguishes Glaucoma From Healthy Eyes. Transl Vis Sci Technol 2021;10:31. [PMID: 34036303 DOI: 10.1167/tvst.10.6.31] [Reference Citation Analysis]
39 Vianna JR, Chauhan BC. How to detect progression in glaucoma. Prog Brain Res 2015;221:135-58. [PMID: 26518076 DOI: 10.1016/bs.pbr.2015.04.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
40 Luo X, Patel NB, Rajagopalan LP, Harwerth RS, Frishman LJ. Relation between macular retinal ganglion cell/inner plexiform layer thickness and multifocal electroretinogram measures in experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:4512-24. [PMID: 24970256 DOI: 10.1167/iovs.14-13937] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
41 Kim YK, Ha A, Lee WJ, Jeoung JW, Park KH. Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT: . Journal of Glaucoma 2017;26:1072-80. [DOI: 10.1097/ijg.0000000000000781] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
42 Chew SS, Martins A, Strouthidis N. Retinal and optic nerve changes in glaucoma: From animal study to clinical implication. Prog Brain Res 2015;220:173-83. [PMID: 26497790 DOI: 10.1016/bs.pbr.2015.04.004] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
43 Fortune B, Burgoyne CF, Cull G, Reynaud J, Wang L. Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. Invest Ophthalmol Vis Sci 2013;54:5653-61. [PMID: 23847322 DOI: 10.1167/iovs.13-12219] [Cited by in Crossref: 38] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
44 Hood DC, De Cuir N, Blumberg DM, Liebmann JM, Jarukasetphon R, Ritch R, De Moraes CG. A Single Wide-Field OCT Protocol Can Provide Compelling Information for the Diagnosis of Early Glaucoma. Transl Vis Sci Technol 2016;5:4. [PMID: 27847691 DOI: 10.1167/tvst.5.6.4] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 6.5] [Reference Citation Analysis]
45 Cvenkel B, Sustar M, Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol 2017;135:17-28. [DOI: 10.1007/s10633-017-9595-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
46 Chu PH, Li HY, Chin MP, So KF, Chan HH. Effect of lycium barbarum (wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection. PLoS One 2013;8:e81339. [PMID: 24339917 DOI: 10.1371/journal.pone.0081339] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
47 Jung KI, Jeon S, Shin DY, Lee J, Park CK. Pattern Electroretinograms in Preperimetric and Perimetric Glaucoma. Am J Ophthalmol 2020;215:118-26. [PMID: 32087144 DOI: 10.1016/j.ajo.2020.02.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
48 Hood DC, Chen MF, Lee D, Epstein B, Alhadeff P, Rosen RB, Ritch R, Dubra A, Chui TY. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans. Transl Vis Sci Technol 2015;4:12. [PMID: 25909035 DOI: 10.1167/tvst.4.2.12] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
49 Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 2013;120:2493-500. [PMID: 24053994 DOI: 10.1016/j.ophtha.2013.07.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
50 Fortune B, Reynaud J, Cull G, Burgoyne CF, Wang L. The Effect of Age on Optic Nerve Axon Counts, SDOCT Scan Quality, and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in Rhesus Monkeys. Transl Vis Sci Technol 2014;3:2. [PMID: 24932430 DOI: 10.1167/tvst.3.3.2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
51 Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Imaging axonal transport in the rat visual pathway. Biomed Opt Express 2013;4:364-86. [PMID: 23412846 DOI: 10.1364/BOE.4.000364] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
52 Christopher M, Bowd C, Belghith A, Goldbaum MH, Weinreb RN, Fazio MA, Girkin CA, Liebmann JM, Zangwill LM. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. Ophthalmology 2020;127:346-56. [PMID: 31718841 DOI: 10.1016/j.ophtha.2019.09.036] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 11.7] [Reference Citation Analysis]
53 Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015;141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
54 Ledolter AA, Monhart M, Schoetzau A, Todorova MG, Palmowski-Wolfe AM. Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields. Doc Ophthalmol 2015;130:197-209. [PMID: 25616700 DOI: 10.1007/s10633-015-9482-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
55 Goren D, Demirel S, Fortune B, Gardiner SK. Correlating perimetric indices with three nerve fiber layer thickness measures. Optom Vis Sci 2013;90:1353-60. [PMID: 24121407 DOI: 10.1097/OPX.0000000000000078] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
56 Mardin CY. [Structural diagnostics of course observation for glaucoma]. Ophthalmologe 2013;110:1036-44. [PMID: 24231910 DOI: 10.1007/s00347-012-2672-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]