BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang H, Qi J, Hardin C, Gardiner SK, Strouthidis NG, Fortune B, Burgoyne CF. Spectral-domain optical coherence tomography enhanced depth imaging of the normal and glaucomatous nonhuman primate optic nerve head. Invest Ophthalmol Vis Sci 2012;53:394-405. [PMID: 22159003 DOI: 10.1167/iovs.11-8244] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Belghith A, Bowd C, Medeiros FA, Hammel N, Yang Z, Weinreb RN, Zangwill LM. Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA). Invest Ophthalmol Vis Sci 2016;57:675-82. [PMID: 26906156 DOI: 10.1167/iovs.15-17671] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
2 Kim YC, Koo YH, Bin Hwang H, Kang KD. The Shape of Posterior Sclera as a Biometric Signature in Open-angle Glaucoma: An Intereye Comparison Study. J Glaucoma 2020;29:890-8. [PMID: 32555059 DOI: 10.1097/IJG.0000000000001573] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol 2012;15 Suppl 2:13-28. [PMID: 22805095 DOI: 10.1111/j.1463-5224.2012.01045.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
4 Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, Harwerth RS, Porter J. In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma. PLoS One 2015;10:e0134223. [PMID: 26230993 DOI: 10.1371/journal.pone.0134223] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
5 Fazio MA, Girard MJA, Lee W, Morris JS, Burgoyne CF, Downs JC. The Relationship Between Scleral Strain Change and Differential Cumulative Intraocular Pressure Exposure in the Nonhuman Primate Chronic Ocular Hypertension Model. Invest Ophthalmol Vis Sci 2019;60:4141-50. [PMID: 31598625 DOI: 10.1167/iovs.19-27060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Kasaragod D, Makita S, Hong YJ, Yasuno Y. Machine-learning based segmentation of the optic nerve head using multi-contrast Jones matrix optical coherence tomography with semi-automatic training dataset generation. Biomed Opt Express 2018;9:3220-43. [PMID: 29984095 DOI: 10.1364/BOE.9.003220] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kim TW, Kagemann L, Girard MJ, Strouthidis NG, Sung KR, Leung CK, Schuman JS, Wollstein G. Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res 2013;38:903-9. [PMID: 23768229 DOI: 10.3109/02713683.2013.800888] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
8 Ing E, Ivers KM, Yang H, Gardiner SK, Reynaud J, Cull G, Wang L, Burgoyne CF. Cupping in the Monkey Optic Nerve Transection Model Consists of Prelaminar Tissue Thinning in the Absence of Posterior Laminar Deformation. Invest Ophthalmol Vis Sci 2016;57:2914–2927. [PMID: 27168368 DOI: 10.1167/iovs.15-18975] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
9 He L, Ren R, Yang H, Hardin C, Reyes L, Reynaud J, Gardiner SK, Fortune B, Demirel S, Burgoyne CF. Anatomic vs. acquired image frame discordance in spectral domain optical coherence tomography minimum rim measurements. PLoS One 2014;9:e92225. [PMID: 24643069 DOI: 10.1371/journal.pone.0092225] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
10 Ivers KM, Yang H, Gardiner SK, Qin L, Reyes L, Fortune B, Burgoyne CF. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT388-403. [PMID: 27409498 DOI: 10.1167/iovs.15-18666] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
11 Coudrillier B, Geraldes DM, Vo NT, Atwood R, Reinhard C, Campbell IC, Raji Y, Albon J, Abel RL, Ethier CR. Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular Pressure-Induced Deformation of the Porcine Lamina Cribrosa. IEEE Trans Med Imaging 2016;35:988-99. [PMID: 26642429 DOI: 10.1109/TMI.2015.2504440] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
12 Tham YC, Cheng CY. Associations between chronic systemic diseases and primary open angle glaucoma: an epidemiological perspective. Clin Exp Ophthalmol 2017;45:24-32. [PMID: 27083150 DOI: 10.1111/ceo.12763] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
13 Rhodes LA, Huisingh C, Johnstone J, Fazio M, Smith B, Clark M, Downs JC, Owsley C, Girard MJ, Mari JM, Girkin C. Variation of laminar depth in normal eyes with age and race. Invest Ophthalmol Vis Sci 2014;55:8123-33. [PMID: 25414182 DOI: 10.1167/iovs.14-15251] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
14 Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, Burgoyne CF. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest Ophthalmol Vis Sci 2014;55:1531-9. [PMID: 24474264 DOI: 10.1167/iovs.13-13382] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
15 Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015;141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
16 Wanichwecharungruang B, Kongthaworn A, Wagner D, Ruamviboonsuk P, Seresirikachorn K. Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma. Clin Ophthalmol 2021;15:697-705. [PMID: 33633442 DOI: 10.2147/OPTH.S296115] [Reference Citation Analysis]
17 Ersöz MG, Kunak Mart D, Hazar L, Ayıntap E, Botan Güneş İ, Konya HÖ. Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma. Turk J Ophthalmol 2018;48:109-14. [PMID: 29988813 DOI: 10.4274/tjo.05882] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Johnstone J, Fazio M, Rojananuangnit K, Smith B, Clark M, Downs C, Owsley C, Girard MJ, Mari JM, Girkin CA. Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race. Invest Ophthalmol Vis Sci 2014;55:2004-9. [PMID: 24595390 DOI: 10.1167/iovs.13-12937] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 5.3] [Reference Citation Analysis]
19 Yang H, He L, Gardiner SK, Reynaud J, Williams G, Hardin C, Strouthidis NG, Downs JC, Fortune B, Burgoyne CF. Age-related differences in longitudinal structural change by spectral-domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:6409-20. [PMID: 25190652 DOI: 10.1167/iovs.14-14156] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
20 Chung HS, Sung KR, Lee JY, Na JH. Lamina Cribrosa-Related Parameters Assessed by Optical Coherence Tomography for Prediction of Future Glaucoma Progression. Curr Eye Res 2016;41:806-13. [PMID: 26268599 DOI: 10.3109/02713683.2015.1052519] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
21 Chew SS, Martins A, Strouthidis N. Retinal and optic nerve changes in glaucoma: From animal study to clinical implication. Prog Brain Res 2015;220:173-83. [PMID: 26497790 DOI: 10.1016/bs.pbr.2015.04.004] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
22 Campbell IC, Coudrillier B, Ross Ethier C. Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. Journal of Biomechanical Engineering 2014;136:021005. [DOI: 10.1115/1.4026286] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
23 Luo H, Yang H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Invest Ophthalmol Vis Sci 2018;59:2357-70. [PMID: 29847642 DOI: 10.1167/iovs.17-23456] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
24 Topcu H, Altan C, Cakmak S, Alagoz N, Pasaoglu IB, Solmaz B, Basarir B, Yasar T. Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects. Photodiagnosis Photodyn Ther 2020;31:101832. [PMID: 32454088 DOI: 10.1016/j.pdpdt.2020.101832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
25 Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, Zangwill LM. Structural Change Can Be Detected in Advanced-Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016;57:OCT511-8. [PMID: 27454660 DOI: 10.1167/iovs.15-18929] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 9.8] [Reference Citation Analysis]
26 He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:574-86. [PMID: 24255047 DOI: 10.1167/iovs.13-13245] [Cited by in Crossref: 48] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]