BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF. Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci 2011;52:345-63. [PMID: 20702834 DOI: 10.1167/iovs.09-5122] [Cited by in Crossref: 69] [Cited by in F6Publishing: 84] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Leung CKS. Detecting optic nerve head deformation and retinal nerve fiber layer thinning in glaucoma progression. Taiwan J Ophthalmol 2015;5:50-5. [PMID: 29018667 DOI: 10.1016/j.tjo.2015.04.003] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
2 Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model. Exp Eye Res 2016;145:173-86. [PMID: 26500195 DOI: 10.1016/j.exer.2015.10.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
3 Kim YC, Koo YH, Bin Hwang H, Kang KD. The Shape of Posterior Sclera as a Biometric Signature in Open-angle Glaucoma: An Intereye Comparison Study. J Glaucoma 2020;29:890-8. [PMID: 32555059 DOI: 10.1097/IJG.0000000000001573] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kim YW, Jeoung JW, Kim YK, Park KH. Clinical Implications of In Vivo Lamina Cribrosa Imaging in Glaucoma. J Glaucoma 2017;26:753-61. [PMID: 28787290 DOI: 10.1097/IJG.0000000000000728] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
5 Wang YX, Zhang Q, Yang H, Chen JD, Wang N, Jonas JB. Lamina cribrosa pore movement during acute intraocular pressure rise. Br J Ophthalmol 2020;104:800-6. [PMID: 31488430 DOI: 10.1136/bjophthalmol-2019-314016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Grytz R, Downs JC. A forward incremental prestressing method with application to inverse parameter estimations and eye-specific simulations of posterior scleral shells. Comput Methods Biomech Biomed Engin 2013;16:768-80. [PMID: 22224843 DOI: 10.1080/10255842.2011.641119] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
7 Zhao D, He Z, Vingrys AJ, Bui BV, Nguyen CT. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep 2015;3:e12507. [PMID: 26290528 DOI: 10.14814/phy2.12507] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
8 Bojikian KD, Moore DB, Chen PP, Slabaugh MA. Optic disc hemorrhage after phacoemulsification in patients with glaucoma. ISRN Ophthalmol 2014;2014:574054. [PMID: 24729899 DOI: 10.1155/2014/574054] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
9 Tamimi EA, Pyne JD, Muli DK, Axman KF, Howerton SJ, Davis MR, Girkin CA, Vande Geest JP. Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation. Invest Ophthalmol Vis Sci 2017;58:4235-46. [PMID: 28846773 DOI: 10.1167/iovs.17-22141] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
10 Križaj D, Ryskamp DA, Tian N, Tezel G, Mitchell CH, Slepak VZ, Shestopalov VI. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res 2014;39:105-19. [PMID: 24144321 DOI: 10.3109/02713683.2013.836541] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 9.9] [Reference Citation Analysis]
11 Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011;52:1206-19. [PMID: 21217108 DOI: 10.1167/iovs.10-5599] [Cited by in Crossref: 110] [Cited by in F6Publishing: 121] [Article Influence: 10.0] [Reference Citation Analysis]
12 Sigal IA, Grimm JL. A few good responses: which mechanical effects of IOP on the ONH to study? Invest Ophthalmol Vis Sci 2012;53:4270-8. [PMID: 22570343 DOI: 10.1167/iovs.11-8739] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
13 Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, Burgoyne CF. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest Ophthalmol Vis Sci 2014;55:1531-9. [PMID: 24474264 DOI: 10.1167/iovs.13-13382] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
14 Zhang C, Tatham AJ, Abe RY, Diniz-Filho A, Zangwill LM, Weinreb RN, Medeiros FA. Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Am J Ophthalmol 2016;166:29-36. [PMID: 26949135 DOI: 10.1016/j.ajo.2016.02.034] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
15 Wallace DM, Murphy-Ullrich JE, Downs JC, O'Brien CJ. The role of matricellular proteins in glaucoma. Matrix Biol 2014;37:174-82. [PMID: 24727033 DOI: 10.1016/j.matbio.2014.03.007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 6.6] [Reference Citation Analysis]
16 Zhang L, Beotra MR, Baskaran M, Tun TA, Wang X, Perera SA, Strouthidis NG, Aung T, Boote C, Girard MJA. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans. Invest Ophthalmol Vis Sci 2020;61:27. [PMID: 32186670 DOI: 10.1167/iovs.61.3.27] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, Harwerth RS, Porter J. In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma. PLoS One 2015;10:e0134223. [PMID: 26230993 DOI: 10.1371/journal.pone.0134223] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wu Z, Xu G, Weinreb RN, Yu M, Leung CK. Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement. Ophthalmology 2015;122:1317-29. [PMID: 25972259 DOI: 10.1016/j.ophtha.2015.02.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
19 He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:574-86. [PMID: 24255047 DOI: 10.1167/iovs.13-13245] [Cited by in Crossref: 48] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]
20 Hu R, Shen L, Wang X. Optic disk hemorrhage and vitreous hemorrhage after phacoemulsification in a normal tension glaucoma patient: A case report. Medicine (Baltimore) 2019;98:e16215. [PMID: 31261575 DOI: 10.1097/MD.0000000000016215] [Reference Citation Analysis]
21 Feola AJ, Coudrillier B, Mulvihill J, Geraldes DM, Vo NT, Albon J, Abel RL, Samuels BC, Ethier CR. Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure. Invest Ophthalmol Vis Sci 2017;58:2070-8. [PMID: 28389675 DOI: 10.1167/iovs.16-21393] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
22 Quillen S, Schaub J, Quigley H, Pease M, Korneva A, Kimball E. Astrocyte responses to experimental glaucoma in mouse optic nerve head. PLoS One 2020;15:e0238104. [PMID: 32822415 DOI: 10.1371/journal.pone.0238104] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
23 Reynaud J, Cull G, Wang L, Fortune B, Gardiner S, Burgoyne CF, Cioffi GA. Automated quantification of optic nerve axons in primate glaucomatous and normal eyes--method and comparison to semi-automated manual quantification. Invest Ophthalmol Vis Sci 2012;53:2951-9. [PMID: 22467571 DOI: 10.1167/iovs.11-9274] [Cited by in Crossref: 20] [Cited by in F6Publishing: 29] [Article Influence: 2.0] [Reference Citation Analysis]
24 Kim J, Gardiner SK, Ramazzotti A, Karuppanan U, Bruno L, Girkin CA, Downs JC, Fazio MA. Strain by virtual extensometers and video-imaging optical coherence tomography as a repeatable metric for IOP-Induced optic nerve head deformations. Exp Eye Res 2021;211:108724. [PMID: 34375590 DOI: 10.1016/j.exer.2021.108724] [Reference Citation Analysis]
25 Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp Eye Res 2015;139:1-12. [PMID: 26021973 DOI: 10.1016/j.exer.2015.05.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wang L, Cull G, Burgoyne CF, Thompson S, Fortune B. Longitudinal alterations in the dynamic autoregulation of optic nerve head blood flow revealed in experimental glaucoma. Invest Ophthalmol Vis Sci 2014;55:3509-16. [PMID: 24812551 DOI: 10.1167/iovs.14-14020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
27 Fazio MA, Girard MJA, Lee W, Morris JS, Burgoyne CF, Downs JC. The Relationship Between Scleral Strain Change and Differential Cumulative Intraocular Pressure Exposure in the Nonhuman Primate Chronic Ocular Hypertension Model. Invest Ophthalmol Vis Sci 2019;60:4141-50. [PMID: 31598625 DOI: 10.1167/iovs.19-27060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
28 Kim YW, Kim DW, Jeoung JW, Kim DM, Park KH. Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa. Eye (Lond) 2015;29:1368-74. [PMID: 26293139 DOI: 10.1038/eye.2015.162] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
29 Belforte N, Sande PH, de Zavalía N, Dorfman D, Rosenstein RE. Therapeutic benefit of radial optic neurotomy in a rat model of glaucoma. PLoS One 2012;7:e34574. [PMID: 22479647 DOI: 10.1371/journal.pone.0034574] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
30 Tan B, MacLellan B, Mason E, Bizheva K. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system. PLoS One 2018;13:e0193592. [PMID: 29509807 DOI: 10.1371/journal.pone.0193592] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Lee S, Choi DYD, Lim DH, Chung TY, Han JC, Kee C. Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes. Korean J Ophthalmol 2018;32:95-102. [PMID: 29611373 DOI: 10.3341/kjo.2017.0111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Torres LA, Vianna JR, Jarrar F, Sharpe GP, Araie M, Caprioli J, Demirel S, Girkin CA, Hangai M, Iwase A, Liebmann JM, Mardin CY, Nakazawa T, Quigley HA, Scheuerle AF, Sugiyama K, Tanihara H, Tomita G, Yanagi Y, Burgoyne CF, Chauhan BC. Protruded retinal layers within the optic nerve head neuroretinal rim. Acta Ophthalmol 2018;96:e493-502. [PMID: 30105788 DOI: 10.1111/aos.13657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Wallace DM, Pokrovskaya O, O'Brien CJ. The Function of Matricellular Proteins in the Lamina Cribrosa and Trabecular Meshwork in Glaucoma. J Ocul Pharmacol Ther 2015;31:386-95. [PMID: 25848892 DOI: 10.1089/jop.2014.0163] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
34 Sigler EJ, Mascarenhas KG, Tsai JC, Loewen NA. Clinicopathologic correlation of disc and peripapillary region using SD-OCT. Optom Vis Sci 2013;90:84-93. [PMID: 23232801 DOI: 10.1097/OPX.0b013e318278fc15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
35 McAllister F, Harwerth R, Patel N. Assessing the True Intraocular Pressure in the Non-human Primate. Optom Vis Sci 2018;95:113-9. [PMID: 29370024 DOI: 10.1097/OPX.0000000000001171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
36 Stowell C, Arbogast B, Cioffi G, Burgoyne C, Zhou A. Retinal proteomic changes following unilateral optic nerve transection and early experimental glaucoma in non-human primate eyes. Exp Eye Res 2011;93:13-28. [PMID: 21530506 DOI: 10.1016/j.exer.2011.03.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
37 Lavinsky F, Benfica CZ, Castoldi N, Cruz do Carmo Chaves AE, Mello PAA. Measurement of the hypotenuse of the vertical optic nerve head cup with spectral-domain optical coherence tomography for the structural diagnosis of glaucoma. Clin Ophthalmol 2018;12:215-25. [PMID: 29416313 DOI: 10.2147/OPTH.S152772] [Reference Citation Analysis]
38 Yamanari M, Ishii K, Fukuda S, Lim Y, Duan L, Makita S, Miura M, Oshika T, Yasuno Y. Optical rheology of porcine sclera by birefringence imaging. PLoS One 2012;7:e44026. [PMID: 22970158 DOI: 10.1371/journal.pone.0044026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
39 Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res 2015;141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
40 Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci 2011;52:7109-21. [PMID: 21715355 DOI: 10.1167/iovs.11-7448] [Cited by in Crossref: 79] [Cited by in F6Publishing: 91] [Article Influence: 7.2] [Reference Citation Analysis]
41 Ivers KM, Yang H, Gardiner SK, Qin L, Reyes L, Fortune B, Burgoyne CF. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT388-403. [PMID: 27409498 DOI: 10.1167/iovs.15-18666] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
42 Shoji T, Kuroda H, Suzuki M, Baba M, Hangai M, Araie M, Yoneya S. Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser. PLoS One 2014;9:e116305. [PMID: 25551632 DOI: 10.1371/journal.pone.0116305] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
43 Cull G, Burgoyne CF, Fortune B, Wang L. Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma. Invest Ophthalmol Vis Sci 2013;54:4271-7. [PMID: 23737471 DOI: 10.1167/iovs.13-12013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
44 Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020;77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
45 Cakmak S, Altan C, Topcu H, Arici M, Pasaoglu I, Basarir B, Solmaz B. Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography. Curr Eye Res 2019;44:968-74. [PMID: 30963796 DOI: 10.1080/02713683.2019.1604971] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
46 Voorhees AP, Jan NJ, Hua Y, Yang B, Sigal IA. Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications. Acta Biomater 2018;79:113-22. [PMID: 30142444 DOI: 10.1016/j.actbio.2018.08.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
47 Girkin CA, Fazio MA, Bowd C, Medeiros FA, Weinreb RN, Liebmann JM, Proudfoot J, Zangwill LM, Belghith A. Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES). Invest Ophthalmol Vis Sci 2019;60:4496-502. [PMID: 31661550 DOI: 10.1167/iovs.19-26645] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Zhang Q, Jan C, Guo CY, Wang FH, Liang YB, Cao K, Zhang Z, Yang DY, Thomas R, Wang NL; Handan Eye Study Group. Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma. Clin Exp Ophthalmol 2018;46:389-99. [PMID: 28858414 DOI: 10.1111/ceo.13042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
49 Kimball EC, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Oveson BC, Quigley HA. Experimental scleral cross-linking increases glaucoma damage in a mouse model. Exp Eye Res 2014;128:129-40. [PMID: 25285424 DOI: 10.1016/j.exer.2014.08.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
50 Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 2011;52:5656-69. [PMID: 21519033 DOI: 10.1167/iovs.10-6927] [Cited by in Crossref: 110] [Cited by in F6Publishing: 105] [Article Influence: 10.0] [Reference Citation Analysis]
51 Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci 2012;53:3939-50. [PMID: 22589428 DOI: 10.1167/iovs.12-9979] [Cited by in Crossref: 41] [Cited by in F6Publishing: 54] [Article Influence: 4.1] [Reference Citation Analysis]
52 Schwaner SA, Feola AJ, Ethier CR. Factors affecting optic nerve head biomechanics in a rat model of glaucoma. J R Soc Interface 2020;17:20190695. [PMID: 32228401 DOI: 10.1098/rsif.2019.0695] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
53 El Chehab H, Le Corre A, Giraud J, Ract-madoux G, Swalduz B, Dot C. Efficacité d’un traitement prophylactique hypotonisant dans l’hypertonie oculaire induite après injections intravitréennes. Journal Français d'Ophtalmologie 2012;35:614-21. [DOI: 10.1016/j.jfo.2012.02.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
54 Fortune B, Reynaud J, Wang L, Burgoyne CF. Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma. PLoS One 2013;8:e77831. [PMID: 24204989 DOI: 10.1371/journal.pone.0077831] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
55 Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017;59:158-77. [PMID: 28465248 DOI: 10.1016/j.preteyeres.2017.04.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
56 Girkin CA, Belghith A, Bowd C, Medeiros FA, Weinreb RN, Liebmann JM, Proudfoot JA, Zangwill LM, Fazio MA. Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study. Invest Ophthalmol Vis Sci 2021;62:12. [PMID: 33844828 DOI: 10.1167/iovs.62.4.12] [Reference Citation Analysis]
57 Gardiner SK, Fortune B, Wang L, Downs JC, Burgoyne CF. Intraocular pressure magnitude and variability as predictors of rates of structural change in non-human primate experimental glaucoma. Exp Eye Res 2012;103:1-8. [PMID: 22960316 DOI: 10.1016/j.exer.2012.07.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
58 Lee KM, Kim TW, Weinreb RN, Lee EJ, Girard MJ, Mari JM. Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects. PLoS One 2014;9:e114935. [PMID: 25531761 DOI: 10.1371/journal.pone.0114935] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
59 Grytz R, Sigal IA, Ruberti JW, Meschke G, Downs JC. Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach. Mech Mater 2012;44:99-109. [PMID: 22389541 DOI: 10.1016/j.mechmat.2011.07.004] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
60 Aslan F, Şahinoğlu-Keşkek N, Altındal EU. Effect of pseudoexfoliation syndrome on lamina cribrosa morphology after uneventful phacoemulsification. Int Ophthalmol 2021. [PMID: 34609671 DOI: 10.1007/s10792-021-02046-y] [Reference Citation Analysis]
61 Grytz R, Girkin CA, Libertiaux V, Downs JC. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma(). Mech Res Commun 2012;42:92-106. [PMID: 23109748 DOI: 10.1016/j.mechrescom.2012.01.007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
62 Tan B, Gurdita A, Choh V, Joos KM, Prasad R, Bizheva K. Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation. Sci Rep 2018;8:7727. [PMID: 29769654 DOI: 10.1038/s41598-018-25938-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
63 Chan ASY, Tun TA, Allen JC, Lynn MN, Tun SBB, Barathi VA, Girard MJA, Aung T, Aihara M. Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension. Sci Rep 2020;10:14709. [PMID: 32895414 DOI: 10.1038/s41598-020-71555-0] [Reference Citation Analysis]
64 Yang B, Jan NJ, Brazile B, Voorhees A, Lathrop KL, Sigal IA. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues. J Biophotonics 2018;11:e201700356. [PMID: 29633576 DOI: 10.1002/jbio.201700356] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
65 El Chehab H, Le Corre A, Agard E, Ract-Madoux G, Coste O, Dot C. Effect of topical pressure-lowering medication on prevention of intraocular pressure spikes after intravitreal injection. Eur J Ophthalmol 2013;23:277-83. [PMID: 23161177 DOI: 10.5301/ejo.5000159] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
66 Girard MJ, Strouthidis NG, Desjardins A, Mari JM, Ethier CR. In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface 2013;10:20130459. [PMID: 23883953 DOI: 10.1098/rsif.2013.0459] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
67 Liu B, McNally S, Kilpatrick JI, Jarvis SP, O'Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol 2018;63:56-74. [PMID: 28666629 DOI: 10.1016/j.survophthal.2017.06.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
68 Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2020;74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
69 Han JC, Choi D, Kwun YK, Suh W, Kee C. Evaluation of lamina cribrosa thickness and depth in ocular hypertension. Jpn J Ophthalmol 2016;60:14-9. [DOI: 10.1007/s10384-015-0407-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
70 Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the Lamina Cribrosa in Response to Acute Intraocular Pressure Elevation in Normal Individuals of African and European Descent. Invest Ophthalmol Vis Sci 2016;57:3331-9. [PMID: 27367500 DOI: 10.1167/iovs.15-17940] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
71 Reynaud J, Lockwood H, Gardiner SK, Williams G, Yang H, Burgoyne CF. Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change. Invest Ophthalmol Vis Sci 2016;57:3451-69. [PMID: 27362781 DOI: 10.1167/iovs.16-19474] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
72 Antwi-Boasiako K, Carter-Dawson L, Harwerth R, Gondo M, Patel N. The Relationship Between Macula Retinal Ganglion Cell Density and Visual Function in the Nonhuman Primate. Invest Ophthalmol Vis Sci 2021;62:5. [PMID: 33393971 DOI: 10.1167/iovs.62.1.5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2011;52:7987-95. [PMID: 21896851 DOI: 10.1167/iovs.11-7918] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.9] [Reference Citation Analysis]
74 Lockwood H, Reynaud J, Gardiner S, Grimm J, Libertiaux V, Downs JC, Yang H, Burgoyne CF. Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results. Invest Ophthalmol Vis Sci 2015;56:1618-37. [PMID: 25650423 DOI: 10.1167/iovs.14-15967] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
75 Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Prog Retin Eye Res 2017;59:1-52. [PMID: 28300644 DOI: 10.1016/j.preteyeres.2017.03.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
76 Yazdani S, Naderi Beni A, Pakravan M. Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT. Ophthalmol Glaucoma 2021;4:95-101. [PMID: 32827800 DOI: 10.1016/j.ogla.2020.08.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Steinhart MR, Cone-Kimball E, Nguyen C, Nguyen TD, Pease ME, Chakravarti S, Oglesby EN, Quigley HA. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice. Exp Eye Res 2014;119:54-60. [PMID: 24368172 DOI: 10.1016/j.exer.2013.12.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
78 Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, Harwerth RS, Porter J. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Invest Ophthalmol Vis Sci 2011;52:5473-80. [PMID: 21546533 DOI: 10.1167/iovs.11-7347] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
79 Patel NB, Sullivan-Mee M, Harwerth RS. The relationship between retinal nerve fiber layer thickness and optic nerve head neuroretinal rim tissue in glaucoma. Invest Ophthalmol Vis Sci 2014;55:6802-16. [PMID: 25249610 DOI: 10.1167/iovs.14-14191] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
80 Yamanari M, Nagase S, Fukuda S, Ishii K, Tanaka R, Yasui T, Oshika T, Miura M, Yasuno Y. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. Biomed Opt Express 2014;5:1391-402. [PMID: 24877003 DOI: 10.1364/BOE.5.001391] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
81 Wallace DM, O'Brien CJ. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res 2016;142:102-9. [PMID: 26675406 DOI: 10.1016/j.exer.2014.12.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
82 Pérez-bartolomé F, Martínez de la Casa JM, Camacho Bosca I, Sáenz-francés F, Aguilar-munoa S, Martín-juan A, Garcia-feijoo J. Correlating Corneal Biomechanics and Ocular Biometric Properties with Lamina Cribrosa Measurements in Healthy Subjects. Seminars in Ophthalmology 2017. [DOI: 10.1080/08820538.2016.1208763] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
83 Yang H, Ren R, Lockwood H, Williams G, Libertiaux V, Downs C, Gardiner SK, Burgoyne CF. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change. Invest Ophthalmol Vis Sci 2015;56:7661-78. [PMID: 26641545 DOI: 10.1167/iovs.15-17624] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
84 Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Gardiner SK, Burgoyne CF. 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues. Methods Mol Biol 2018;1695:207-67. [PMID: 29190029 DOI: 10.1007/978-1-4939-7407-8_17] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
85 Panda-jonas S, Xu L, Yang H, Wang YX, Jonas SB, Jonas JB. Optic nerve head morphology in young patients after antiglaucomatous filtering surgery. Acta Ophthalmologica 2014;92:59-64. [DOI: 10.1111/j.1755-3768.2012.02570.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
86 Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013;353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
87 Fan N, Tan J, Liu X. Is "normal tension glaucoma" glaucoma? Med Hypotheses 2019;133:109405. [PMID: 31563827 DOI: 10.1016/j.mehy.2019.109405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]