BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, Burgoyne CF, Downs JC. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci 2010;51:295-307. [PMID: 19696175 DOI: 10.1167/iovs.09-4016] [Cited by in Crossref: 69] [Cited by in F6Publishing: 81] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci 2012;53:7328-35. [PMID: 23033392 DOI: 10.1167/iovs.12-10632] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
2 Downs JC. Optic nerve head biomechanics in aging and disease. Exp Eye Res 2015;133:19-29. [PMID: 25819451 DOI: 10.1016/j.exer.2015.02.011] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 10.4] [Reference Citation Analysis]
3 Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol 2011;10:371-82. [DOI: 10.1007/s10237-010-0240-8] [Cited by in Crossref: 79] [Cited by in F6Publishing: 85] [Article Influence: 6.6] [Reference Citation Analysis]
4 Li J, Wang S, Manapuram RK, Singh M, Menodiado FM, Aglyamov S, Emelianov S, Twa MD, Larin KV. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J Biomed Opt 2013;18:121503. [PMID: 24089292 DOI: 10.1117/1.JBO.18.12.121503] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
5 Jia X, Yu J, Liao SH, Duan XC. Biomechanics of the sclera and effects on intraocular pressure. Int J Ophthalmol 2016;9:1824-31. [PMID: 28003987 DOI: 10.18240/ijo.2016.12.21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
6 McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol 2012;15 Suppl 2:13-28. [PMID: 22805095 DOI: 10.1111/j.1463-5224.2012.01045.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
7 Voorhees AP, Jan NJ, Sigal IA. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Acta Biomater 2017;58:278-90. [PMID: 28528864 DOI: 10.1016/j.actbio.2017.05.042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
8 Caprioli J, Varma R. Intraocular pressure: modulation as treatment for glaucoma. Am J Ophthalmol 2011;152:340-344.e2. [PMID: 21855671 DOI: 10.1016/j.ajo.2011.05.029] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
9 Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmologica 2011;89:505-14. [DOI: 10.1111/j.1755-3768.2010.01915.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
10 Park SA, Komáromy AM. Biomechanics of the optic nerve head and sclera in canine glaucoma: A brief review. Vet Ophthalmol 2021. [PMID: 34402566 DOI: 10.1111/vop.12923] [Reference Citation Analysis]
11 Grytz R, Downs JC. A forward incremental prestressing method with application to inverse parameter estimations and eye-specific simulations of posterior scleral shells. Comput Methods Biomech Biomed Engin 2013;16:768-80. [PMID: 22224843 DOI: 10.1080/10255842.2011.641119] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
12 Tatham AJ, Miki A, Weinreb RN, Zangwill LM, Medeiros FA. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology 2014;121:110-8. [PMID: 24144452 DOI: 10.1016/j.ophtha.2013.08.018] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 6.6] [Reference Citation Analysis]
13 Hua Y, Voorhees AP, Sigal IA. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci 2018;59:154-65. [PMID: 29332130 DOI: 10.1167/iovs.17-22488] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
14 Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, Harwerth RS, Porter J. In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma. PLoS One 2015;10:e0134223. [PMID: 26230993 DOI: 10.1371/journal.pone.0134223] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
15 Sigal IA, Grimm JL. A few good responses: which mechanical effects of IOP on the ONH to study? Invest Ophthalmol Vis Sci 2012;53:4270-8. [PMID: 22570343 DOI: 10.1167/iovs.11-8739] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
16 Fazio MA, Grytz R, Bruno L, Girard MJ, Gardiner S, Girkin CA, Downs JC. Regional variations in mechanical strain in the posterior human sclera. Invest Ophthalmol Vis Sci 2012;53:5326-33. [PMID: 22700704 DOI: 10.1167/iovs.12-9668] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 4.5] [Reference Citation Analysis]
17 Sigal IA, Yang H, Roberts MD, Grimm JL, Burgoyne CF, Demirel S, Downs JC. IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related? Invest Ophthalmol Vis Sci 2011;52:9023-32. [PMID: 21989723 DOI: 10.1167/iovs.11-8183] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 6.0] [Reference Citation Analysis]
18 Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res 2015;141:125-38. [PMID: 26115620 DOI: 10.1016/j.exer.2015.05.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
19 Chuangsuwanich T, Hung PT, Wang X, Liang LH, Schmetterer L, Boote C, Girard MJA. Morphometric, Hemodynamic, and Biomechanical Factors Influencing Blood Flow and Oxygen Concentration in the Human Lamina Cribrosa. Invest Ophthalmol Vis Sci 2020;61:3. [PMID: 32271886 DOI: 10.1167/iovs.61.4.3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:9431-7. [PMID: 22058335 DOI: 10.1167/iovs.11-7922] [Cited by in Crossref: 66] [Cited by in F6Publishing: 83] [Article Influence: 6.0] [Reference Citation Analysis]
21 Tran H, Jan NJ, Hu D, Voorhees A, Schuman JS, Smith MA, Wollstein G, Sigal IA. Formalin Fixation and Cryosectioning Cause Only Minimal Changes in Shape or Size of Ocular Tissues. Sci Rep 2017;7:12065. [PMID: 28935889 DOI: 10.1038/s41598-017-12006-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
22 Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011;93:4-12. [PMID: 20883693 DOI: 10.1016/j.exer.2010.09.014] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 7.3] [Reference Citation Analysis]
23 Feola AJ, Coudrillier B, Mulvihill J, Geraldes DM, Vo NT, Albon J, Abel RL, Samuels BC, Ethier CR. Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure. Invest Ophthalmol Vis Sci 2017;58:2070-8. [PMID: 28389675 DOI: 10.1167/iovs.16-21393] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
24 Sigal IA. An applet to estimate the IOP-induced stress and strain within the optic nerve head. Invest Ophthalmol Vis Sci 2011;52:5497-506. [PMID: 21527378 DOI: 10.1167/iovs.10-7141] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
25 Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, Brown DJ. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci 2014;55:1-15. [PMID: 24334450 DOI: 10.1167/iovs.13-12724] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 8.4] [Reference Citation Analysis]
26 Macgregor S, Hewitt AW, Hysi PG, Ruddle JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B, Sanfilippo PG, Carbonaro F, Tah V, Li YJ, Bennett SL, Craig JE, Montgomery GW, Tran-Viet KN, Brown NL, Spector TD, Martin NG, Young TL, Hammond CJ, Mackey DA. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet 2010;19:2716-24. [PMID: 20395239 DOI: 10.1093/hmg/ddq144] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 8.3] [Reference Citation Analysis]
27 Yulova AG, Zelyanina EV. [Intravitreal injection as a possible model for studying biomechanics of fibrous tunic]. Vestn Oftalmol 2016;132:85-9. [PMID: 27347571 DOI: 10.17116/oftalma2016132285-89] [Reference Citation Analysis]
28 Fazio MA, Grytz R, Morris JS, Bruno L, Gardiner SK, Girkin CA, Downs JC. Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol 2014;13:551-63. [PMID: 23896936 DOI: 10.1007/s10237-013-0517-9] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 5.8] [Reference Citation Analysis]
29 Gómez-mariscal M, Puerto B, Muñoz-negrete FJ, de Juan V, Rebolleda G. Acute and chronic optic nerve head biomechanics and intraocular pressure changes in patients receiving multiple intravitreal injections of anti-VEGF. Graefes Arch Clin Exp Ophthalmol 2019;257:2221-31. [DOI: 10.1007/s00417-019-04354-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
30 Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Comput Methods Programs Biomed 2021;198:105794. [PMID: 33099262 DOI: 10.1016/j.cmpb.2020.105794] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
31 Pavlatos E, Ma Y, Clayson K, Pan X, Liu J. Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation. Invest Ophthalmol Vis Sci 2018;59:3779-88. [PMID: 30046819 DOI: 10.1167/iovs.18-24462] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
32 Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res 2015;141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
33 Zhang LF, Hargens AR. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiol Rev 2018;98:59-87. [PMID: 29167331 DOI: 10.1152/physrev.00017.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 70] [Article Influence: 18.0] [Reference Citation Analysis]
34 Liu Y, Ma L, Gao W, Liu Z, Wang S, Liu L, Guo X, Qian X, Li L. THE INFERENCE OF THE CHANGES OF AXONAL TRANSPORT OF OPTIC NERVE BY DEFORMATIONS OF LAMINA CRIBROSA. J Mech Med Biol 2020;20:2040027. [DOI: 10.1142/s0219519420400278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Hua Y, Voorhees AP, Jan NJ, Wang B, Waxman S, Schuman JS, Sigal IA. Role of radially aligned scleral collagen fibers in optic nerve head biomechanics. Exp Eye Res 2020;199:108188. [PMID: 32805265 DOI: 10.1016/j.exer.2020.108188] [Reference Citation Analysis]
36 Grytz R, Krishnan K, Whitley R, Libertiaux V, Sigal IA, Girkin CA, Downs JC. A mesh-free approach to incorporate complex anisotropic and heterogeneous material properties into eye-specific finite element models. Computer Methods in Applied Mechanics and Engineering 2020;358:112654. [DOI: 10.1016/j.cma.2019.112654] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
37 Park JH, Choi KR, Kim CY, Kim SS. The height of the posterior staphyloma and corneal hysteresis is associated with the scleral thickness at the staphyloma region in highly myopic normal-tension glaucoma eyes. Br J Ophthalmol 2016;100:1251-6. [PMID: 26659712 DOI: 10.1136/bjophthalmol-2015-307292] [Reference Citation Analysis]
38 Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the Lamina Cribrosa in Response to Acute Intraocular Pressure Elevation in Normal Individuals of African and European Descent. Invest Ophthalmol Vis Sci 2016;57:3331-9. [PMID: 27367500 DOI: 10.1167/iovs.15-17940] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
39 Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF. Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci 2011;52:345-63. [PMID: 20702834 DOI: 10.1167/iovs.09-5122] [Cited by in Crossref: 69] [Cited by in F6Publishing: 84] [Article Influence: 6.3] [Reference Citation Analysis]
40 Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol 2012;153:10-6.e1. [PMID: 21864827 DOI: 10.1016/j.ajo.2011.05.037] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 5.3] [Reference Citation Analysis]
41 Reynaud J, Lockwood H, Gardiner SK, Williams G, Yang H, Burgoyne CF. Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change. Invest Ophthalmol Vis Sci 2016;57:3451-69. [PMID: 27362781 DOI: 10.1167/iovs.16-19474] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
42 Baptista PM, Ambrosio R, Oliveira L, Meneres P, Beirao JM. Corneal Biomechanical Assessment with Ultra-High-Speed Scheimpflug Imaging During Non-Contact Tonometry: A Prospective Review. Clin Ophthalmol 2021;15:1409-23. [PMID: 33854295 DOI: 10.2147/OPTH.S301179] [Reference Citation Analysis]
43 Karimi A, Razaghi R, Girkin CA, Downs JC. Ocular biomechanics due to ground blast reinforcement. Comput Methods Programs Biomed 2021;211:106425. [PMID: 34598082 DOI: 10.1016/j.cmpb.2021.106425] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci 2011;52:1896-907. [PMID: 20881292 DOI: 10.1167/iovs.10-5500] [Cited by in Crossref: 89] [Cited by in F6Publishing: 96] [Article Influence: 8.1] [Reference Citation Analysis]
45 Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, Downs JC. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci 2014;55:7189-98. [PMID: 25237162 DOI: 10.1167/iovs.14-14894] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 5.5] [Reference Citation Analysis]
46 Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 2011;52:5656-69. [PMID: 21519033 DOI: 10.1167/iovs.10-6927] [Cited by in Crossref: 110] [Cited by in F6Publishing: 105] [Article Influence: 10.0] [Reference Citation Analysis]
47 Brazile BL, Hua Y, Jan NJ, Wallace J, Gogola A, Sigal IA. Thin Lamina Cribrosa Beams Have Different Collagen Microstructure Than Thick Beams. Invest Ophthalmol Vis Sci 2018;59:4653-61. [PMID: 30372734 DOI: 10.1167/iovs.18-24763] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
48 Chung CW, Girard MJ, Jan NJ, Sigal IA. Use and Misuse of Laplace's Law in Ophthalmology. Invest Ophthalmol Vis Sci 2016;57:236-45. [PMID: 26803799 DOI: 10.1167/iovs.15-18053] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
49 Grytz R, Girkin CA, Libertiaux V, Downs JC. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma(). Mech Res Commun 2012;42:92-106. [PMID: 23109748 DOI: 10.1016/j.mechrescom.2012.01.007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
50 Gizzi C, Cellini M, Campos EC. In vivo assessment of changes in corneal hysteresis and lamina cribrosa position during acute intraocular pressure elevation in eyes with markedly asymmetrical glaucoma. Clin Ophthalmol 2018;12:481-92. [PMID: 29588569 DOI: 10.2147/OPTH.S151532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
51 Sawada Y, Araie M, Ishikawa M, Yoshitomi T. Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects. Ophthalmology 2017;124:1600-11. [DOI: 10.1016/j.ophtha.2017.04.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
52 Kim YW, Lee DH, Lim HB, Oh BL, Kim YK, Girard MJA, Mari JM, Park KH, Jeoung JW. Age-Dependent Variation of Lamina Cribrosa Displacement During the Standardized Valsalva Maneuver. Sci Rep 2019;9:6645. [PMID: 31040379 DOI: 10.1038/s41598-019-43206-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Voorhees AP, Hua Y, Brazile BL, Wang B, Waxman S, Schuman JS, Sigal IA. So-Called Lamina Cribrosa Defects May Mitigate IOP-Induced Neural Tissue Insult. Invest Ophthalmol Vis Sci 2020;61:15. [PMID: 33165501 DOI: 10.1167/iovs.61.13.15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Sigal IA, Bilonick RA, Kagemann L, Wollstein G, Ishikawa H, Schuman JS, Grimm JL. The optic nerve head as a robust biomechanical system. Invest Ophthalmol Vis Sci 2012;53:2658-67. [PMID: 22427598 DOI: 10.1167/iovs.11-9303] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
55 Pijanka JK, Markov PP, Midgett D, Paterson NG, White N, Blain EJ, Nguyen TD, Quigley HA, Boote C. Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head. J Biophotonics 2019;12:e201800376. [PMID: 30578592 DOI: 10.1002/jbio.201800376] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
56 Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Prog Retin Eye Res 2017;59:1-52. [PMID: 28300644 DOI: 10.1016/j.preteyeres.2017.03.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
57 Tran H, Grimm J, Wang B, Smith MA, Gogola A, Nelson S, Tyler-Kabara E, Schuman J, Wollstein G, Sigal IA. Mapping in-vivo optic nerve head strains caused by intraocular and intracranial pressures. Proc SPIE Int Soc Opt Eng 2017;10067:100670B. [PMID: 29618852 DOI: 10.1117/12.2257360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
58 Tezel G. A broad perspective on the molecular regulation of retinal ganglion cell degeneration in glaucoma. Prog Brain Res 2020;256:49-77. [PMID: 32958215 DOI: 10.1016/bs.pbr.2020.05.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 Lockwood H, Reynaud J, Gardiner S, Grimm J, Libertiaux V, Downs JC, Yang H, Burgoyne CF. Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results. Invest Ophthalmol Vis Sci 2015;56:1618-37. [PMID: 25650423 DOI: 10.1167/iovs.14-15967] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
60 Strouthidis NG, Girard MJ. Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Current Opinion in Pharmacology 2013;13:83-9. [DOI: 10.1016/j.coph.2012.09.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
61 Shin DY, Jeon SJ, Kim EK, Jung KI, Park HYL, Park CK. Association between peripapillary scleral deformation and choroidal microvascular circulation in glaucoma. Sci Rep 2019;9:18503. [PMID: 31811238 DOI: 10.1038/s41598-019-54882-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Coudrillier B, Geraldes DM, Vo NT, Atwood R, Reinhard C, Campbell IC, Raji Y, Albon J, Abel RL, Ethier CR. Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular Pressure-Induced Deformation of the Porcine Lamina Cribrosa. IEEE Trans Med Imaging 2016;35:988-99. [PMID: 26642429 DOI: 10.1109/TMI.2015.2504440] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
63 Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci 2010;51:5675-84. [PMID: 20538991 DOI: 10.1167/iovs.10-5411] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 4.8] [Reference Citation Analysis]
64 Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017;59:158-77. [PMID: 28465248 DOI: 10.1016/j.preteyeres.2017.04.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
65 Zwillinger S, Paques M, Safran B, Baudouin C. In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma. J Fr Ophtalmol 2016;39:265-71. [PMID: 26987895 DOI: 10.1016/j.jfo.2015.11.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
66 Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, Harwerth RS, Porter J. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Invest Ophthalmol Vis Sci 2011;52:5473-80. [PMID: 21546533 DOI: 10.1167/iovs.11-7347] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
67 Wang B, Hua Y, Brazile BL, Yang B, Sigal IA. Collagen fiber interweaving is central to sclera stiffness. Acta Biomater 2020;113:429-37. [PMID: 32585309 DOI: 10.1016/j.actbio.2020.06.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
68 Campbell IC, Coudrillier B, Mensah J, Abel RL, Ethier CR. Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye. J R Soc Interface 2015;12:20141009. [PMID: 25589572 DOI: 10.1098/rsif.2014.1009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
69 Mao Y, Yang D, Li J, Liu J, Hou R, Zhang Z, Yang Y, Tian L, Weinreb RN, Wang N. Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study. Sci China Life Sci 2020;63:1887-94. [DOI: 10.1007/s11427-018-1585-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Girard MJ, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, Sigal IA, Strouthidis NG. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 2015;40:1-18. [PMID: 24832392 DOI: 10.3109/02713683.2014.914543] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
71 Tan NY, Koh V, Girard MJ, Cheng CY. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clin Exp Ophthalmol 2018;46:177-88. [PMID: 29214709 DOI: 10.1111/ceo.13126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
72 Irnaten M, Barry RC, Wallace DM, Docherty NG, Quill B, Clark AF, O'brien CJ. Elevated maxi-K+ ion channel current in glaucomatous lamina cribrosa cells. Experimental Eye Research 2013;115:224-9. [DOI: 10.1016/j.exer.2013.07.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
73 Campbell IC, Coudrillier B, Ross Ethier C. Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. Journal of Biomechanical Engineering 2014;136:021005. [DOI: 10.1115/1.4026286] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
74 Voorhees AP, Jan NJ, Austin ME, Flanagan JG, Sivak JM, Bilonick RA, Sigal IA. Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult. Invest Ophthalmol Vis Sci 2017;58:5336-46. [PMID: 29049736 DOI: 10.1167/iovs.17-22015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
75 Wang Y, Chen D, Yang W, Cui Q, Hou W, Han W, Huang X, Lu W, Yuan Z, Yuan J, Teng Y, Qiu J. Primary Acute Angle-Closure Glaucoma: Three-Dimensional Reconstruction Imaging of Optic Nerve Heard Structure in Based on Optical Coherence Tomography (OCT). Med Sci Monit 2019;25:3647-54. [PMID: 31096262 DOI: 10.12659/MSM.913541] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Karimi A, Rahmati SM, Grytz RG, Girkin CA, Downs JC. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Acta Biomater 2021:S1742-7061(21)00441-4. [PMID: 34245889 DOI: 10.1016/j.actbio.2021.07.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Sigal IA, Flanagan JG, Lathrop KL, Tertinegg I, Bilonick R. Human lamina cribrosa insertion and age. Invest Ophthalmol Vis Sci 2012;53:6870-9. [PMID: 22956611 DOI: 10.1167/iovs.12-9890] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
78 Tezel G. Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2021;:100998. [PMID: 34348167 DOI: 10.1016/j.preteyeres.2021.100998] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Han JC, Choi D, Kwun YK, Suh W, Kee C. Evaluation of lamina cribrosa thickness and depth in ocular hypertension. Jpn J Ophthalmol 2016;60:14-9. [DOI: 10.1007/s10384-015-0407-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
80 Flatau A, Solano F, Jefferys JL, Damion C, Quigley HA. A Protective Eye Shield Reduces Limbal Strain and Its Variability During Simulated Sleep in Adults With Glaucoma. J Glaucoma 2018;27:77-86. [PMID: 29194205 DOI: 10.1097/IJG.0000000000000826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
81 Kadziauskienė A, Jašinskienė E, Ašoklis R, Lesinskas E, Rekašius T, Chua J, Cheng CY, Mari JM, Girard MJA, Schmetterer L. Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy. Ophthalmology 2018;125:1729-40. [PMID: 29961552 DOI: 10.1016/j.ophtha.2018.05.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
82 Bui BV, He Z, Vingrys AJ, Nguyen CT, Wong VH, Fortune B. Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J Ophthalmol 2013;2013:262467. [PMID: 23431417 DOI: 10.1155/2013/262467] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
83 Downs JC, Girkin CA. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 2017;28:113-119. [PMID: 27898470 DOI: 10.1097/icu.0000000000000354] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 8.4] [Reference Citation Analysis]
84 Crawford Downs J, Roberts MD, Sigal IA. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res 2011;93:133-40. [PMID: 20708001 DOI: 10.1016/j.exer.2010.08.004] [Cited by in Crossref: 107] [Cited by in F6Publishing: 101] [Article Influence: 8.9] [Reference Citation Analysis]
85 Karimi A, Rahmati SM, Razaghi R, Girkin CA, Crawford Downs J. Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater. Comput Methods Programs Biomed 2022;215:106618. [PMID: 35026624 DOI: 10.1016/j.cmpb.2022.106618] [Reference Citation Analysis]