BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB, Cason JB, Donaldson KE, Kymionis GD. Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology 2013;120:e5-e20. [PMID: 23174396 DOI: 10.1016/j.ophtha.2012.08.013] [Cited by in Crossref: 85] [Cited by in F6Publishing: 67] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Heichel J, Wilhelm F, Kunert KS, Schlueter R, Stuhltraeger U, Hammer T. Influence of microkeratome parameters on the stromal bed and flap edge quality in laser in situ keratomileusis. Clin Ophthalmol 2014;8:61-9. [PMID: 24368878 DOI: 10.2147/OPTH.S51200] [Reference Citation Analysis]
2 Kanclerz P, Khoramnia R. Flap Thickness and the Risk of Complications in Mechanical Microkeratome and Femtosecond Laser In Situ Keratomileusis: A Literature Review and Statistical Analysis. Diagnostics (Basel) 2021;11:1588. [PMID: 34573930 DOI: 10.3390/diagnostics11091588] [Reference Citation Analysis]
3 Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018;10:E2. [PMID: 30586923 DOI: 10.3390/jfb10010002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
4 Parafita-fernández A, García-gonzalez M, Katsanos A, Gros-otero J, Teus M. Two Femtosecond Laser LASIK Platforms: Comparison of Evolution of Visual Acuity, Flap Thickness, and Stromal Optical Density. Cornea 2019;38:98-104. [DOI: 10.1097/ico.0000000000001784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
5 Wong RC, Yu M, Chan TC, Chong KK, Jhanji V. Longitudinal comparison of outcomes after sub-Bowman keratomileusis and laser in situ keratomileusis: randomized, double-masked study. Am J Ophthalmol 2015;159:835-45.e3. [PMID: 25681001 DOI: 10.1016/j.ajo.2015.02.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
6 Bolivar G, Garcia-gonzalez M, Laucirika G, Villa-collar C, Teus MA. Intraocular pressure rises during laser in situ keratomileusis: Comparison of 3 femtosecond laser platforms. Journal of Cataract and Refractive Surgery 2019;45:1172-6. [DOI: 10.1016/j.jcrs.2019.03.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Ivarsen A, Hjortdal J. Correction of myopic astigmatism with small incision lenticule extraction. J Refract Surg 2014;30:240-7. [PMID: 24702575 DOI: 10.3928/1081597X-20140320-02] [Cited by in Crossref: 75] [Cited by in F6Publishing: 17] [Article Influence: 9.4] [Reference Citation Analysis]
8 Alvarez MT, Montesel A, Bataille L. Late traumatic flap dislocation seven years after femtosecond laser-assisted in situ keratomileusis. Int J Ophthalmol 2019;12:862-5. [PMID: 31131251 DOI: 10.18240/ijo.2019.05.27] [Reference Citation Analysis]
9 Zhang C, Bald M, Tang M, Li Y, Huang D. Interface quality of different corneal lamellar-cut depths for femtosecond laser-assisted lamellar anterior keratoplasty. J Cataract Refract Surg 2015;41:827-35. [PMID: 25747165 DOI: 10.1016/j.jcrs.2014.08.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
10 Razgulyaeva EA. Rescue of primary incomplete microkeratome flap with secondary femtosecond laser flap in LASIK. Case Rep Ophthalmol Med 2014;2014:289354. [PMID: 25506449 DOI: 10.1155/2014/289354] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
11 Saerchen E, Liedtke-Gruener S, Kopp M, Heisterkamp A, Lubatschowski H, Ripken T. Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction. PLoS One 2019;14:e0222293. [PMID: 31527880 DOI: 10.1371/journal.pone.0222293] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Wang C, Li X, Guo Y, He R, Guo H, Chen W. Effects of Laser In Situ Keratomileusis and Small-Incision Lenticule Extraction on Corneal Biomechanical Behavior: A Finite Element Analysis. Front Bioeng Biotechnol 2022;10:855367. [DOI: 10.3389/fbioe.2022.855367] [Reference Citation Analysis]
13 Gros-Otero J, Ketabi S, Cañones-Zafra R, Garcia-Gonzalez M, Villa-Collar C, Casado S, Teus MA. Corneal stromal roughness after VisuMax and Intralase femtosecond laser photodisruption: An atomic force microscopy study. PLoS One 2021;16:e0252449. [PMID: 34043738 DOI: 10.1371/journal.pone.0252449] [Reference Citation Analysis]
14 Brenner JE, Fadlallah A, Hatch KM, Choi C, Sayegh RR, Kouyoumjian P, Wu S, Frangieh GT, Melki SA. Accuracy of Visual Estimation of LASIK Flap Thickness. J Refract Surg 2017;33:765-7. [DOI: 10.3928/1081597x-20170821-01] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
15 Lauzirika G, Garcia-Gonzalez M, Bolivar G, Hernández-Verdejo JL, Blázquez Sánchez V, Gros-Otero J, Teus MA. Measurement of the Intraocular Pressure Elevation During Laser-Assisted In Situ Keratomileusis Flap Creation Using a Femtosecond Laser Platform. Transl Vis Sci Technol 2021;10:9. [PMID: 34003943 DOI: 10.1167/tvst.10.3.9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Maus M, Fawzy N, Pei R. Retrospective analysis of femtosecond laser flap accuracy in patients having LASIK. J Cataract Refract Surg 2014;40:2158-60. [PMID: 25465693 DOI: 10.1016/j.jcrs.2014.10.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
17 Sioufi K, Zheleznyak L, MacRae S, Rocha KM. Femtosecond Lasers in Cornea & Refractive Surgery. Exp Eye Res 2021;205:108477. [PMID: 33516763 DOI: 10.1016/j.exer.2021.108477] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Huhtala A, Pietilä J, Mäkinen P, Uusitalo H. Femtosecond lasers for laser in situ keratomileusis: a systematic review and meta-analysis. Clin Ophthalmol 2016;10:393-404. [PMID: 27022236 DOI: 10.2147/OPTH.S99394] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lim DH, Hyun J, Shin E, Ko BW, Chung ES, Chung TY. Incidence and Risk Factors of Opaque Bubble Layer Formation According to Flap Thickness During 500-kHz FS-LASIK. J Refract Surg 2019;35:583-9. [PMID: 31498416 DOI: 10.3928/1081597X-20190814-01] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Asena BS, Kaskaloglu M. Laser-Assisted Cataract Surgery: Soft Lens Assisted Interface (SoftFit) versus Direct Contact Interface. European Journal of Ophthalmology 2016;26:242-7. [DOI: 10.5301/ejo.5000684] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
21 Chan TC, Liu D, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Ophthalmology 2015;122:687-92. [PMID: 25487425 DOI: 10.1016/j.ophtha.2014.10.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
22 Yu CQ, Manche EE. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: One-year results. Journal of Cataract and Refractive Surgery 2015;41:740-8. [DOI: 10.1016/j.jcrs.2014.06.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
23 Chan TC, Ng AL, Cheng GP, Wang Z, Woo VC, Jhanji V. Effect of location of opening incision on astigmatic correction after small-incision lenticule extraction. Sci Rep 2016;6:35881. [PMID: 27775085 DOI: 10.1038/srep35881] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
24 Perez-Straziota C, Randleman JB. Femtosecond-assisted LASIK: Complications and Management. Int Ophthalmol Clin 2016;56:59-66. [PMID: 26938338 DOI: 10.1097/IIO.0000000000000105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Gottardi R. Towards a minimally invasive sampling tool for high resolution tissue analytical mapping. Nanotechnology 2015;26:372501. [PMID: 26302485 DOI: 10.1088/0957-4484/26/37/372501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Zhao LQ, Li LM, Liu J, Li P. Bandage Contact Lens Application Reduces Fibrotic Wound Healing of Flap Margins after FS-LASIK: A Prospective Randomized Clinical Trial. J Ophthalmol 2019;2019:3074659. [PMID: 30733872 DOI: 10.1155/2019/3074659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X. Comparison of Corneal Deformation Parameters After SMILE, LASEK, and Femtosecond Laser-Assisted LASIK. J Refract Surg 2014;30:310-8. [DOI: 10.3928/1081597x-20140422-01] [Cited by in Crossref: 65] [Cited by in F6Publishing: 23] [Article Influence: 8.1] [Reference Citation Analysis]
28 Wang J, Ren Y, Liang K, Jiang Z, Tao L. Changes of corneal high-order aberrations after femtosecond laser-assisted in situ keratomileusis. Medicine (Baltimore) 2018;97:e0618. [PMID: 29718869 DOI: 10.1097/MD.0000000000010618] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Leccisotti A, Fields SV, Moore J, Shah S, Moore TC. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap. J Cataract Refract Surg 2016;42:127-31. [PMID: 26948787 DOI: 10.1016/j.jcrs.2015.07.047] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
30 Colombo-Barboza MN, Colombo-Barboza LR, Colombo-Barboza MMN, Colombo-Barboza GN. A Comparative Study of Laser In Situ Keratomileusis Flaps Created Using Single-Functional Versus Multifunctional Femtosecond Laser for Refractive Surgery. Cornea 2020;39:1122-31. [PMID: 32472791 DOI: 10.1097/ICO.0000000000002353] [Reference Citation Analysis]
31 Kunz JN, Voronine DV, Ko BA, Lee HWH, Rana A, Bagavathiannan MV, Sokolov AV, Scully MO. Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature. Journal of Modern Optics 2017;64:942-7. [DOI: 10.1080/09500340.2017.1287434] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
32 Kohnen T, Remy M. [Complications of corneal lamellar refractive surgery]. Ophthalmologe 2015;112:982-9. [PMID: 26613941 DOI: 10.1007/s00347-015-0172-x] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
33 Yvon C, Archer TJ, Gobbe M, Reinstein DZ. Comparison of Higher-Order Aberration Induction Between Manual Microkeratome and Femtosecond Laser Flap Creation. J Refract Surg 2015;31:130-5. [DOI: 10.3928/1081597x-20150122-09] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
34 Cummings A, Durrie D, Gordon M, Williams R, Gow JA, Maus M. Prospective Evaluation of Outcomes in Patients Undergoing Treatment for Myopia Using the WaveLight Refractive Suite. J Refract Surg 2017;33:322-8. [DOI: 10.3928/1081597x-20160926-01] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
35 Chan TCY, Yu MCY, Mak S, Jhanji V. Longitudinal comparison of femtosecond-assisted sub-Bowman keratomileusis versus photorefractive keratectomy for high myopia. Br J Ophthalmol. [DOI: 10.1136/bjophthalmol-2016-308642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
36 Güell JL, Verdaguer P, Mateu-Figueras G, Elies D, Gris O, El Husseiny MA, Manero F, Morral M. SMILE Procedures With Four Different Cap Thicknesses for the Correction of Myopia and Myopic Astigmatism. J Refract Surg 2015;31:580-5. [PMID: 26352562 DOI: 10.3928/1081597X-20150820-02] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 3.2] [Reference Citation Analysis]
37 Wu F, Jin X, Xu Y, Yang Y. Treatment of corneal perforation with lenticules from small incision lenticule extraction surgery: a preliminary study of 6 patients. Cornea 2015;34:658-63. [PMID: 25811718 DOI: 10.1097/ICO.0000000000000397] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
38 Ivarsen A, Asp S, Hjortdal J. Safety and Complications of More Than 1500 Small-Incision Lenticule Extraction Procedures. Ophthalmology 2014;121:822-8. [DOI: 10.1016/j.ophtha.2013.11.006] [Cited by in Crossref: 210] [Cited by in F6Publishing: 172] [Article Influence: 26.3] [Reference Citation Analysis]
39 Zhang Y, Chen YG. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser. BMC Ophthalmol 2018;18:71. [PMID: 29506498 DOI: 10.1186/s12886-018-0734-1] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
40 Moshirfar M, West DG, Miller CM, West WB Jr, McCabe SE, Shmunes KM, Baker PA, Ronquillo YC, Hoopes PC. Incidence, Risk, and Visual Outcomes after Repositioning of Acute Non-Traumatic Flap Dislocations Following Femtosecond-Assisted LASIK. J Clin Med 2021;10:2478. [PMID: 34204958 DOI: 10.3390/jcm10112478] [Reference Citation Analysis]
41 Wei CH, Dai QY, Mei LX, Ge Y, Zhang PF, Song E. Paired eye-control study of unilateral opaque bubble layer in femtosecond laser assisted laser in situ keratomileusis. Int J Ophthalmol 2019;12:654-9. [PMID: 31024822 DOI: 10.18240/ijo.2019.04.21] [Reference Citation Analysis]
42 Al-Zeraid FM, Osuagwu UL. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism. BMC Ophthalmol 2016;16:29. [PMID: 27000109 DOI: 10.1186/s12886-016-0205-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
43 Xia LK, Ma J, Liu HN, Shi C, Huang Q. Three-year results of small incision lenticule extraction and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis for correction of high myopia and myopic astigmatism. Int J Ophthalmol 2018;11:470-7. [PMID: 29600182 DOI: 10.18240/ijo.2018.03.18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ganesh S, Brar S, K V M. CIRCLE Software for the Management of Retained Lenticule Tissue Following Complicated SMILE Surgery. J Refract Surg 2019;35:60-5. [PMID: 30633789 DOI: 10.3928/1081597X-20181120-01] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Kahuam-López N, Navas A, Castillo-Salgado C, Graue-Hernandez EO, Jimenez-Corona A, Ibarra A. Laser-assisted in-situ keratomileusis (LASIK) with a mechanical microkeratome compared to LASIK with a femtosecond laser for LASIK in adults with myopia or myopic astigmatism. Cochrane Database Syst Rev 2020;4:CD012946. [PMID: 32255519 DOI: 10.1002/14651858.CD012946.pub2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
46 Shaaban YM, Badran TAF. Tear meniscus evaluation after microkeratome laser in situ keratomileusis, femtosecond laser and femtosmile laser techniques using anterior segment optical coherence tomography. Clin Ophthalmol 2018;12:1337-45. [PMID: 30104861 DOI: 10.2147/OPTH.S169091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
47 Grewal DS, Basti S. Intraoperative vertical gas breakthrough during clear corneal incision creation with the femtosecond cataract laser. Journal of Cataract and Refractive Surgery 2014;40:666-70. [DOI: 10.1016/j.jcrs.2014.01.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
48 Han SB, Liu YC, Mohamed-Noriega K, Mehta JS. Application of Femtosecond Laser in Anterior Segment Surgery. J Ophthalmol 2020;2020:8263408. [PMID: 32351726 DOI: 10.1155/2020/8263408] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Hall RC, Rosman M, Chan C, Tan DT, Mehta JS. Patient and surgeon experience during laser in situ keratomileusis using 2 femtosecond laser systems. J Cataract Refract Surg 2014;40:423-9. [PMID: 24461333 DOI: 10.1016/j.jcrs.2013.08.056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
50 Jadav DS, Desai N, Taylor KR, Caldwell MC, Panday VA, Reilly CD. Visual outcomes after femtosecond laser in situ keratomileusis flap complications. J Cataract Refract Surg 2015;41:2487-92. [PMID: 26703500 DOI: 10.1016/j.jcrs.2015.05.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Kohnen T, Klaproth OK. [Avoidance and management of complications in laser in situ keratomileusis]. Ophthalmologe 2013;110:629-38. [PMID: 23868666 DOI: 10.1007/s00347-012-2680-2] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
52 Kymionis GD, Liakopoulos DA, Grentzelos MA, Skatharoudi CA, Panagopoulou SI. Uneventful Femtosecond Laser-assisted Flap Creation in a Patient With Postoperative PRK Corneal Haze. J Refract Surg 2015;31:638-9. [PMID: 26352571 DOI: 10.3928/1081597X-20150821-01] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
53 Zheng X, Zhang D, Li S, Zhang J, Zheng J, Du L, Gao J. An Experimental Study of Femto-Laser in Assisting Xenograft Acellular Cornea Matrix Lens Transplantation. Med Sci Monit 2018;24:5208-15. [PMID: 30051889 DOI: 10.12659/MSM.909294] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Katsanos A, Arranz-Marquez E, Cañones R, Lauzirika G, Rodríguez-Perez I, Teus MA. Retinal nerve fiber layer thickness after laser-assisted subepithelial keratomileusis and femtosecond LASIK: a prospective observational cohort study. Clin Ophthalmol 2018;12:1213-8. [PMID: 30013314 DOI: 10.2147/OPTH.S168033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
55 Shah DN, Melki S. Complications of femtosecond-assisted laser in-situ keratomileusis flaps. Semin Ophthalmol 2014;29:363-75. [PMID: 25325862 DOI: 10.3109/08820538.2014.959194] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
56 Leccisotti A. Femtosecond laser–assisted hyperopic laser in situ keratomileusis with tissue-saving ablation: Analysis of 800 eyes. Journal of Cataract and Refractive Surgery 2014;40:1122-30. [DOI: 10.1016/j.jcrs.2013.11.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
57 Kunz JN, Voronine DV, Lee HWH, Sokolov AV, Scully MO. Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy. Opt Express 2017;25:7251. [DOI: 10.1364/oe.25.007251] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
58 Gros-Otero J, Ketabi S, Cañones-Zafra R, Garcia-Gonzalez M, Parafita-Fernandez A, Villa-Collar C, Casado S, Teus M. Analysis of corneal stromal roughness after iFS 150 kHz and LenSx femtosecond LASIK flap creation in porcine eyes. Graefes Arch Clin Exp Ophthalmol 2019;257:2665-70. [PMID: 31650272 DOI: 10.1007/s00417-019-04497-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
59 Meidani A, Tzavara C. Comparison of efficacy, safety, and predictability of laser in situ keratomileusis using two laser suites. Clin Ophthalmol 2016;10:1639-46. [PMID: 27601880 DOI: 10.2147/OPTH.S110626] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
60 Parafita-Fernandez A, Gros-Otero J, Villa-Collar C, García-González M, Teus M. Effect of flap homogeneity on higher-order aberrations induction after femtosecond LASIK for myopia. J Cataract Refract Surg 2020;46:1278-83. [PMID: 32898096 DOI: 10.1097/j.jcrs.0000000000000255] [Reference Citation Analysis]
61 Robert MC, Khreim N, Todani A, Melki SA. Anterior chamber gas bubble emergence pattern during femtosecond LASIK-flap creation. Br J Ophthalmol 2015;99:1201-5. [PMID: 25947557 DOI: 10.1136/bjophthalmol-2014-306307] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Yu CQ, Manche EE. A comparison of LASIK flap thickness and morphology between the Intralase 60- and 150-kHz femtosecond lasers. J Refract Surg 2014;30:827-30. [PMID: 25437481 DOI: 10.3928/1081597X-20141113-04] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Calhoun WR, Ilev IK. Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue. Lasers Med Sci 2015;30:1341-6. [DOI: 10.1007/s10103-015-1726-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
64 Kanellopoulos AJ, Asimellis G. Essential opaque bubble layer elimination with novel LASIK flap settings in the FS200 Femtosecond Laser. Clin Ophthalmol 2013;7:765-70. [PMID: 23620658 DOI: 10.2147/OPTH.S43723] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
65 Ganesh S, Brar S, Lazaridis A. Management and Outcomes of Retained Lenticules and Lenticule Fragments Removal After Failed Primary SMILE: A Case Series. J Refract Surg 2017;33:848-53. [PMID: 29227514 DOI: 10.3928/1081597X-20171004-01] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
66 Chen LY, Manche EE. Comparison of femtosecond and excimer laser platforms available for corneal refractive surgery. Curr Opin Ophthalmol 2016;27:316-22. [PMID: 27031540 DOI: 10.1097/ICU.0000000000000268] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
67 Kymionis GD, Tsoulnaras KI, Tsakalis NG, Grentzelos MA. Diffuse lamellar keratitis in the femtosecond-assisted LASIK flap tunnel. Clin Ophthalmol 2014;8:1065-7. [PMID: 24940043 DOI: 10.2147/OPTH.S64253] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
68 Son G, Lee J, Jang C, Choi KY, Cho BJ, Lim TH. Possible Risk Factors and Clinical Effects of Opaque Bubble Layer in Small Incision Lenticule Extraction (SMILE). J Refract Surg 2017;33:24-9. [DOI: 10.3928/1081597x-20161006-06] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 3.2] [Reference Citation Analysis]
69 Piñero DP, Teus MA. Clinical outcomes of small-incision lenticule extraction and femtosecond laser-assisted wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 2016;42:1078-93. [PMID: 27492109 DOI: 10.1016/j.jcrs.2016.05.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
70 Titiyal JS, Kaur M, Nair S. Are Fenestrations in Peripheral Pre-Descemet’s Layer the Route for Intracameral Air Bubble Migration During Femtosecond LASIK? Medical Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110844] [Reference Citation Analysis]
71 Bao F, Wang J, Cao S, Liao N, Shu B, Zhao Y, Li Y, Zheng X, Huang J, Chen S, Wang Q, Elsheikh A. Development and clinical verification of numerical simulation for laser in situ keratomileusis. J Mech Behav Biomed Mater 2018;83:126-34. [PMID: 29704827 DOI: 10.1016/j.jmbbm.2018.04.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
72 Chan TCY, Ng ALK, Cheng GPM, Wang Z, Ye C, Woo VCP, Tham CCY, Jhanji V. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecond-assisted LASIK for low to moderate myopic astigmatism. Br J Ophthalmol 2016;100:553-9. [DOI: 10.1136/bjophthalmol-2015-307238] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
73 Gyldenkerne A, Ivarsen A, Hjortdal JØ. Comparison of corneal shape changes and aberrations induced By FS-LASIK and SMILE for myopia. J Refract Surg 2015;31:223-9. [PMID: 25751842 DOI: 10.3928/1081597X-20150303-01] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
74 Gao H, Miles TP, Troche R, Murdoch DM, Koefoed VF, Cason JB. Quality of Vision Following LASIK and PRK-MMC for Treatment of Myopia. Mil Med 2021:usab071. [PMID: 33629728 DOI: 10.1093/milmed/usab071] [Reference Citation Analysis]
75 Santos AMD, Torricelli AAM, Marino GK, Garcia R, Netto MV, Bechara SJ, Wilson SE. Femtosecond Laser-Assisted LASIK Flap Complications. J Refract Surg 2016;32:52-9. [DOI: 10.3928/1081597x-20151119-01] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
76 Wan KH, Chan TC, Kwok PS, Ng AL. Combined accelerated collagen crosslinking and sub-Bowman's keratomileusis in high myopic eyes: a comparison between total ultraviolet energy dose. Semin Ophthalmol 2022;:1-6. [PMID: 35476818 DOI: 10.1080/08820538.2022.2070026] [Reference Citation Analysis]
77 Garcia-gonzalez M, Bouza-miguens C, Parafita-fernandez A, Gros-otero J, Cañones-zafra R, Villa-collar C, Teus MA. Comparison of visual outcomes and flap morphology using 2 femtosecond-laser platforms. Journal of Cataract and Refractive Surgery 2018;44:78-84. [DOI: 10.1016/j.jcrs.2017.10.041] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
78 Zhang R, Sun L, Li J, Law A, Jhanji V, Zhang M. Visual and Refractive Outcomes After Sub-Bowman Keratomileusis and Transepithelial Photorefractive Keratectomy for Myopia. Eye Contact Lens 2019;45:132-6. [PMID: 30067519 DOI: 10.1097/ICL.0000000000000533] [Reference Citation Analysis]
79 Lin HY, Fang YT, Chuang YJ, Yu HC, Pu C, Chou YJ, Chien CY, Lin PJ, Schallhorn SC, Sun CC. Influences of Flap Shape and Hinge Angle on Opaque Bubble Layer Formation in Femtosecond Laser-Assisted LASIK Surgery. J Refract Surg 2017;33:178-82. [PMID: 28264132 DOI: 10.3928/1081597X-20161219-02] [Reference Citation Analysis]
80 Santhiago MR, Kara-Junior N, Waring GO 4th. Microkeratome versus femtosecond flaps: accuracy and complications. Curr Opin Ophthalmol 2014;25:270-4. [PMID: 24837579 DOI: 10.1097/ICU.0000000000000070] [Cited by in Crossref: 46] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
81 Kasetsuwan N, Satitpitakul V, Puangsricharern V, Reinprayoon U, Pariyakanok L. Comparison of performances of femtosecond laser and microkeratome for thin-flap laser in situ keratomileusis. Lasers Surg Med 2016;48:596-601. [PMID: 26996546 DOI: 10.1002/lsm.22511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
82 Garcia-Gonzalez M, Teus MA. Flap thickness in femtosecond laser. J Refract Surg 2015;31:140. [PMID: 25735050 DOI: 10.3928/1081597X-20150122-11] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
83 Yang H, Zhou Y, Zhao H, Xue J, Jiang Q. Application of the SMILE-derived lenticule in therapeutic keratoplasty. Int Ophthalmol 2020;40:689-95. [PMID: 31754892 DOI: 10.1007/s10792-019-01229-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 de Rojas Silva MV, Tobío Ruibal A. New mechanism for epithelial ingrowth after small incision lenticule extraction: Vertical epithelial gas breakthrough. Eur J Ophthalmol 2022;:11206721221083796. [PMID: 35234539 DOI: 10.1177/11206721221083796] [Reference Citation Analysis]