BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: von Jagow B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. Journal of Cataract and Refractive Surgery 2009;35:35-41. [DOI: 10.1016/j.jcrs.2008.09.013] [Cited by in Crossref: 91] [Cited by in F6Publishing: 84] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Parafita-fernández A, García-gonzalez M, Katsanos A, Gros-otero J, Teus M. Two Femtosecond Laser LASIK Platforms: Comparison of Evolution of Visual Acuity, Flap Thickness, and Stromal Optical Density. Cornea 2019;38:98-104. [DOI: 10.1097/ico.0000000000001784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
2 Murakami Y, Manche EE. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps. J Cataract Refract Surg 2011;37:1879-83. [PMID: 21840682 DOI: 10.1016/j.jcrs.2011.05.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
3 Kohnen T. Interface for femtosecond laser–assisted lens surgery. Journal of Cataract and Refractive Surgery 2013;39:491-2. [DOI: 10.1016/j.jcrs.2013.02.033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
4 Kanclerz P, Khoramnia R. Flap Thickness and the Risk of Complications in Mechanical Microkeratome and Femtosecond Laser In Situ Keratomileusis: A Literature Review and Statistical Analysis. Diagnostics (Basel) 2021;11:1588. [PMID: 34573930 DOI: 10.3390/diagnostics11091588] [Reference Citation Analysis]
5 Issa A, Al Hassany U. Femtosecond laser flap parameters and visual outcomes in laser in situ keratomileusis. Journal of Cataract and Refractive Surgery 2011;37:665-74. [DOI: 10.1016/j.jcrs.2010.10.049] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
6 Kiernan DF, Mieler WF, Hariprasad SM. Spectral-Domain Optical Coherence Tomography: A Comparison of Modern High-Resolution Retinal Imaging Systems. American Journal of Ophthalmology 2010;149:18-31.e2. [DOI: 10.1016/j.ajo.2009.08.037] [Cited by in Crossref: 152] [Cited by in F6Publishing: 130] [Article Influence: 12.7] [Reference Citation Analysis]
7 Kim CY, Song JH, Na KS, Chung SH, Joo CK. Factors influencing corneal flap thickness in laser in situ keratomileusis with a femtosecond laser. Korean J Ophthalmol 2011;25:8-14. [PMID: 21350688 DOI: 10.3341/kjo.2011.25.1.8] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
8 Chen H, Xia Y, Zhong Y, Song X, Chen Y. Anterior Segment Optical Coherence Tomography Measurement of Flap Thickness After Myopic LASIK Using the Moria One Use-Plus Microkeratome. J Refract Surg 2010;26:403-10. [DOI: 10.3928/1081597x-20090710-04] [Cited by in Crossref: 5] [Article Influence: 0.4] [Reference Citation Analysis]
9 Gil-cazorla R, Teus MA, de Benito-llopis L, Mikropoulos DG. Femtosecond Laser vs Mechanical Microkeratome for Hyperopic Laser In Situ Keratomileusis. American Journal of Ophthalmology 2011;152:16-21.e2. [DOI: 10.1016/j.ajo.2011.01.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
10 Zhou J, Gu W, Li S, Wu L, Gao Y, Guo X. Predictors affecting myopic regression in - 6.0D to - 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted. Int Ophthalmol 2020;40:213-25. [PMID: 31571091 DOI: 10.1007/s10792-019-01179-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
11 Shah SU, Gritz DC. Application of the femtosecond laser LASIK microkeratome in eye banking. Curr Opin Ophthalmol 2012;23:257-63. [PMID: 22543479 DOI: 10.1097/ICU.0b013e3283541c76] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
12 Clare G, Moore TC, Grills C, Leccisotti A, Moore JE, Schallhorn S. Early flap displacement after LASIK. Ophthalmology 2011;118:1760-5. [PMID: 21550119 DOI: 10.1016/j.ophtha.2011.01.053] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
13 Lim DH, Keum JE, Ju WK, Lee JH, Chung TY, Chung ES. Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser. J Refract Surg 2013;29:462-8. [PMID: 23820228 DOI: 10.3928/1081597X-20130617-04] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
14 Zhou Y, Zhang J, Tian L, Zhai C. Comparison of the Ziemer FEMTO LDV Femtosecond Laser and Moria M2 Mechanical Microkeratome. J Refract Surg 2012;28:189-94. [DOI: 10.3928/1081597x-20120208-01] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
15 Zheng Y, Zhou Y, Zhang J, Liu Q, Zhai C, Wang Y. Comparison of Laser In Situ Keratomileusis Flaps Created by 2 Femtosecond Lasers. Cornea 2015;34:328-33. [DOI: 10.1097/ico.0000000000000361] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
16 Zhang J, Zhang SS, Yu Q, Wu JX, Lian JC. Comparison of corneal flap thickness using a FS200 femtosecond laser and a moria SBK microkeratome. Int J Ophthalmol 2014;7:273-7. [PMID: 24790869 DOI: 10.3980/j.issn.2222-3959.2014.02.14] [Reference Citation Analysis]
17 Kohnen T. Refractive corneal lenticule extraction. Journal of Cataract and Refractive Surgery 2014;40:1399-400. [DOI: 10.1016/j.jcrs.2014.07.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
18 Wang Y, Li J, Liu Y, Xie L. Intraocular Straylight After Thin-Flap LASIK With a Femtosecond Laser Versus a Mechanical Microkeratome. J Refract Surg 2013;29:534-9. [DOI: 10.3928/1081597x-20130719-03] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Crispim J, Allemann N, Hallak JA, Azar DT, De La Cruz J. Direct and Indirect Flap Measurements in Femtosecond Laser-Assisted In Situ Keratomileusis. Cornea 2019;38:297-303. [PMID: 30601286 DOI: 10.1097/ICO.0000000000001836] [Reference Citation Analysis]
20 Eldaly ZH, Abdelsalam MA, Hussein MS, Nassr MA. Comparison of Laser In Situ Keratomileusis Flap Morphology and Predictability by WaveLight FS200 Femtosecond Laser and Moria Microkeratome: An Anterior Segment Optical Coherence Tomography Study. Korean J Ophthalmol 2019;33:113-21. [PMID: 30977320 DOI: 10.3341/kjo.2018.0035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Xu Y, Zhou X, Wang L, Xu H. A morphological study of corneal flap after thin-flap laser-assisted in situ keratomileusis by anterior segment optical coherence tomography. J Int Med Res 2010;38:1952-60. [PMID: 21226998 DOI: 10.1177/147323001003800608] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
22 Tsagkataki M, Tey A, Ramasamy B, Anijeet D, Kaye SB. Femtosecond laser-assisted lamellar keratectomy for corneal opacities due to macular dystrophy: an interventional case report: Letter To The Editor. Clin Experiment Ophthalmol 2014;42:288-9. [DOI: 10.1111/ceo.12146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
23 Zhang J, Zhou YH, Tian L, Zhai CB. Comparison of Ziemer FEMTO LDV "Classic" and "Crystal Line" femtosecond laser flap quality by Fourier-domain optical coherence tomography. Int J Ophthalmol 2013;6:611-7. [PMID: 24195035 DOI: 10.3980/j.issn.2222-3959.2013.05.11] [Reference Citation Analysis]
24 Bhatia K, Shastri A, Mishra D, Satyamurthy KV, Manaktala R, Rati R. Validity of percentage tissue altered as a screening formula for post laser-assisted in-situ keratomileusis ectasia in Indian eyes. Indian J Ophthalmol 2020;68:2995-7. [PMID: 33229684 DOI: 10.4103/ijo.IJO_450_20] [Reference Citation Analysis]
25 Colombo-barboza MN, Colombo-barboza GN, Colombo-barboza LR, Matuoka ML, Neto AL, de Freitas D. Reproducibility of laser in situ keratomileusis flap thickness using a new multifunctional femtosecond laser platform and correlation with clinical preoperative measurements. Journal of Cataract and Refractive Surgery 2018;44:811-7. [DOI: 10.1016/j.jcrs.2018.05.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Malandrini A, Martone G, Canovetti A, Menabuoni L, Balestrazzi A, Fantozzi C, Lenzetti C, Fantozzi M. Morphologic study of the cornea by in vivo confocal microscopy and optical coherence tomography after bifocal refractive corneal inlay implantation. J Cataract Refract Surg 2014;40:545-57. [PMID: 24680518 DOI: 10.1016/j.jcrs.2013.08.057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
27 Kohnen T, Schwarz L, Remy M, Shajari M. Short-term complications of femtosecond laser-assisted laser in situ keratomileusis cuts: Review of 1210 consecutive cases. J Cataract Refract Surg 2016;42:1797-803. [PMID: 28007112 DOI: 10.1016/j.jcrs.2016.11.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
28 Jancevski M, Foster CS. Anterior segment optical coherence tomography. Semin Ophthalmol 2010;25:317-23. [PMID: 21091018 DOI: 10.3109/08820538.2010.518473] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
29 Jiang J, Jhanji V, Sun L, Li J, Zhang R. Comparison of visual quality after Femto-LASIK and TransPRK in patients with low and moderate myopia. Int Ophthalmol 2020;40:1419-28. [DOI: 10.1007/s10792-020-01308-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Hall RC, Mohamed FK, Htoon HM, Tan DT, Mehta JS. Laser in situ keratomileusis flap measurements: Comparison between observers and between spectral-domain and time-domain anterior segment optical coherence tomography. Journal of Cataract and Refractive Surgery 2011;37:544-51. [DOI: 10.1016/j.jcrs.2010.10.037] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
31 Rosas Salaroli CH, Li Y, Zhang X, Tang M, Branco Ramos JL, Allemann N, Huang D. Repeatability of laser in situ keratomileusis flap thickness measurement by Fourier-domain optical coherence tomography. J Cataract Refract Surg 2011;37:649-54. [PMID: 21420588 DOI: 10.1016/j.jcrs.2010.10.047] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
32 Wu Y, Huang Z. Comparison of early visual quality in patients with moderate myopia using different optical zones in small incision lenticule extraction (SMILE). BMC Ophthalmol 2021;21:46. [PMID: 33468076 DOI: 10.1186/s12886-020-01798-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Shah R, Shah S, Vogelsang H. All-in-One Femtosecond Laser Refractive Surgery: . Techniques in Ophthalmology 2011;9:114-21. [DOI: 10.1097/ito.0b013e318242c531] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
34 Doors M, Berendschot TT, de Brabander J, Webers CA, Nuijts RM. Value of optical coherence tomography for anterior segment surgery. J Cataract Refract Surg 2010;36:1213-29. [PMID: 20610103 DOI: 10.1016/j.jcrs.2010.05.002] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 4.5] [Reference Citation Analysis]
35 Sun Q, Deng ZZ, Zhou YH, Zhang J, Peng XY. Effect of femtosecond and microkeratome flaps creation on the cornea biomechanics during laser in situ keratomileusis: one year follow-up. Int J Ophthalmol 2016;9:1409-14. [PMID: 27803856 DOI: 10.18240/ijo.2016.10.07] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
36 Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB, Cason JB, Donaldson KE, Kymionis GD. Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology 2013;120:e5-e20. [PMID: 23174396 DOI: 10.1016/j.ophtha.2012.08.013] [Cited by in Crossref: 85] [Cited by in F6Publishing: 67] [Article Influence: 8.5] [Reference Citation Analysis]
37 Huhtala A, Pietilä J, Mäkinen P, Uusitalo H. Femtosecond lasers for laser in situ keratomileusis: a systematic review and meta-analysis. Clin Ophthalmol 2016;10:393-404. [PMID: 27022236 DOI: 10.2147/OPTH.S99394] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
38 Werner L, Michelson J, Ollerton A, Leishman L, Bodnar Z. Anterior segment optical coherence tomography in the assessment of postoperative intraocular lens optic changes. J Cataract Refract Surg 2012;38:1077-85. [PMID: 22624909 DOI: 10.1016/j.jcrs.2012.01.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
39 Kouassi FX, Blaizeau M, Buestel C, Schweitzer C, Gallois A, Colin J, Touboul D. [Comparison of Lasik with femtosecond laser versus Lasik with mechanical microkeratome: predictability of flap depth, corneal biomechanical effects and optical aberrations]. J Fr Ophtalmol 2012;35:2-8. [PMID: 21676493 DOI: 10.1016/j.jfo.2011.03.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
40 Ahn H, Kim JK, Kim CK, Han GH, Seo KY, Kim EK, Kim TI. Comparison of laser in situ keratomileusis flaps created by 3 femtosecond lasers and a microkeratome. J Cataract Refract Surg 2011;37:349-57. [PMID: 21241920 DOI: 10.1016/j.jcrs.2010.08.042] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 4.7] [Reference Citation Analysis]
41 Zhang YL, Cao LJ, Chen HW, Xu XH, Li ZN, Liu L. Comparison of changes in refractive error and corneal curvature following small-incision lenticule extraction and femtosecond laser-assisted in situ keratomileusis surgery. Indian J Ophthalmol 2018;66:1562-7. [PMID: 30355861 DOI: 10.4103/ijo.IJO_366_18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Reinstein DZ, Archer TJ, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vis (Lond) 2014;1:3. [PMID: 26605350 DOI: 10.1186/s40662-014-0003-1] [Cited by in Crossref: 87] [Cited by in F6Publishing: 71] [Article Influence: 10.9] [Reference Citation Analysis]
43 Shah R. Journey from photorefractive keratectomy to small incision lenticule extraction. Indian J Ophthalmol 2020;68:2645-6. [PMID: 33229633 DOI: 10.4103/ijo.IJO_2543_20] [Reference Citation Analysis]
44 Kohnen T, Klaproth OK. [Avoidance and management of complications in laser in situ keratomileusis]. Ophthalmologe 2013;110:629-38. [PMID: 23868666 DOI: 10.1007/s00347-012-2680-2] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
45 Khoramnia R, Salgado JP, Lohmann CP, Kobuch KA, von Mohrenfels CW. Precision, Morphology, and Histology of Corneal Flap Cuts Using a 200-kHz Femtosecond Laser. European Journal of Ophthalmology 2018;22:161-7. [DOI: 10.5301/ejo.2011.8376] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
46 Gros-Otero J, Garcia-Gonzalez M, Teus MA, Iglesias-Iglesias M, Gimenez-Vallejo C. Femtosecond laser-assisted sub-Bowman keratomileusis versus laser-assisted subepithelial keratomileusis to correct myopic astigmatism. J Optom 2018;11:33-9. [PMID: 27751694 DOI: 10.1016/j.optom.2016.09.002] [Reference Citation Analysis]
47 Hammer T, Höche T, Heichel J. [Scanning electron microscopic investigations of cutting edge quality in lamellar keratotomy using the Wavelight femtosecond laser (FS-200) : What influence do spot distance and an additional tunnel have?]. Ophthalmologe 2018;115:47-54. [PMID: 28741162 DOI: 10.1007/s00347-017-0544-5] [Reference Citation Analysis]
48 Santhiago MR, Kara-Junior N, Waring GO 4th. Microkeratome versus femtosecond flaps: accuracy and complications. Curr Opin Ophthalmol 2014;25:270-4. [PMID: 24837579 DOI: 10.1097/ICU.0000000000000070] [Cited by in Crossref: 46] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
49 Artini W, B Riyanto S, Hutauruk JA, D Gondhowiardjo T, Kekalih A. Predictive Factors for Successful High Myopia Treatment Using High-Frequency Laser-In-Situ Keratomileusis. Open Ophthalmol J 2018;12:214-25. [PMID: 30123384 DOI: 10.2174/1874364101812010214] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
50 Littlechild SL, Brummer G, Zhang Y, Conrad GW. Fibrinogen, riboflavin, and UVA to immobilize a corneal flap--conditions for tissue adhesion. Invest Ophthalmol Vis Sci 2012;53:4011-20. [PMID: 22589434 DOI: 10.1167/iovs.12-9515] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
51 Hurmeric V, Yoo SH, Mutlu FM. Optical coherence tomography in cornea and refractive surgery. Expert Review of Ophthalmology 2014;7:241-50. [DOI: 10.1586/eop.12.28] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
52 Serrao S, Buratto L, Lombardo G, De Santo MP, Ducoli P, Lombardo M. Optimal parameters to improve the interface quality of the flap bed in femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg 2012;38:1453-9. [PMID: 22814052 DOI: 10.1016/j.jcrs.2012.05.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
53 Xie W. Recent advances in laser in situ keratomileusis-associated dry eye. Clin Exp Optom 2016;99:107-12. [PMID: 27012690 DOI: 10.1111/cxo.12361] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
54 Yao P, Xu Y, Zhou X. Comparison of the predictability, uniformity and stability of a laser in situ keratomileusis corneal flap created with a VisuMax femtosecond laser or a Moria microkeratome. J Int Med Res 2011;39:748-58. [PMID: 21819705 DOI: 10.1177/147323001103900306] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
55 Yvon C, Archer TJ, Gobbe M, Reinstein DZ. Comparison of Higher-Order Aberration Induction Between Manual Microkeratome and Femtosecond Laser Flap Creation. J Refract Surg 2015;31:130-5. [DOI: 10.3928/1081597x-20150122-09] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
56 Heichel J, Hammer T, Sietmann R, Duncker G, Wilhelm F. Vergleich des Femtec Femtosekundenlasers und des Zyoptix XP Mikrokeratoms: Rasterelektronenmikroskopische Gegenüberstellung lamellärer Keratotomien. Ophthalmologe 2010;107:333-40. [DOI: 10.1007/s00347-009-1992-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
57 Kasetsuwan N, Satitpitakul V, Puangsricharern V, Reinprayoon U, Pariyakanok L. Comparison of performances of femtosecond laser and microkeratome for thin-flap laser in situ keratomileusis. Lasers Surg Med 2016;48:596-601. [PMID: 26996546 DOI: 10.1002/lsm.22511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
58 Ventura BV, Moraes HV Jr, Kara-Junior N, Santhiago MR. Role of optical coherence tomography on corneal surface laser ablation. J Ophthalmol 2012;2012:676740. [PMID: 23050122 DOI: 10.1155/2012/676740] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bohac M, Koncarevic M, Dukic A, Biscevic A, Cerovic V, Merlak M, Gabric N, Patel S. Unwanted Astigmatism and High-order Aberrations One Year after Excimer and Femtosecond Corneal Surgery. Optom Vis Sci 2018;95:1064-76. [PMID: 30339639 DOI: 10.1097/OPX.0000000000001298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 Zhang S, Xu H, Zheng K, Zhao J, Jian W, Li M, Zhou X. The observation during small incision lenticule extraction for myopia with corneal opacity. BMC Ophthalmol 2017;17:80. [PMID: 28545414 DOI: 10.1186/s12886-017-0474-7] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
61 de Benito-llopis L, Teus MA, Gil-cazorla R, Drake P. Comparison Between Femtosecond Laser-Assisted Sub-Bowman Keratomileusis vs Laser Subepithelial Keratectomy to Correct Myopia. American Journal of Ophthalmology 2009;148:830-836.e1. [DOI: 10.1016/j.ajo.2009.07.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
62 Danieliene E, Gabryte E, Danielius R, Vengris M, Vaiceliunaite A, Morkunas V, Ruksenas O. Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits. J Cataract Refract Surg 2013;39:258-67. [PMID: 23232256 DOI: 10.1016/j.jcrs.2012.09.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
63 Garcia-gonzalez M, Bouza-miguens C, Parafita-fernandez A, Gros-otero J, Cañones-zafra R, Villa-collar C, Teus MA. Comparison of visual outcomes and flap morphology using 2 femtosecond-laser platforms. Journal of Cataract and Refractive Surgery 2018;44:78-84. [DOI: 10.1016/j.jcrs.2017.10.041] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
64 Kohnen T, Steinwender G. LASIK und Femto-LASIK 2019: eine Standortbestimmung. Spektrum Augenheilkd 2019;33:139-46. [DOI: 10.1007/s00717-019-00437-2] [Reference Citation Analysis]
65 Ju W, Lee J, Chung T, Chung E. Reproducibility of LASIK Flap Thickness Using the Zeiss Femtosecond Laser Measured Postoperatively by Optical Coherence Tomography. J Refract Surg 2011;27:106-10. [DOI: 10.3928/1081597x-20100428-04] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
66 Naranjo-tackman R. How a femtosecond laser increases safety and precision in cataract surgery? Current Opinion in Ophthalmology 2011;22:53-7. [DOI: 10.1097/icu.0b013e3283415026] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
67 Moshirfar M, Imbornoni LM, Muthappan V, Williams L, Khalifa YM, Jarstad A, Sikder S. In vitro pilot analysis of uniformity, circularity, and concentricity of DSAEK donor endothelial grafts prepared by a microkeratome. Cornea 2014;33:191-6. [PMID: 24326334 DOI: 10.1097/ICO.0000000000000031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
68 Luo J, Yao P, Li M, Xu G, Zhao J, Tian M, Zhou X. Quantitative Analysis of Microdistortions in Bowman’s Layer Using Optical Coherence Tomography After SMILE Among Different Myopic Corrections. J Refract Surg 2015;31:104-9. [DOI: 10.3928/1081597x-20150122-05] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 3.6] [Reference Citation Analysis]
69 Tomita M, Chiba A, Matsuda J, Nawa Y. Evaluation of LASIK treatment with the Femto LDV in patients with corneal opacity. J Refract Surg 2012;28:25-30. [PMID: 22185466 DOI: 10.3928/1081597X-20111213-01] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
70 Katsanos A, Arranz-Marquez E, Cañones R, Lauzirika G, Rodríguez-Perez I, Teus MA. Retinal nerve fiber layer thickness after laser-assisted subepithelial keratomileusis and femtosecond LASIK: a prospective observational cohort study. Clin Ophthalmol 2018;12:1213-8. [PMID: 30013314 DOI: 10.2147/OPTH.S168033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
71 Calvo R, McLaren JW, Hodge DO, Bourne WM, Patel SV. Corneal aberrations and visual acuity after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. Am J Ophthalmol 2010;149:785-93. [PMID: 20227675 DOI: 10.1016/j.ajo.2009.12.023] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
72 Patel SV, McLaren JW, Kittleson KM, Bourne WM. Subbasal nerve density and corneal sensitivity after laser in situ keratomileusis: femtosecond laser vs mechanical microkeratome. Arch Ophthalmol 2010;128:1413-9. [PMID: 21060042 DOI: 10.1001/archophthalmol.2010.253] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
73 Santhiago MR, Wilson SE. Cellular effects after laser in situ keratomileusis flap formation with femtosecond lasers: a review. Cornea 2012;31:198-205. [PMID: 22157568 DOI: 10.1097/ICO.0b013e3182068c42] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
74 Prakash G, Agarwal A, Yadav A, Jacob S, Kumar DA, Agarwal A, Akhtar R. A Prospective Randomized Comparison of Four Femtosecond LASIK Flap Thicknesses. J Refract Surg 2010;26:392-402. [DOI: 10.3928/1081597x-20090728-02] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
75 Aristeidou A, Taniguchi EV, Tsatsos M, Muller R, McAlinden C, Pineda R, Paschalis EI. The evolution of corneal and refractive surgery with the femtosecond laser. Eye Vis (Lond) 2015;2:12. [PMID: 26605365 DOI: 10.1186/s40662-015-0022-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
76 Kahuam-López N, Navas A, Castillo-Salgado C, Graue-Hernandez EO, Jimenez-Corona A, Ibarra A. Laser-assisted in-situ keratomileusis (LASIK) with a mechanical microkeratome compared to LASIK with a femtosecond laser for LASIK in adults with myopia or myopic astigmatism. Cochrane Database Syst Rev 2020;4:CD012946. [PMID: 32255519 DOI: 10.1002/14651858.CD012946.pub2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
77 Kohnen T, Klaproth O, Derhartunian V, Kook D. Ergebnisse von 308 konsekutiven Femtosekundenlaserschnitten für die LASIK. Ophthalmologe 2010;107:439-45. [DOI: 10.1007/s00347-009-2029-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
78 Leccisotti A. Femtosecond laser–assisted hyperopic laser in situ keratomileusis with tissue-saving ablation: Analysis of 800 eyes. Journal of Cataract and Refractive Surgery 2014;40:1122-30. [DOI: 10.1016/j.jcrs.2013.11.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
79 Reinstein DZ, Archer TJ, Gobbe M. Accuracy and Reproducibility of Cap Thickness in Small Incision Lenticule Extraction. J Refract Surg 2013;29:810-8. [DOI: 10.3928/1081597x-20131023-02] [Cited by in Crossref: 39] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
80 Zhang Z, Jin H, Suo Y, Patel SV, Montés-micó R, Manche EE, Xu X. Femtosecond laser versus mechanical microkeratome laser in situ keratomileusis for myopia: Metaanalysis of randomized controlled trials. Journal of Cataract and Refractive Surgery 2011;37:2151-9. [DOI: 10.1016/j.jcrs.2011.05.043] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
81 Lafosse E, Wolffsohn JS, Talens-Estarelles C, García-Lázaro S. Presbyopia and the aging eye: Existing refractive approaches and their potential impact on dry eye signs and symptoms. Cont Lens Anterior Eye 2020;43:103-14. [PMID: 31445772 DOI: 10.1016/j.clae.2019.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
82 Vetter JM, Butsch C, Faust M, Schmidtmann I, Hoffmann EM, Sekundo W, Pfeiffer N. Irregularity of the Posterior Corneal Surface After Curved Interface Femtosecond Laser-Assisted Versus Microkeratome-Assisted Descemet Stripping Automated Endothelial Keratoplasty. Cornea 2013;32:118-24. [DOI: 10.1097/ico.0b013e31826ae2d8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 3.1] [Reference Citation Analysis]
83 Shah R, Shah S, Vogelsang H. All-in-One Femtosecond Laser Refractive Surgery: . Techniques in Ophthalmology 2010;8:35-42. [DOI: 10.1097/ito.0b013e3181dd37f0] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
84 Zhang J, Zhou Y, Zhai C, Tian L. Comparison of 2 femtosecond lasers for laser in situ keratomileusis flap creation. Journal of Cataract and Refractive Surgery 2013;39:922-7. [DOI: 10.1016/j.jcrs.2013.01.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
85 Kucumen RB, Yenerel NM, Gorgun E, Oral D, Altunsoy M, Utine CA, Ciftci F. AS-OCT as a Tool for Flap Thickness Measurement After Femtosecond-Assisted LASIK. Ophthalmic Surg Lasers Imaging 2011;42:31-6. [DOI: 10.3928/15428877-20101124-03] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
86 Park SH, Che CY, Kim SI, Park CY, Lee JH, Kim YH, Jung JW, Lee JS, Lee JE. Comparison of clinical outcomes after femtosecond laser in situ keratomileusis in eyes with low or high myopia. Int J Ophthalmol 2020;13:1780-7. [PMID: 33215010 DOI: 10.18240/ijo.2020.11.15] [Reference Citation Analysis]
87 Maeda N. Optical coherence tomography for corneal diseases. Eye Contact Lens 2010;36:254-9. [PMID: 20724851 DOI: 10.1097/ICL.0b013e3181ef0dbb] [Cited by in Crossref: 51] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
88 Cañadas P, de Benito-llopis L, Hernández-verdejo JL, Teus MA. Comparison of keratocyte density after femtosecond laser vs mechanical microkeratome from 3 months up to 5 years after LASIK. Graefes Arch Clin Exp Ophthalmol 2013;251:2171-9. [DOI: 10.1007/s00417-013-2357-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
89 Zhao J, Yao P, Li M, Chen Z, Shen Y, Zhao Z, Zhou Z, Zhou X. The morphology of corneal cap and its relation to refractive outcomes in femtosecond laser small incision lenticule extraction (SMILE) with anterior segment optical coherence tomography observation. PLoS One 2013;8:e70208. [PMID: 23940547 DOI: 10.1371/journal.pone.0070208] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
90 Zhou Y, Tian L, Wang N, Dougherty PJ. Anterior segment optical coherence tomography measurement of LASIK flaps: femtosecond laser vs microkeratome. J Refract Surg 2011;27:408-16. [PMID: 21117541 DOI: 10.3928/1081597X-20101029-01] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
91 Rocha KM, Randleman JB, Stulting RD. Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography. J Refract Surg 2011;27:759-63. [PMID: 21853960 DOI: 10.3928/1081597X-20110812-03] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
92 Lackerbauer C, Kollias A, Kreutzer TC, Ulbig M, Kampik A, Grueterich M. Amadeus ® II Microkeratome: Optimizing Microkeratome Settings for High Flap Accuracy Using Optical Low Coherence Reflectometry. European Journal of Ophthalmology 2010;20:41-7. [DOI: 10.1177/112067211002000105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
93 Shetty R, Malhotra C, D'Souza S, Wadia K. WaveLight FS200 vs Hansatome LASIK: intraoperative determination of flap characteristics and predictability by hand-held bioptigen spectral domain ophthalmic imaging system. J Refract Surg 2012;28:S815-20. [PMID: 23447894 DOI: 10.3928/1081597x-20121005-01] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]