BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Baxter SL, Marks C, Kuo TT, Ohno-Machado L, Weinreb RN. Machine Learning-Based Predictive Modeling of Surgical Intervention in Glaucoma Using Systemic Data From Electronic Health Records. Am J Ophthalmol 2019;208:30-40. [PMID: 31323204 DOI: 10.1016/j.ajo.2019.07.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res 2021;81:100879. [PMID: 32562883 DOI: 10.1016/j.preteyeres.2020.100879] [Reference Citation Analysis]
2 Brnabic A, Hess LM. Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Med Inform Decis Mak 2021;21:54. [PMID: 33588830 DOI: 10.1186/s12911-021-01403-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zafari H, Kosowan L, Zulkernine F, Signer A. Diagnosing post-traumatic stress disorder using electronic medical record data. Health Informatics J 2021;27:14604582211053259. [PMID: 34818936 DOI: 10.1177/14604582211053259] [Reference Citation Analysis]
4 Baxter SL, Saseendrakumar BR, Paul P, Kim J, Bonomi L, Kuo TT, Loperena R, Ratsimbazafy F, Boerwinkle E, Cicek M, Clark CR, Cohn E, Gebo K, Mayo K, Mockrin S, Schully SD, Ramirez A, Ohno-Machado L; All of Us Research Program Investigators. Predictive Analytics for Glaucoma Using Data From the All of Us Research Program. Am J Ophthalmol 2021;227:74-86. [PMID: 33497675 DOI: 10.1016/j.ajo.2021.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Stagg BC, Stein JD, Medeiros FA, Wirostko B, Crandall A, Hartnett ME, Cummins M, Morris A, Hess R, Kawamoto K. Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic. Ophthalmol Glaucoma 2021;4:5-9. [PMID: 32810611 DOI: 10.1016/j.ogla.2020.08.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mirzania D, Thompson AC, Muir KW. Applications of deep learning in detection of glaucoma: A systematic review. Eur J Ophthalmol 2021;31:1618-42. [PMID: 33274641 DOI: 10.1177/1120672120977346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Oh S, Cho KJ, Kim S. Development of the Integrated Glaucoma Risk Index. Diagnostics 2022;12:734. [DOI: 10.3390/diagnostics12030734] [Reference Citation Analysis]
8 Hung JY, Perera C, Chen KW, Myung D, Chiu HK, Fuh CS, Hsu CR, Liao SL, Kossler AL. A deep learning approach to identify blepharoptosis by convolutional neural networks. Int J Med Inform 2021;148:104402. [PMID: 33609928 DOI: 10.1016/j.ijmedinf.2021.104402] [Reference Citation Analysis]
9 Wang S, Tseng B, Hernandez-Boussard T. Development and evaluation of novel ophthalmology domain-specific neural word embeddings to predict visual prognosis. Int J Med Inform 2021;150:104464. [PMID: 33892445 DOI: 10.1016/j.ijmedinf.2021.104464] [Reference Citation Analysis]
10 Shukla AG, Razeghinejad R, Myers JS. Balancing treatments for patients with systemic hypertension and glaucoma. Expert Opin Pharmacother 2020;21:2225-30. [PMID: 32835542 DOI: 10.1080/14656566.2020.1810235] [Reference Citation Analysis]
11 Lin WC, Chen JS, Chiang MF, Hribar MR. Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology. Transl Vis Sci Technol 2020;9:13. [PMID: 32704419 DOI: 10.1167/tvst.9.2.13] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]