BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lakk M, Yarishkin O, Baumann JM, Iuso A, Križaj D. Cholesterol regulates polymodal sensory transduction in Müller glia. Glia 2017;65:2038-50. [PMID: 28856727 DOI: 10.1002/glia.23213] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Hu W, Ding Y, Li Q, Shi R, He Y. Transient receptor potential vanilloid 4 channels as therapeutic targets in diabetes and diabetes-related complications. J Diabetes Investig 2020;11:757-69. [PMID: 32129549 DOI: 10.1111/jdi.13244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Rao H, Jalali JA, Johnston TP, Koulen P. Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives. Front Endocrinol (Lausanne) 2021;12:620045. [PMID: 33828528 DOI: 10.3389/fendo.2021.620045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Pereiro X, Fernández R, Barreda-Gómez G, Ruzafa N, Acera A, Araiz J, Astigarraga E, Vecino E. Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci Rep 2020;10:20053. [PMID: 33208898 DOI: 10.1038/s41598-020-77087-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Phuong TTT, Redmon SN, Yarishkin O, Winter JM, Li DY, Križaj D. Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells. J Physiol 2017;595:6869-85. [PMID: 28949006 DOI: 10.1113/JP275052] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 8.2] [Reference Citation Analysis]
5 Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res 2021;:100145. [PMID: 34710431 DOI: 10.1016/j.jlr.2021.100145] [Reference Citation Analysis]
6 Lapajne L, Lakk M, Yarishkin O, Gubeljak L, Hawlina M, Križaj D. Polymodal Sensory Transduction in Mouse Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020;61:2. [PMID: 32271891 DOI: 10.1167/iovs.61.4.2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 2019;8:e46084. [PMID: 31184584 DOI: 10.7554/eLife.46084] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
8 Matsumoto H, Sugio S, Seghers F, Krizaj D, Akiyama H, Ishizaki Y, Gailly P, Shibasaki K. Retinal Detachment-Induced Müller Glial Cell Swelling Activates TRPV4 Ion Channels and Triggers Photoreceptor Death at Body Temperature. J Neurosci 2018;38:8745-58. [PMID: 30143574 DOI: 10.1523/JNEUROSCI.0897-18.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
9 Lakk M, Vazquez-Chona F, Yarishkin O, Križaj D. Dyslipidemia modulates Müller glial sensing and transduction of ambient information. Neural Regen Res 2018;13:207-10. [PMID: 29557361 DOI: 10.4103/1673-5374.226383] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
10 Liu Y, Duan C, Fang D, Liu Y, Xu H, Zheng Y, Xuan Y, Wang L, Ye L, Su R, An M. Protective factors for diabetic retinopathy in Type 2 diabetes mellitus patients: Long duration of no less than 10 years. J Diabetes Complications 2019;33:107383. [PMID: 31371129 DOI: 10.1016/j.jdiacomp.2019.05.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019;20:E371. [PMID: 30654572 DOI: 10.3390/ijms20020371] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
12 Lakk M, Young D, Baumann JM, Jo AO, Hu H, Križaj D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2018;12:353. [PMID: 30386208 DOI: 10.3389/fncel.2018.00353] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
13 Gurley JM, Elliott MH. The Role of Caveolin-1 in Retinal Inflammation. Adv Exp Med Biol 2019;1185:169-73. [PMID: 31884607 DOI: 10.1007/978-3-030-27378-1_28] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Gurley JM, Gmyrek GB, McClellan ME, Hargis EA, Hauck SM, Dozmorov MG, Wren JD, Carr DJJ, Elliott MH. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci 2020;61:19. [PMID: 33079993 DOI: 10.1167/iovs.61.12.19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Redmon SN, Yarishkin O, Lakk M, Jo A, Mustafić E, Tvrdik P, Križaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021;69:1563-82. [PMID: 33624376 DOI: 10.1002/glia.23979] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, Crandall A, Heurteaux C, Hartnett ME, Križaj D. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 2018;150:1660-75. [PMID: 30446509 DOI: 10.1085/jgp.201812179] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
17 Fabbri R, Saracino E, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene glial-interfaces: challenges and perspectives. Nanoscale 2021;13:4390-407. [PMID: 33599662 DOI: 10.1039/d0nr07824g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Rajan S, Schremmer C, Weber J, Alt P, Geiger F, Dietrich A. Ca2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells 2021;10:822. [PMID: 33917551 DOI: 10.3390/cells10040822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Toft-Bertelsen TL, MacAulay N. TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021;10:165. [PMID: 33467654 DOI: 10.3390/cells10010165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Prajapati M, Christensen G, Paquet-Durand F, Loftsson T. Cytotoxicity of β-Cyclodextrins in Retinal Explants for Intravitreal Drug Formulations. Molecules 2021;26:1492. [PMID: 33803405 DOI: 10.3390/molecules26051492] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Orduña Ríos M, Noguez Imm R, Hernández Godínez NM, Bautista Cortes AM, López Escalante DD, Liedtke W, Martínez Torres A, Concha L, Thébault S. TRPV4 inhibition prevents increased water diffusion and blood-retina barrier breakdown in the retina of streptozotocin-induced diabetic mice. PLoS One 2019;14:e0212158. [PMID: 31048895 DOI: 10.1371/journal.pone.0212158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
22 Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019;9:E513. [PMID: 31547139 DOI: 10.3390/biom9100513] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
23 Das R, Goswami C. TRPV4 expresses in bone cell lineages and TRPV4-R616Q mutant causing Brachyolmia in human reveals “loss-of-interaction” with cholesterol. Biochemical and Biophysical Research Communications 2019;517:566-74. [DOI: 10.1016/j.bbrc.2019.07.042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
24 Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021;41:525-36. [PMID: 32415577 DOI: 10.1007/s10571-020-00869-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Jo AO, Noel JM, Lakk M, Yarishkin O, Ryskamp DA, Shibasaki K, McCall MA, Križaj D. Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J Physiol 2017;595:6499-516. [PMID: 28766743 DOI: 10.1113/JP274562] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]